Preloader

Utilization of Carica papaya latex on coating of SPIONs for dye removal and drug delivery

  • 1.

    Hunter, J. R. Reconsidering the functions of latex. Trees 9(1), 1–5 (1994).

    Google Scholar 

  • 2.

    Dussourd, D. E. & Eisner, T. Vein-cutting behavior: Insect counterploy to the latex defense of plants. Science 237, 898–901 (1987).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 3.

    Agrawal, A. A. & Konno, K. Latex a model for understanding mechanisms, ecology, and evolution of plant defense against herbivory. Annu. Rev. Ecol. Evol. Syst. 40, 311–331 (2009).

    Google Scholar 

  • 4.

    Bauer, G. & Speck, T. Restoration of tensile strength in bark samples of Ficus benjamina due to coagulation of latex during fast self-healing of fissures. Ann. Bot. 109, 807–811 (2012).

    PubMed 

    Google Scholar 

  • 5.

    Hafid, K. et al. One-step recovery of latex papain from Carica papaya using three phase partitioning and its use as milk-clotting and meat-tenderizing agent. Int. J. Biol. Macromol. 146, 798–810 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • 6.

    Bandasak, C., Rawdkuen, S., Pintathog, P. & Chaiwut, P. Bioactivities of Carica papaya latex. Thai J. Agric. Sci 44(5), 106–112 (2011).

    Google Scholar 

  • 7.

    Saeed, F. et al. Nutritional and phyto-therapeutic potential of papaya (Carica Papaya Linn.): An overview. Int. J. Food Prop. 17(7), 1637–1653. https://doi.org/10.1080/10942912.2012.709210 (2014).

    CAS 
    Article 

    Google Scholar 

  • 8.

    Sabnis, R. W. Handbook of Biological Dyes and Stains Synthesis and Industrial Applications (Wiley, 2010).

    Google Scholar 

  • 9.

    Khin, M. M., Nair, A. S., Babu, V. J., Murugan, R. & Ramakrishna, S. A review on nanomaterials for environmental remediation. Energy Environ. Sci. 5(8), 8075–8109 (2012).

    CAS 

    Google Scholar 

  • 10.

    Samrot, A. V. et al. Adsorption efficiency of chemically synthesized Superparamagnetic Iron Oxide Nanoparticles (SPIONs) on crystal violet dye. CRGSC 4, 100066 (2021).

    Google Scholar 

  • 11.

    Samrot, A. V., Sahithya, C. S., Selvarani, J. & Pachiyappan, S. Surface-engineered super-paramagnetic iron oxide nanoparticles for chromium removal. Int. J. Nanomed. 14, 8105 (2019).

    CAS 

    Google Scholar 

  • 12.

    Gopi, S., Amalraj, A. & Thomas, S. Effective drug delivery system of biopolymers based on nanomaterials and hydrogels-a review. Drug Des. 5, 2 (2016).

    Google Scholar 

  • 13.

    Vandamme, E., De Baets, S. & Steinbuchel, A. in Biopolymers. (ed. Steinbuchel, A.), (series editor). (Wiley, 2004).

  • 14.

    Jayakumar, R., Menon, D., Manzoor, K., Nair, S. V. & Tamura, H. Biomedical applications of chitin and chitosan based nanomaterials—A short review. Carbo. Pol. 82(2), 227–232 (2010).

    CAS 

    Google Scholar 

  • 15.

    Senthilkumar, P. et al. Optimization and characterization of poly[R]hydroxyalkanoate of Pseudomonas aeruginosa SU-1 to utilize in nanoparticle synthesis for curcumin delivery. BCAB 12, 292–298 (2017).

    Google Scholar 

  • 16.

    Senthilkumar, P., Dawn, S. S., Samanvitha, S. K., Saipriya, C. & Samrot, A. V. Surfactant Mediated Synthesis of Polyhydroxybutyrate (PHB) Nanoparticles for Sustained Drug Delivery (IET nanobiotechnology, 2019).

    Google Scholar 

  • 17.

    Shobana, N., Kumar, P. S., Raji, P. & Samrot, A. V. Utilization of crab shell-derived chitosan in nanoparticle synthesis for Curcumin delivery. IJMS 48, 8 (2019).

    Google Scholar 

  • 18.

    Samrot, A. V., Burman, U., Philip, S. A., Shobana, N. & Chandrasekaran, K. Synthesis of curcumin loaded polymeric nanoparticles from crab shell derived chitosan for drug delivery. Inform. Med. Unlocked 10, 159–182 (2018).

    Google Scholar 

  • 19.

    Maisarah, A. M., Nurul Amira, B., Asmah, R. & Fauziah, O. Antioxidant analysis of different parts of Carica papaya. Int. Food Res. J 20(3), (2013)

  • 20.

    Pawar, R. P. Separation and identification of active constituents of calotropis gigantea latex, by HPLC, FTIR, UV-visible and classical techniques. World J. Pharm. Life Sci. 2(6), 590–596 (2016).

    Google Scholar 

  • 21.

    Samrot, A. V., Sahiti, K., Bhavya, K. S. & Suvedhaa, B. Synthesis of plant latex based hybrid nanocarriers using surfactants for curcumin delivery. J. Clust. Sci 30(2), 281–296 (2019).

    CAS 

    Google Scholar 

  • 22.

    Spanò, D. et al. Extraction and characterization of a natural rubber from Euphorbia characias latex. Biopolymers 97(8), 589–594 (2012).

    PubMed 

    Google Scholar 

  • 23.

    Gorane, A., Naik, A., Nikam, T., Tripathi, T. & Ade, A. GCMS analysis of phytocomponents of C. papaya variety red lady. J. Pharmacogn. Phytochem 7(2), 553–555 (2018).

    CAS 

    Google Scholar 

  • 24.

    Varsha, A., Husain, A. S., Javed, N. K. & Poonam, A. Physico-chemical and phytochemical evaluation of Cpapaya Linn unripe fruits. Int. Res. J. Pharm. 4(8), 101–106 (2013).

    Google Scholar 

  • 25.

    Samrot, A. V. et al. Detection of antioxidant and antibacterial activity of Mangifera indica using TLC bio-autography. Int. J. Pharm. Sci. Res. 7(11), 4467–4472 (2016).

    CAS 

    Google Scholar 

  • 26.

    Seoudi, R., Fouda, A. A. & Elmenshawy, D. A. Synthesis, characterization and vibrational spectroscopic studies of different particle size of gold nanoparticle capped with polyvinylpyrrolidone. Physica B 405(3), 906–911 (2010).

    ADS 
    CAS 

    Google Scholar 

  • 27.

    Samrot, A.V., Sai Bhavya, K., Sruthi P. D. & Paulraj, P. Synthesis of SPIONs to deliver drug in-vitro and to use as contrasting agent. (IJARET) 11(2) (2020b).

  • 28.

    Aghazadeh, M. & Karimzadeh, I. One-pot electro-synthesis and characterization of chitosan capped superparamagnetic Iron oxide nanoparticles (SPIONs) from ethanol media. Curr. Nanosci. 14(1), 42–49 (2018).

    ADS 
    CAS 

    Google Scholar 

  • 29.

    Sruthi, P. D. et al. Utilization of chemically synthesized super paramagnetic iron oxide nanoparticles in drug delivery, imaging and heavy metal removal. J. Clust. Sci. 30, 11–24 (2018).

    Google Scholar 

  • 30.

    Drenth, J., Jansonius, J. N., Koekoek, R. & Wolthers, B. G. The structure of papain. Adv. Protein Chem. 25, 79–115 (1971).

    CAS 
    PubMed 

    Google Scholar 

  • 31.

    Liu, Z., Li, D., Dai, H. & Huang, H. Preparation and characterization of papain embedded in magnetic cellulose hydrogels prepared from tea residue. J. Mol. Liq. 232, 449–456 (2017).

    CAS 

    Google Scholar 

  • 32.

    Khatami, M. et al. Super-paramagnetic iron oxide nanoparticles (SPIONs) Greener synthesis using Stevia plant and evaluation of its antioxidant properties. J. Clean. Prod 208, 1171–1177 (2019).

    CAS 

    Google Scholar 

  • 33.

    Mahmoudi, M. et al. A new approach for the in vitro identification of the cytotoxicity of superparamagnetic iron oxide nanoparticles. Colloids Surf. B 75(1), 300–309 (2010).

    CAS 

    Google Scholar 

  • 34.

    Dagher, S. et al. Photocatalytic removal of methylene blue using titania-and silica-coated magnetic nanoparticles. Mater. Res. Express 5(6), 065518 (2018).

    ADS 

    Google Scholar 

  • 35.

    Alizadeh, N., Shariati, S. & Besharati, N. Adsorption of crystal violet and methylene blue on azolla and fig leaves modified with magnetite iron oxide nanoparticles. Int. J. Environ. Res. 11(2), 197–206 (2017).

    CAS 

    Google Scholar 

  • 36.

    Singh, H., Jain, A., Kaur, J., Arya, S. K. & Khatri, M. Adsorptive removal of oil from water using SPIONs–chitosan nanocomposite kinetics and process optimization. Appl. Nanosci. 10(4), 1281–1295 (2020).

    ADS 
    CAS 

    Google Scholar 

  • 37.

    Hosseinzadeh, H. & Mohammadi, S. Biosorption of anionic dyes from aqueous solutions using a novel magnetic nanocomposite adsorbent based on rice husk ash. Sep. Sci. Technol. 51(6), 939–953 (2016).

    CAS 

    Google Scholar 

  • 38.

    Samrot, A. V. et al. Extraction, purification, and characterization of polysaccharides of Araucaria heterophylla L and Prosopis chilensis L and utilization of polysaccharides in nanocarrier synthesis. Int. J. Nanomed. 15, 7097 (2020).

    CAS 

    Google Scholar 

  • 39.

    Samrot, A. V., Suvedhaa, B., Sahithya, C. S. & Madankumar, A. Purification and utilization of gum from Terminalia catappa L. for synthesis of curcumin loaded nanoparticle and its in vitro bioactivity studies. J. Clust. Sci. 29(6), 989–1002 (2018).

    CAS 

    Google Scholar 

  • 40.

    Athira, G. K. & Jyothi, A. N. Preparation and characterization of curcumin loaded cassava starch nanoparticles with improved cellular absorption. Int. J. Pharm. Pharm. 6(10), 171–176 (2014).

    CAS 

    Google Scholar 

  • 41.

    Samrot, A. V. et al. Chelators influenced synthesis of chitosan–carboxymethyl cellulose microparticles for controlled drug delivery. Appl. Nanosci. 68, 1219–1231 (2016).

    ADS 

    Google Scholar 

  • 42.

    Pradeepkumar, P., GovindarajaJeyaraj, M., Munusamy, A. M. & Rajan, M. Supplementary material: Assembling of multifunctional latex-based hybrid nanocarriers from Calotropis gigantea for sustained (doxorubicin) DOX releases. Biomed. Pharmacother. 87, 461. https://doi.org/10.1016/j.biopha.2016.12.133 (2017).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 43.

    Ghandoor, H. E., Zida, H. M., Khalil, M. H. H. & Ismail, M. I. M. Synthesis and some physical properties of magnetite (Fe3O4) nanoparticles. Int. J. Electrochem. Sci. 7, 5734–5745 (2012).

    Google Scholar 

  • 44.

    Justin, C., Samrot, A. V., Sahithya, C. S., Bhavya, K. S. & Saipriya, C. Preparation, characterization and utilization of coreshell super paramagnetic iron oxide nanoparticles for curcumin delivery. PLoS ONE 13(7), e0200440 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 45.

    Samrot, A. V. et al. Purification, characterization and exploitation of Azadirachta indica gum for the production of drug loaded nanocarrier. Mater. Res. Express 7(5), 055007 (2020).

    ADS 
    CAS 

    Google Scholar 

  • 46.

    Izui, S. et al. Antibacterial activity of curcumin against periodontopathic bacteria. J. Periodontol. 87(1), 83–90 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 47.

    Anitha, A. et al. Preparation, characterization, in vitro drug release and biological studies of curcumin loaded dextran sulphate–chitosan nanoparticles. Carbohyd. Polym. 84(3), 1158–1164 (2011).

    CAS 

    Google Scholar 

  • 48.

    Vivek, R., Babu, V. N., Thangam, R., Subramanian, K. S. & Kannan, S. pH-responsive drug delivery of chitosan nanoparticles as Tamoxifen carriers for effective anti-tumor activity in breast cancer cells. Colloids Surf. B 111, 117–123 (2013).

    CAS 

    Google Scholar 

  • 49.

    Samrot, A. V. et al. A study on influence of superparamagnetic iron oxide nanoparticles (SPIONs) on green gram (Vigna radiata L.) and earthworm (Eudrilus eugeniae L.). Mater. Res. Express 7(5), 055002 (2020).

    ADS 
    CAS 

    Google Scholar 

  • 50.

    Zhang, L. et al. Gum arabic-coated magnetic nanoparticles for potential application in simultaneous magnetic targeting and tumor imaging. AAPS J. 1(14), 693–699 (2009).

    Google Scholar 

  • 51.

    Akbarian, M., Mahjoub, S., Elahi, S. M., Zabihi, E. & Tashakkorian, H. Green synthesis, formulation and biological evaluation of a novel ZnO nanocarrier loaded with paclitaxel as drug delivery system on MCF-7 cell line. Colloids Surf. B Biointerfaces 186, 110686 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • 52.

    Dodi, G. et al. Carboxymethyl guar gum nanoparticles for drug delivery applications: Preparation and preliminary in-vitro investigations. Mater. Sci. Eng., C 63, 628–636 (2016).

    CAS 

    Google Scholar 

  • 53.

    Purushothaman, B. K., Maheswari, P. U. & Begum, K. M. S. Magnetic assisted curcumin drug delivery using folate receptor targeted hybrid casein-calcium ferrite nanocarrier. J. Drug Deliv. Sci. Technol. 52, 509–520 (2019).

    Google Scholar 

  • 54.

    Samrot, A. V., Raji, P., Selvarani, A. J. & Nishanthini, P. Antibacterial activity of some edible fruits and its green synthesized silver nanoparticles against uropathogen–Pseudomonas aeruginosa SU 18. Biocatal. Agric. Biotechnol. 16, 253–270 (2018).

    Google Scholar 

  • 55.

    Mosmann, T. Rapid colorimetric assay for cellular growth and survival application to proliferation and cytotoxicity assays. J. Immunol. Methods 65(1–2), 55–63 (1983).

    CAS 
    PubMed 

    Google Scholar 

  • 56.

    Baskić, D., Popović, S., Ristić, P. & Arsenijević, N. N. Analysis of cycloheximide-induced apoptosis in human leukocytes Fluorescence microscopy using annexin V/propidium iodide versus acridin orange/ethidium bromide. Cell Biol. Int 30(11), 924–932 (2006).

    PubMed 

    Google Scholar 

  • Source link