Hunter, J. R. Reconsidering the functions of latex. Trees 9(1), 1–5 (1994).
Dussourd, D. E. & Eisner, T. Vein-cutting behavior: Insect counterploy to the latex defense of plants. Science 237, 898–901 (1987).
Google Scholar
Agrawal, A. A. & Konno, K. Latex a model for understanding mechanisms, ecology, and evolution of plant defense against herbivory. Annu. Rev. Ecol. Evol. Syst. 40, 311–331 (2009).
Bauer, G. & Speck, T. Restoration of tensile strength in bark samples of Ficus benjamina due to coagulation of latex during fast self-healing of fissures. Ann. Bot. 109, 807–811 (2012).
Google Scholar
Hafid, K. et al. One-step recovery of latex papain from Carica papaya using three phase partitioning and its use as milk-clotting and meat-tenderizing agent. Int. J. Biol. Macromol. 146, 798–810 (2020).
Google Scholar
Bandasak, C., Rawdkuen, S., Pintathog, P. & Chaiwut, P. Bioactivities of Carica papaya latex. Thai J. Agric. Sci 44(5), 106–112 (2011).
Saeed, F. et al. Nutritional and phyto-therapeutic potential of papaya (Carica Papaya Linn.): An overview. Int. J. Food Prop. 17(7), 1637–1653. https://doi.org/10.1080/10942912.2012.709210 (2014).
Google Scholar
Sabnis, R. W. Handbook of Biological Dyes and Stains Synthesis and Industrial Applications (Wiley, 2010).
Khin, M. M., Nair, A. S., Babu, V. J., Murugan, R. & Ramakrishna, S. A review on nanomaterials for environmental remediation. Energy Environ. Sci. 5(8), 8075–8109 (2012).
Google Scholar
Samrot, A. V. et al. Adsorption efficiency of chemically synthesized Superparamagnetic Iron Oxide Nanoparticles (SPIONs) on crystal violet dye. CRGSC 4, 100066 (2021).
Samrot, A. V., Sahithya, C. S., Selvarani, J. & Pachiyappan, S. Surface-engineered super-paramagnetic iron oxide nanoparticles for chromium removal. Int. J. Nanomed. 14, 8105 (2019).
Google Scholar
Gopi, S., Amalraj, A. & Thomas, S. Effective drug delivery system of biopolymers based on nanomaterials and hydrogels-a review. Drug Des. 5, 2 (2016).
Vandamme, E., De Baets, S. & Steinbuchel, A. in Biopolymers. (ed. Steinbuchel, A.), (series editor). (Wiley, 2004).
Jayakumar, R., Menon, D., Manzoor, K., Nair, S. V. & Tamura, H. Biomedical applications of chitin and chitosan based nanomaterials—A short review. Carbo. Pol. 82(2), 227–232 (2010).
Google Scholar
Senthilkumar, P. et al. Optimization and characterization of poly[R]hydroxyalkanoate of Pseudomonas aeruginosa SU-1 to utilize in nanoparticle synthesis for curcumin delivery. BCAB 12, 292–298 (2017).
Senthilkumar, P., Dawn, S. S., Samanvitha, S. K., Saipriya, C. & Samrot, A. V. Surfactant Mediated Synthesis of Polyhydroxybutyrate (PHB) Nanoparticles for Sustained Drug Delivery (IET nanobiotechnology, 2019).
Shobana, N., Kumar, P. S., Raji, P. & Samrot, A. V. Utilization of crab shell-derived chitosan in nanoparticle synthesis for Curcumin delivery. IJMS 48, 8 (2019).
Samrot, A. V., Burman, U., Philip, S. A., Shobana, N. & Chandrasekaran, K. Synthesis of curcumin loaded polymeric nanoparticles from crab shell derived chitosan for drug delivery. Inform. Med. Unlocked 10, 159–182 (2018).
Maisarah, A. M., Nurul Amira, B., Asmah, R. & Fauziah, O. Antioxidant analysis of different parts of Carica papaya. Int. Food Res. J 20(3), (2013)
Pawar, R. P. Separation and identification of active constituents of calotropis gigantea latex, by HPLC, FTIR, UV-visible and classical techniques. World J. Pharm. Life Sci. 2(6), 590–596 (2016).
Samrot, A. V., Sahiti, K., Bhavya, K. S. & Suvedhaa, B. Synthesis of plant latex based hybrid nanocarriers using surfactants for curcumin delivery. J. Clust. Sci 30(2), 281–296 (2019).
Google Scholar
Spanò, D. et al. Extraction and characterization of a natural rubber from Euphorbia characias latex. Biopolymers 97(8), 589–594 (2012).
Google Scholar
Gorane, A., Naik, A., Nikam, T., Tripathi, T. & Ade, A. GCMS analysis of phytocomponents of C. papaya variety red lady. J. Pharmacogn. Phytochem 7(2), 553–555 (2018).
Google Scholar
Varsha, A., Husain, A. S., Javed, N. K. & Poonam, A. Physico-chemical and phytochemical evaluation of Cpapaya Linn unripe fruits. Int. Res. J. Pharm. 4(8), 101–106 (2013).
Samrot, A. V. et al. Detection of antioxidant and antibacterial activity of Mangifera indica using TLC bio-autography. Int. J. Pharm. Sci. Res. 7(11), 4467–4472 (2016).
Google Scholar
Seoudi, R., Fouda, A. A. & Elmenshawy, D. A. Synthesis, characterization and vibrational spectroscopic studies of different particle size of gold nanoparticle capped with polyvinylpyrrolidone. Physica B 405(3), 906–911 (2010).
Google Scholar
Samrot, A.V., Sai Bhavya, K., Sruthi P. D. & Paulraj, P. Synthesis of SPIONs to deliver drug in-vitro and to use as contrasting agent. (IJARET) 11(2) (2020b).
Aghazadeh, M. & Karimzadeh, I. One-pot electro-synthesis and characterization of chitosan capped superparamagnetic Iron oxide nanoparticles (SPIONs) from ethanol media. Curr. Nanosci. 14(1), 42–49 (2018).
Google Scholar
Sruthi, P. D. et al. Utilization of chemically synthesized super paramagnetic iron oxide nanoparticles in drug delivery, imaging and heavy metal removal. J. Clust. Sci. 30, 11–24 (2018).
Drenth, J., Jansonius, J. N., Koekoek, R. & Wolthers, B. G. The structure of papain. Adv. Protein Chem. 25, 79–115 (1971).
Google Scholar
Liu, Z., Li, D., Dai, H. & Huang, H. Preparation and characterization of papain embedded in magnetic cellulose hydrogels prepared from tea residue. J. Mol. Liq. 232, 449–456 (2017).
Google Scholar
Khatami, M. et al. Super-paramagnetic iron oxide nanoparticles (SPIONs) Greener synthesis using Stevia plant and evaluation of its antioxidant properties. J. Clean. Prod 208, 1171–1177 (2019).
Google Scholar
Mahmoudi, M. et al. A new approach for the in vitro identification of the cytotoxicity of superparamagnetic iron oxide nanoparticles. Colloids Surf. B 75(1), 300–309 (2010).
Google Scholar
Dagher, S. et al. Photocatalytic removal of methylene blue using titania-and silica-coated magnetic nanoparticles. Mater. Res. Express 5(6), 065518 (2018).
Google Scholar
Alizadeh, N., Shariati, S. & Besharati, N. Adsorption of crystal violet and methylene blue on azolla and fig leaves modified with magnetite iron oxide nanoparticles. Int. J. Environ. Res. 11(2), 197–206 (2017).
Google Scholar
Singh, H., Jain, A., Kaur, J., Arya, S. K. & Khatri, M. Adsorptive removal of oil from water using SPIONs–chitosan nanocomposite kinetics and process optimization. Appl. Nanosci. 10(4), 1281–1295 (2020).
Google Scholar
Hosseinzadeh, H. & Mohammadi, S. Biosorption of anionic dyes from aqueous solutions using a novel magnetic nanocomposite adsorbent based on rice husk ash. Sep. Sci. Technol. 51(6), 939–953 (2016).
Google Scholar
Samrot, A. V. et al. Extraction, purification, and characterization of polysaccharides of Araucaria heterophylla L and Prosopis chilensis L and utilization of polysaccharides in nanocarrier synthesis. Int. J. Nanomed. 15, 7097 (2020).
Google Scholar
Samrot, A. V., Suvedhaa, B., Sahithya, C. S. & Madankumar, A. Purification and utilization of gum from Terminalia catappa L. for synthesis of curcumin loaded nanoparticle and its in vitro bioactivity studies. J. Clust. Sci. 29(6), 989–1002 (2018).
Google Scholar
Athira, G. K. & Jyothi, A. N. Preparation and characterization of curcumin loaded cassava starch nanoparticles with improved cellular absorption. Int. J. Pharm. Pharm. 6(10), 171–176 (2014).
Google Scholar
Samrot, A. V. et al. Chelators influenced synthesis of chitosan–carboxymethyl cellulose microparticles for controlled drug delivery. Appl. Nanosci. 68, 1219–1231 (2016).
Google Scholar
Pradeepkumar, P., GovindarajaJeyaraj, M., Munusamy, A. M. & Rajan, M. Supplementary material: Assembling of multifunctional latex-based hybrid nanocarriers from Calotropis gigantea for sustained (doxorubicin) DOX releases. Biomed. Pharmacother. 87, 461. https://doi.org/10.1016/j.biopha.2016.12.133 (2017).
Google Scholar
Ghandoor, H. E., Zida, H. M., Khalil, M. H. H. & Ismail, M. I. M. Synthesis and some physical properties of magnetite (Fe3O4) nanoparticles. Int. J. Electrochem. Sci. 7, 5734–5745 (2012).
Justin, C., Samrot, A. V., Sahithya, C. S., Bhavya, K. S. & Saipriya, C. Preparation, characterization and utilization of coreshell super paramagnetic iron oxide nanoparticles for curcumin delivery. PLoS ONE 13(7), e0200440 (2018).
Google Scholar
Samrot, A. V. et al. Purification, characterization and exploitation of Azadirachta indica gum for the production of drug loaded nanocarrier. Mater. Res. Express 7(5), 055007 (2020).
Google Scholar
Izui, S. et al. Antibacterial activity of curcumin against periodontopathic bacteria. J. Periodontol. 87(1), 83–90 (2016).
Google Scholar
Anitha, A. et al. Preparation, characterization, in vitro drug release and biological studies of curcumin loaded dextran sulphate–chitosan nanoparticles. Carbohyd. Polym. 84(3), 1158–1164 (2011).
Google Scholar
Vivek, R., Babu, V. N., Thangam, R., Subramanian, K. S. & Kannan, S. pH-responsive drug delivery of chitosan nanoparticles as Tamoxifen carriers for effective anti-tumor activity in breast cancer cells. Colloids Surf. B 111, 117–123 (2013).
Google Scholar
Samrot, A. V. et al. A study on influence of superparamagnetic iron oxide nanoparticles (SPIONs) on green gram (Vigna radiata L.) and earthworm (Eudrilus eugeniae L.). Mater. Res. Express 7(5), 055002 (2020).
Google Scholar
Zhang, L. et al. Gum arabic-coated magnetic nanoparticles for potential application in simultaneous magnetic targeting and tumor imaging. AAPS J. 1(14), 693–699 (2009).
Akbarian, M., Mahjoub, S., Elahi, S. M., Zabihi, E. & Tashakkorian, H. Green synthesis, formulation and biological evaluation of a novel ZnO nanocarrier loaded with paclitaxel as drug delivery system on MCF-7 cell line. Colloids Surf. B Biointerfaces 186, 110686 (2020).
Google Scholar
Dodi, G. et al. Carboxymethyl guar gum nanoparticles for drug delivery applications: Preparation and preliminary in-vitro investigations. Mater. Sci. Eng., C 63, 628–636 (2016).
Google Scholar
Purushothaman, B. K., Maheswari, P. U. & Begum, K. M. S. Magnetic assisted curcumin drug delivery using folate receptor targeted hybrid casein-calcium ferrite nanocarrier. J. Drug Deliv. Sci. Technol. 52, 509–520 (2019).
Samrot, A. V., Raji, P., Selvarani, A. J. & Nishanthini, P. Antibacterial activity of some edible fruits and its green synthesized silver nanoparticles against uropathogen–Pseudomonas aeruginosa SU 18. Biocatal. Agric. Biotechnol. 16, 253–270 (2018).
Mosmann, T. Rapid colorimetric assay for cellular growth and survival application to proliferation and cytotoxicity assays. J. Immunol. Methods 65(1–2), 55–63 (1983).
Google Scholar
Baskić, D., Popović, S., Ristić, P. & Arsenijević, N. N. Analysis of cycloheximide-induced apoptosis in human leukocytes Fluorescence microscopy using annexin V/propidium iodide versus acridin orange/ethidium bromide. Cell Biol. Int 30(11), 924–932 (2006).
Google Scholar

