Preloader

Urinary detection of early responses to checkpoint blockade and of resistance to it via protease-cleaved antibody-conjugated sensors

  • Ribas, A. & Wolchok, J. D. Cancer immunotherapy using checkpoint blockade. Science 359, 1350–1355 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sharma, P. & Allison, J. P. The future of immune checkpoint therapy. Science 348, 56–61 (2015).

    CAS 

    Google Scholar 

  • Sharma, P., Hu-Lieskovan, S., Wargo, J. A. & Ribas, A. Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell 168, 707–723 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kalbasi, A. & Ribas, A. Tumour-intrinsic resistance to immune checkpoint blockade. Nat. Rev. Immunol. https://doi.org/10.1038/s41577-019-0218-4 (2019).

  • Nishino, M., Ramaiya, N. H., Hatabu, H. & Hodi, F. S. Monitoring immune-checkpoint blockade: response evaluation and biomarker development. Nat. Rev. Clin. Oncol. 14, 655–668 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hodi, F. S. et al. Evaluation of immune-related response criteria and RECIST v1.1 in patients with advanced melanoma treated with pembrolizumab. J. Clin. Oncol. 34, 1510–1517 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Garon, E. B. et al. Pembrolizumab for the treatment of non–small-cell lung cancer. N. Engl. J. Med. 372, 2018–2028 (2015).

    PubMed 

    Google Scholar 

  • Nishino, M. et al. Immune-related tumor response dynamics in melanoma patients treated with pembrolizumab: identifying markers for clinical outcome and treatment decisions. Clin. Cancer Res. 23, 4671–4679 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gerwing, M. et al. The beginning of the end for conventional RECIST — novel therapies require novel imaging approaches. Nat. Rev. Clin. Oncol. 16, 442–458 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Mandal, R. & Chan, T. A. Personalized oncology meets immunology: the path toward precision immunotherapy. Cancer Discov. 6, 703–713 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Riaz, N. et al. Tumor and microenvironment evolution during immunotherapy with nivolumab. Cell 171, 934–949.e16 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fairfax, B. P. et al. Peripheral CD8+ T cell characteristics associated with durable responses to immune checkpoint blockade in patients with metastatic melanoma. Nat. Med. 26, 193–199 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Valpione, S. et al. Immune awakening revealed by peripheral T cell dynamics after one cycle of immunotherapy. Nat. Cancer 1, 210–221 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Goldberg, S. B. et al. Early assessment of lung cancer immunotherapy response via circulating tumor DNA. Clin. Cancer Res. 24, 1872–1880 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kessenbrock, K., Plaks, V. & Werb, Z. Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 141, 52–67 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dudani, J. S., Warren, A. D. & Bhatia, S. N. Harnessing protease activity to improve cancer care. Annu. Rev. Cancer Biol. 2, 353–376 (2018).

    Google Scholar 

  • Martínez-Lostao, L., Anel, A. & Pardo, J. How do cytotoxic lymphocytes kill cancer cells? Clin. Cancer Res. 21, 5047–5056 (2015).

    PubMed 

    Google Scholar 

  • Hilderbrand, S. A. & Weissleder, R. Near-infrared fluorescence: application to in vivo molecular imaging. Curr. Opin. Chem. Biol. 14, 71–79 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • Sanman, L. E. & Bogyo, M. Activity-based profiling of proteases. Annu. Rev. Biochem. 83, 249–273 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Savariar, E. N. et al. Real-time in vivo molecular detection of primary tumors and metastases with ratiometric activatable cell-penetrating peptides. Cancer Res. 73, 855–864 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Larimer, B. M. et al. Granzyme B PET imaging as a predictive biomarker of immunotherapy response. Cancer Res. 77, 2318–2327 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kwong, G. A. et al. Synthetic biomarkers: a twenty-first century path to early cancer detection. Nat. Rev. Cancer 21, 655–668 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Kwong, G. A. et al. Mass-encoded synthetic biomarkers for multiplexed urinary monitoring of disease. Nat. Biotechnol. 31, 63–70 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Lin, K. Y., Kwong, G. A., Warren, A. D., Wood, D. K. & Bhatia, S. N. Nanoparticles that sense thrombin activity as synthetic urinary biomarkers of thrombosis. ACS Nano 7, 9001–9009 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Warren, A. D., Kwong, G. A., Wood, D. K., Lin, K. Y. & Bhatia, S. N. Point-of-care diagnostics for noncommunicable diseases using synthetic urinary biomarkers and paper microfluidics. Proc. Natl Acad. Sci. USA 111, 3671–3676 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kwong, G. A. et al. Mathematical framework for activity-based cancer biomarkers. Proc. Natl Acad. Sci. USA 112, 12627–12632 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mac, Q. D. et al. Non-invasive early detection of acute transplant rejection via nanosensors of granzyme B activity. Nat. Biomed. Eng. 3, 281–291 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kirkpatrick, J. D. et al. Urinary detection of lung cancer in mice via noninvasive pulmonary protease profiling. Sci. Transl. Med. 12, eaaw0262 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cazanave, S. C. et al. Peptide-based urinary monitoring of fibrotic nonalcoholic steatohepatitis by mass-barcoded activity-based sensors. Sci. Transl. Med. 13, eabe8939 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Casciola-Rosen, L. et al. Mouse and human granzyme B have distinct tetrapeptide specificities and abilities to recruit the bid pathway. J. Biol. Chem. 282, 4545–4552 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • Harris, J. L., Peterson, E. P., Hudig, D., Thornberry, N. A. & Craik, C. S. Definition and redesign of the extended substrate specificity of granzyme B. J. Biol. Chem. 273, 27364–27373 (1998).

    CAS 
    PubMed 

    Google Scholar 

  • Ruggles, S. W., Fletterick, R. J. & Craik, C. S. Characterization of structural determinants of granzyme B reveals potent mediators of extended substrate specificity. J. Biol. Chem. 279, 30751–30759 (2004).

    CAS 
    PubMed 

    Google Scholar 

  • He, S., Li, J., Lyu, Y., Huang, J. & Pu, K. Near-infrared fluorescent macromolecular reporters for real-time imaging and urinalysis of cancer immunotherapy. J. Am. Chem. Soc. 142, 7075–7082 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Zhang, Y. et al. Activatable polymeric nanoprobe for near-infrared fluorescence and photoacoustic imaging of T lymphocytes. Angew. Chem. Int. Ed. 133, 5986–5992 (2021).

    Google Scholar 

  • Efremova, M. et al. Targeting immune checkpoints potentiates immunoediting and changes the dynamics of tumor evolution. Nat. Commun. 9, 32 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Villanueva, J. et al. Differential exoprotease activities confer tumor-specific serum peptidome patterns. J. Clin. Invest. 116, 271–284 (2006).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Villanueva, J. et al. A sequence-specific exopeptidase activity test (SSEAT) for ‘functional’ biomarker discovery. Mol. Cell. Proteomics 7, 509–518 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • Werle, M. & Bernkop-Schnürch, A. Strategies to improve plasma half life time of peptide and protein drugs. Amino Acids 30, 351–367 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • Diao, L. & Meibohm, B. Pharmacokinetics and pharmacokinetic-pharmacodynamic correlations of therapeutic peptides. Clin. Pharmacokinet. 52, 855–868 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Desnoyers, L. R. et al. Tumor-specific activation of an EGFR-targeting probody enhances therapeutic index. Sci. Transl. Med. 5, 207ra144 (2013).

    PubMed 

    Google Scholar 

  • Strohl, W. R. Fusion proteins for half-life extension of biologics as a strategy to make biobetters. BioDrugs 29, 215–239 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Duraiswamy, J., Kaluza, K. M., Freeman, G. J. & Coukos, G. Dual blockade of PD-1 and CTLA-4 combined with tumor vaccine effectively restores T-cell rejection function in tumors. Cancer Res. 73, 3591–3603 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Selby, M. J. et al. Preclinical development of ipilimumab and nivolumab combination immunotherapy: mouse tumor models, in vitro functional studies, and cynomolgus macaque toxicology. PLoS ONE 11, e0161779 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Brinkman, E. K., Chen, T., Amendola, M. & van Steensel, B. Easy quantitative assessment of genome editing by sequence trace decomposition. Nucleic Acids Res. 42, e168 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Miller, B. C. et al. Subsets of exhausted CD8+ T cells differentially mediate tumor control and respond to checkpoint blockade. Nat. Immunol. 20, 326–336 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Im, S. J. et al. Defining CD8+ T cells that provide the proliferative burst after PD-1 therapy. Nature 537, 417–421 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jansen, C. S. et al. An intra-tumoral niche maintains and differentiates stem-like CD8 T cells. Nature 576, 465–470 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Paley, M. A. et al. Progenitor and terminal subsets of CD8+ T cells cooperate to contain chronic viral infection. Science 338, 1220–1225 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Thommen, D. S. et al. A transcriptionally and functionally distinct PD-1+ CD8+ T cell pool with predictive potential in non-small-cell lung cancer treated with PD-1 blockade. Nat. Med. 24, 994–1004 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gupta, P. K. et al. CD39 expression identifies terminally exhausted CD8+ T cells. PLoS Pathog. 11, e1005177 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Canale, F. P. et al. CD39 expression defines cell exhaustion in tumor-infiltrating CD8+ T cells. Cancer Res. 78, 115–128 (2018).

    CAS 

    Google Scholar 

  • Horton, B. L., Williams, J. B., Cabanov, A., Spranger, S. & Gajewski, T. F. Intratumoral CD8+ T-cell apoptosis is a major component of T-cell dysfunction and impedes anti-tumor immunity. Cancer Immunol. Res. 6, 14–24 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Liberzon, A. et al. The molecular signatures database hallmark gene set collection. Cell Syst. 1, 417–425 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schwartz, L. H. et al. RECIST 1.1 – update and clarification: from the RECIST Committee. Eur. J. Cancer 62, 132–137 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Arlot, S. & Celisse, A. A survey of cross-validation procedures for model selection. Stat. Surv. 4, 40–79 (2010).

    Google Scholar 

  • Patel, S. P. & Kurzrock, R. PD-L1 expression as a predictive biomarker in cancer immunotherapy. Mol. Cancer Ther. 14, 847–856 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Chan, T. A. et al. Development of tumor mutation burden as an immunotherapy biomarker: utility for the oncology clinic. Ann. Oncol. 30, 44–56 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Cristescu, R. et al. Pan-tumor genomic biomarkers for PD-1 checkpoint blockade–based immunotherapy. Science 362, eaar3593 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Chang, L., Chang, M., Chang, H. M. & Chang, F. Microsatellite instability: a predictive biomarker for cancer immunotherapy. Appl. Immunohistochem. Mol. Morphol. 26, e15 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Bratman, S. V. et al. Personalized circulating tumor DNA analysis as a predictive biomarker in solid tumor patients treated with pembrolizumab. Nat. Cancer 1, 873–881 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Tietze, J. K. et al. The proportion of circulating CD45RO+CD8+ memory T cells is correlated with clinical response in melanoma patients treated with ipilimumab. Eur. J. Cancer 75, 268–279 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Chen, P.-L. et al. Analysis of immune signatures in longitudinal tumor samples yields insight into biomarkers of response and mechanisms of resistance to immune checkpoint blockade. Cancer Discov. 6, 827–837 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Tumeh, P. C. et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 515, 568–571 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jiang, P. et al. Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response. Nat. Med. 24, 1550–1558 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Amaria, R. N. et al. Neoadjuvant immune checkpoint blockade in high-risk resectable melanoma. Nat. Med. 24, 1649–1654 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Grasso, C. S. et al. Conserved interferon-γ signaling drives clinical response to immune checkpoint blockade therapy in melanoma. Cancer Cell 38, 500–515.e3 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Larimer, B. M. et al. The effectiveness of checkpoint inhibitor combinations and administration timing can be measured by granzyme B PET imaging. Clin. Cancer Res. 25, 1196–1205 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Nguyen, A. et al. Granzyme B nanoreporter for early monitoring of tumor response to immunotherapy. Sci. Adv. 6, eabc2777 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhao, N. et al. In vivo measurement of granzyme proteolysis from activated immune cells with PET. ACS Cent. Sci. 7, 1638–1649 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Carter, H. B. & Pearson, J. D. PSA velocity for the diagnosis of early prostate cancer. A new concept. Urol. Clin. North Am. 20, 665–670 (1993).

    CAS 
    PubMed 

    Google Scholar 

  • Vickers, A. J. et al. Prostate-specific antigen velocity for early detection of prostate cancer. Eur. Urol. 56, 753–760 (2009).

    PubMed 
    PubMed Central 

    Google Scholar 

  • La Thangue, N. B. & Kerr, D. J. Predictive biomarkers: a paradigm shift towards personalized cancer medicine. Nat. Rev. Clin. Oncol. 8, 587–596 (2011).

    PubMed 

    Google Scholar 

  • Salgado, R. et al. Steps forward for cancer precision medicine. Nat. Rev. Drug Discov. 17, 1–2 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Brown, N. A. & Elenitoba-Johnson, K. S. J. Enabling precision oncology through precision diagnostics. Annu. Rev. Pathol. 15, 97–121 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Ramos-Casals, M. et al. Immune-related adverse events of checkpoint inhibitors. Nat. Rev. Dis. Primers 6, 38 (2020).

    PubMed 

    Google Scholar 

  • Esfahani, K. et al. Moving towards personalized treatments of immune-related adverse events. Nat. Rev. Clin. Oncol. 17, 504–515 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Postow, M. A., Sidlow, R. & Hellmann, M. D. Immune-related adverse events associated with immune checkpoint blockade. N. Engl. J. Med. https://doi.org/10.1056/NEJMra1703481 (2018).

  • Johnson, D. B. et al. Fulminant myocarditis with combination immune checkpoint blockade. N. Engl. J. Med. 375, 1749–1755 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Goldinger, S. M. et al. Cytotoxic cutaneous adverse drug reactions during anti-PD-1 therapy. Clin. Cancer Res. 22, 4023–4029 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Hua, C. et al. Association of vitiligo with tumor response in patients with metastatic melanoma treated with pembrolizumab. JAMA Dermatol. 152, 45–51 (2016).

    PubMed 

    Google Scholar 

  • Zhang, X. et al. Hepatitis B virus reactivation in cancer patients with positive hepatitis B surface antigen undergoing PD-1 inhibition. J. Immunother. Cancer 7, 322 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Del Castillo, M. et al. The spectrum of serious infections among patients receiving immune checkpoint blockade for the treatment of melanoma. Clin. Infect. Dis. 63, 1490–1493 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Fujita, K. et al. Emerging concerns of infectious diseases in lung cancer patients receiving immune checkpoint inhibitor therapy. Respir. Med. 146, 66–70 (2019).

    PubMed 

    Google Scholar 

  • Hutchinson, J. A. et al. Virus-specific memory T cell responses unmasked by immune checkpoint blockade cause hepatitis. Nat. Commun. 12, 1439 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Beerli, R. R., Hell, T., Merkel, A. S. & Grawunder, U. Sortase enzyme-mediated generation of site-specifically conjugated antibody drug conjugates with high in vitro and in vivo potency. PLoS ONE 10, e0131177 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Jeger, S. et al. Site-specific and stoichiometric modification of antibodies by bacterial transglutaminase. Angew. Chem. Int. Ed. Engl. 49, 9995–9997 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • Yu, C. et al. Proximity-induced site-specific antibody conjugation. Bioconjug. Chem. 29, 3522–3526 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Puente, X. S., Sánchez, L. M., Overall, C. M. & López-Otín, C. Human and mouse proteases: a comparative genomic approach. Nat. Rev. Genet. 4, 544–558 (2003).

    CAS 
    PubMed 

    Google Scholar 

  • Kaiserman, D. et al. The major human and mouse granzymes are structurally and functionally divergent. J. Cell Biol. 175, 619–630 (2006).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Aguilera, T. A., Olson, E. S., Timmers, M. M., Jiang, T. & Tsien, R. Y. Systemic in vivo distribution of activatable cell penetrating peptides is superior to that of cell penetrating peptides. Integr. Biol. 1, 371–381 (2009).

    CAS 

    Google Scholar 

  • Whitley, M. J. et al. A mouse-human phase 1 co-clinical trial of a protease-activated fluorescent probe for imaging cancer. Sci. Transl. Med. 8, 320ra4 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Timmer, J. C. & Salvesen, G. S. Caspase substrates. Cell Death Differ. 14, 66–72 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • Poreba, M. et al. Unnatural amino acids increase sensitivity and provide for the design of highly selective caspase substrates. Cell Death Differ. 21, 1482–1492 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rut, W. et al. Recent advances and concepts in substrate specificity determination of proteases using tailored libraries of fluorogenic substrates with unnatural amino acids. Biol. Chem. 396, 329–337 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Miller, M. A. et al. Proteolytic activity matrix analysis (PrAMA) for simultaneous determination of multiple protease activities. Integr. Biol. 3, 422–438 (2011).

    CAS 

    Google Scholar 

  • Zhuang, Q., Holt, B. A., Kwong, G. A. & Qiu, P. Deconvolving multiplexed protease signatures with substrate reduction and activity clustering. PLoS Comput. Biol. 15, e1006909 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Austin, R. J. et al. TriTACs, a novel class of T-cell–engaging protein constructs designed for the treatment of solid tumors. Mol. Cancer Ther. 20, 109–120 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Triplett, T. A. et al. Reversal of indoleamine 2,3-dioxygenase–mediated cancer immune suppression by systemic kynurenine depletion with a therapeutic enzyme. Nat. Biotechnol. 36, 758–764 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Clark, M. F., Lister, R. M. & Bar-Joseph, M. ELISA techniques. Methods Enzymol 118, 742–766 (1986).

    CAS 

    Google Scholar 

  • Source link