Preloader

Universal platform for the generation of thermostabilized GPCRs that crystallize in LCP

  • 1.

    Hauser, A. S., Attwood, M. M., Rask-Andersen, M., Schiöth, H. B. & Gloriam, D. E. Trends in GPCR drug discovery: new agents, targets and indications. Nat. Rev. Drug Discov. 16, 829–842 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 2.

    Katritch, V., Cherezov, V. & Stevens, R. C. Structure–function of the G protein–coupled receptor superfamily. Annu. Rev. Pharmacol. Toxicol. 53, 531–556 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • 3.

    Tesmer, J. J. G. Hitchhiking on the heptahelical highway: structure and function of 7TM receptor complexes. Nat. Rev. Mol. Cell Biol. 17, 439–450 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 4.

    Xiang, J. et al. Successful strategies to determine high-resolution structures of GPCRs. Trends Pharmacol. Sci. 37, 1055–1069 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 5.

    Erlandson, S. C., McMahon, C. & Kruse, A. C. Structural basis for G protein–coupled receptor signaling. Annu. Rev. Biophys. 47, 1–18 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 6.

    Cao, C., Zhang, H., Yang, Z. & Wu, B. Peptide recognition, signaling and modulation of class B G protein-coupled receptors. Curr. Opin. Chem. Biol. 51, 53–60 (2018).

    CAS 

    Google Scholar 

  • 7.

    Thal, D. M., Glukhova, A., Sexton, P. M. & Christopoulos, A. Structural insights into G-protein-coupled receptor allostery. Nature 559, 45–53 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 8.

    Serrano-Vega, M. J., Magnani, F., Shibata, Y. & Tate, C. G. Conformational thermostabilization of the β1-adrenergic receptor in a detergent-resistant form. Proc. Natl Acad. Aci. USA 105, 877–882 (2008).

    CAS 

    Google Scholar 

  • 9.

    Maeda, S. & Schertler, G. F. X. Production of GPCR and GPCR complexes for structure determination. Curr. Opin. Struc. Biol. 23, 381–392 (2013).

    CAS 

    Google Scholar 

  • 10.

    Rosenbaum, D. M., Rasmussen, S. G. F. & Kobilka, B. K. The structure and function of G-protein-coupled receptors. Nature 459, 356–363 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 11.

    Kobilka, B. K. Amino and carboxyl terminal modifications to facilitate the production and purification of a G protein-coupled receptor. Anal. Biochem. 231, 269–271 (1995).

    CAS 
    PubMed 

    Google Scholar 

  • 12.

    Cherezov, V. et al. High-resolution crystal structure of an engineered human β2-adrenergic G protein-coupled receptor. Science 318, 1258–1265 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 13.

    Chun, E. et al. Fusion partner toolchest for the stabilization and crystallization of G protein-coupled receptors. Structure 20, 967–976 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 14.

    Sarkar, C. A. et al. Directed evolution of a G protein-coupled receptor for expression, stability, and binding selectivity. Proc.Natl Acad. Aci. USA 105, 14808–14813 (2008).

    CAS 

    Google Scholar 

  • 15.

    Schlinkmann, K. M. et al. Maximizing detergent stability and functional expression of a GPCR by exhaustive recombination and evolution. J. Mol. Biol. 422, 414–428 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • 16.

    Scott, D. J. & Plückthun, A. Direct molecular evolution of detergent-stable G protein-coupled receptors using polymer encapsulated cells. J. Mol. Biol. 425, 662–677 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • 17.

    Schütz, M. et al. Directed evolution of G protein-coupled receptors in yeast for higher functional production in eukaryotic expression hosts. Sci. Rep. 6, 21508 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 18.

    Magnani, F., Shibata, Y., Serrano-Vega, M. J. & Tate, C. G. Co-evolving stability and conformational homogeneity of the human adenosine A2A receptor. Proc. Natl Acad. Sci. USA 105, 10744–10749 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 19.

    Tate, C. G. A crystal clear solution for determining G-protein-coupled receptor structures. Trends Biochem. Sci. 37, 343–352 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • 20.

    Zhang, X., Stevens, R. C. & Xu, F. The importance of ligands for G protein-coupled receptor stability. Trends Biochem. Sci. 40, 79–87 (2015).

    PubMed 

    Google Scholar 

  • 21.

    Miller, R. L. et al. The importance of ligand-receptor conformational pairs in stabilization: spotlight on the N/OFQ G protein-coupled receptor. Structure 23, 2291–2299 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 22.

    Glukhova, A. et al. Structure of the adenosine A1 receptor reveals the basis for subtype selectivity. Cell 168, 867–877.e13 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • 23.

    Hua, T. et al. Crystal structure of the human cannabinoid receptor CB1. Cell 167, 750–762.e14 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 24.

    Ma, Y. et al. Structural basis for apelin control of the human apelin receptor. Structure 25, 858–866.e4 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • 25.

    Cherezov, V. & Caffrey, M. Nano-volume plates with excellent optical properties for fast, inexpensive crystallization screening of membrane proteins. J. Appl. Crystallogr. 36, 1372–1377 (2003).

    CAS 

    Google Scholar 

  • 26.

    Cherezov, V. Lipidic cubic phase technologies for membrane protein structural studies. Curr. Opin. Struc. Biol. 21, 559–566 (2011).

    CAS 

    Google Scholar 

  • 27.

    Cherezov, V., Peddi, A., Muthusubramaniam, L., Zheng, Y. F. & Caffrey, M. A robotic system for crystallizing membrane and soluble proteins in lipidic mesophases. Acta Crystallogr. D. Biol. Crystallogr. 60, 1795–1807 (2004).

    PubMed 

    Google Scholar 

  • 28.

    Magnani, F. et al. A mutagenesis and screening strategy to generate optimally thermostabilized membrane proteins for structural studies. Nat. Protoc. 11, 1554–1571 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 29.

    Waltenspühl, Y., Ehrenmann, J., Klenk, C. & Plückthun, A. Engineering of challenging G protein-coupled receptors for structure determination and biophysical studies. Molecules 26, 1465 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 30.

    Schöppe, J. et al. Crystal structures of the human neurokinin 1 receptor in complex with clinically used antagonists. Nat. Commun. 10, 17 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 31.

    Waltenspühl, Y., Schöppe, J., Ehrenmann, J., Kummer, L. & Plückthun, A. Crystal structure of the human oxytocin receptor. Sci. Adv. 6, eabb5419 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 32.

    Ehrenmann, J. et al. High-resolution crystal structure of parathyroid hormone 1 receptor in complex with a peptide agonist. Nat. Struct. Mol. Biol. 25, 1086–1092 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 33.

    Alexandrov, A. I., Mileni, M., Chien, E. Y., Hanson, M. A. & Stevens, R. C. Microscale fluorescent thermal stability assay for membrane proteins. Structure 16, 351–359 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • 34.

    Ayers, F. C., Warner, G. L., Smith, K. L. & Lawrence, D. A. Fluorometric quantitation of cellular and nonprotein thiols. Anal. Biochem. 154, 186–193 (1986).

    CAS 
    PubMed 

    Google Scholar 

  • 35.

    Wang, Z., Ye, C., Zhang, X. & Wei, Y. Cysteine residue is not essential for CPM protein thermal-stability assay. Anal. Bioanal. Chem. 407, 3683–3691 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 36.

    Cherezov, V., Liu, J., Griffith, M., Hanson, M. A. & Stevens, R. C. LCP-FRAP assay for pre-screening membrane proteins for in meso crystallization. Cryst. Growth Des. 8, 4307–4315 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 37.

    Chien, E. Y. T. et al. Structure of the human dopamine D3 receptor in complex with a D2/D3 selective antagonist. Science 330, 1091–1095 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 38.

    Wu, B. et al. Structures of the CXCR4 chemokine GPCR with small-molecule and cyclic peptide antagonists. Science 330, 1066–1071 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 39.

    Thompson, A. A. et al. Structure of the nociceptin/orphanin FQ receptor in complex with a peptide mimetic. Nature 485, 395–399 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 40.

    Manglik, A. et al. Crystal structure of the µ-opioid receptor bound to a morphinan antagonist. Nature 485, 321–326 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 41.

    Wu, H. et al. Structure of the human κ-opioid receptor in complex with JDTic. Nature 485, 327–332 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 42.

    Liu, W. et al. Structural basis for allosteric regulation of GPCRs by sodium ions. Science 337, 232–236 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 43.

    Wang, C. et al. Structure of the human smoothened receptor bound to an antitumour agent. Nature 497, 338–343 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 44.

    Wacker, D. et al. Structural features for functional selectivity at serotonin receptors. Science 340, 615–619 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 45.

    Wang, C. et al. Structural basis for molecular recognition at serotonin receptors. Science 340, 610–614 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 46.

    Tan, Q. et al. Structure of the CCR5 chemokine receptor–HIV entry inhibitor maraviroc complex. Science 341, 1387–1390 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • 47.

    Wu, H. et al. Structure of a class C GPCR metabotropic glutamate receptor 1 bound to an allosteric modulator. Science 344, 58–64 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 48.

    Zhang, J. et al. Agonist-bound structure of the human P2Y12 receptor. Nature 509, 119–122 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 49.

    Chrencik, J. E. et al. Crystal structure of antagonist bound human lysophosphatidic acid receptor 1. Cell 161, 1633–1643 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 50.

    Zheng, Y. et al. Structure of CC chemokine receptor 2 with orthosteric and allosteric antagonists. Nature 540, 458–461 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 51.

    Song, G. et al. Human GLP-1 receptor transmembrane domain structure in complex with allosteric modulators. Nature 546, 312–315 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • 52.

    Wang, S. et al. Structure of the D2 dopamine receptor bound to the atypical antipsychotic drug risperidone. Nature 555, 269–273 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 53.

    Peng, Y. et al. 5-HT2C receptor structures reveal the structural basis of GPCR polypharmacology. Cell 172, 719–730.e14 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 54.

    Cao, C. et al. Structural basis for signal recognition and transduction by platelet-activating-factor receptor. Nat. Struct. Mol. Biol. 25, 488–495 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 55.

    Claff, T. et al. Elucidating the active δ-opioid receptor crystal structure with peptide and small-molecule agonists. Sci. Adv. 5, eaax9115 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 56.

    Gusach, A. et al. Structural basis of ligand selectivity and disease mutations in cysteinyl leukotriene receptors. Nat. Commun. 10, 5573 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 57.

    Johansson, L. C. et al. XFEL structures of the human MT2 melatonin receptor reveal the basis of subtype selectivity. Nature 569, 289–292 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 58.

    Luginina, A. et al. Structure-based mechanism of cysteinyl leukotriene receptor inhibition by antiasthmatic drugs. Sci. Adv. 5, eaax2518 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 59.

    Stauch, B. et al. Structural basis of ligand recognition at the human MT1 melatonin receptor. Nature 569, 284–288 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 60.

    Toyoda, Y. et al. Ligand binding to human prostaglandin E receptor EP4 at the lipid–bilayer interface. Nat. Chem. Biol. 15, 18–26 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 61.

    White, K. L. et al. Structural connection between activation microswitch and allosteric sodium site in GPCR signaling. Structure 26, 259–269.e5 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 62.

    Yu, J. et al. Determination of the melanocortin-4 receptor structure identifies Ca2+ as a cofactor for ligand binding. Science 368, 428–433 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 63.

    Xu, F., Liu, W., Hanson, M. A., Stevens, R. C. & Cherezov, V. Development of an automated high throughput LCP-FRAP assay to guide membrane protein crystallization in lipid mesophases. Cryst. Growth Des. 11, 1193–1201 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 64.

    Li, M. Z. & Elledge, S. J. Harnessing homologous recombination in vitro to generate recombinant DNA via SLIC. Nat. Methods 4, 251–256 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • 65.

    Kuzminov, A. Recombinational repair of DNA damage in Escherichia coli and bacteriophage λ. Microbiol. Mol. Biol. Rev. 63, 751–813 (1999).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 66.

    Smith, H. O. & Wilcox, K. W. A restriction enzyme from Hemophilus influenzae. I. Purification and general properties. J. Mol. Biol. 51, 379–391 (1970).

    CAS 
    PubMed 

    Google Scholar 

  • 67.

    Gay, P., Le Coq, D., Steinmetz, M., Berkelman, T. & Kado, C. I. Positive selection procedure for entrapment of insertion sequence elements in Gram-negative bacteria. J. Bacteriol. 164, 918–921 (1985).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 68.

    Ghosh, E., Kumari, P., Jaiman, D. & Shukla, A. K. Methodological advances: the unsung heroes of the GPCR structural revolution. Nat. Rev. Mol. Cell Biol. 16, 69–81 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 69.

    Safarik, I. & Safarikova, M. Magnetic techniques for the isolation and purification of proteins and peptides. BioMagn. Res. Technol. 2, 7 (2004).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 70.

    Brizzard, B. L., Chubet, R. G. & Vizard, D. L. Immunoaffinity purification of FLAG epitope-tagged bacterial alkaline phosphatase using a novel monoclonal antibody and peptide elution. BioTechniques 16, 730–735 (1994).

    CAS 
    PubMed 

    Google Scholar 

  • 71.

    Morrison, K. L. & Weiss, G. A. Combinatorial alanine-scanning. Curr. Opin. Chem. Biol. 5, 302–307 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • 72.

    Faham, S. et al. Side-chain contributions to membrane protein structure and stability. J. Mol. Biol. 335, 297–305 (2004).

    CAS 
    PubMed 

    Google Scholar 

  • 73.

    Yin, J., Mobarec, J. C., Kolb, P. & Rosenbaum, D. M. Crystal structure of the human OX2 orexin receptor bound to the insomnia drug suvorexant. Nature 519, 247–250 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 74.

    Lebon, G., Bennett, K., Jazayeri, A. & Tate, C. G. Thermostabilisation of an agonist-bound conformation of the human adenosine A2A receptor. J. Mol. Biol. 409, 298–310 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 75.

    Mirzadegan, T., Benkö, G., Filipek, S. & Palczewski, K. Sequence analyses of G-protein-coupled receptors: similarities to rhodopsin. Biochemistry 42, 2759–2767 (2003).

    CAS 
    PubMed 

    Google Scholar 

  • 76.

    West, G. M. et al. Ligand-dependent perturbation of the conformational ensemble for the GPCR β2 adrenergic receptor revealed by HDX. Structure 19, 1424–1432 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 77.

    Horcajada, C., Guinovart, J. J., Fita, I. & Ferrer, J. C. Crystal structure of an archaeal glycogen synthase: Insights into oligomerization and substrate binding of eukaryotic glycogen synthases. J. Biol. Chem. 281, 2923–2931 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • 78.

    Thorsen, T. S., Matt, R., Weis, W. I. & Kobilka, B. K. Modified T4 lysozyme fusion proteins facilitate G protein-coupled receptor crystallogenesis. Structure 22, 1657–1664 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 79.

    Kawate, T. & Gouaux, E. Fluorescence-detection size-exclusion chromatography for precrystallization screening of integral membrane proteins. Structure 14, 673–681 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • 80.

    Shiroishi, M. et al. Platform for the rapid construction and evaluation of GPCRs for crystallography in Saccharomyces cerevisiae. Microb. Cell Fact. 11, 78 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 81.

    Audet, M. et al. Small-scale approach for precrystallization screening in GPCR X-ray crystallography. Nat. Protoc. 15, 144–160 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • 82.

    Klenk, C., Ehrenmann, J., Schütz, M. & Plückthun, A. A generic selection system for improved expression and thermostability of G protein-coupled receptors by directed evolution. Sci. Rep. 6, 21294 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 83.

    Popov, P. et al. Computational design of thermostabilizing point mutations for G protein-coupled receptors. eLife 7, e34729 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 84.

    Cherezov, V., Clogston, J., Papiz, M. Z. & Caffrey, M. Room to move: crystallizing membrane proteins in swollen lipidic mesophases. J. Mol. Biol. 357, 1605–1618 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • 85.

    Razinkov, I. et al. A new method for vitrifying samples for cryoEM. J. Struct. Biol. 195, 190–198 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 86.

    Arnold, S. A. et al. Miniaturizing EM sample preparation: opportunities, challenges, and “visual proteomics”. Proteomics 18, 1700176 (2018).

    Google Scholar 

  • 87.

    Drew, D., Lerch, M., Kunji, E., Slotboom, D.-J. & de Gier, J.-W. Optimization of membrane protein overexpression and purification using GFP fusions. Nat. Methods 3, 303–313 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • 88.

    Waltenspühl, Y., Jeliazkov, J. R., Kummer, L. & Plückthun, A. Directed evolution for high functional production and stability of a challenging G protein-coupled receptor. Sci. Rep. 11, 8630 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Source link