Zhou, S., Gravekamp, C., Bermudes, D. & Liu, K. Tumour-targeting bacteria engineered to fight cancer. Nat. Rev. Cancer 18, 727–743 (2018).
Google Scholar
Weber, E. W., Maus, M. V. & Mackall, C. L. The emerging landscape of immune cell therapies. Cell 181, 46–62 (2020).
Google Scholar
Yu, J. X., Upadhaya, S., Tatake, R., Barkalow, F. & Hubbard-Lucey, V. M. Cancer cell therapies: the clinical trial landscape. Nat. Rev. Drug Discov. 19, 583–584 (2020).
Google Scholar
Fucà, G., Reppel, L., Landoni, E., Savoldo, B. & Dotti, G. Enhancing chimeric antigen receptor T-cell efficacy in solid tumors. Clin. Cancer Res. 26, 2444–2451 (2020).
Google Scholar
Anderson, K. G., Stromnes, I. M. & Greenberg, P. D. Obstacles posed by the tumor microenvironment to T cell activity: a case for synergistic therapies. Cancer Cell 31, 311–325 (2017).
Google Scholar
Mirzaei, H. R., Rodriguez, A., Shepphird, J., Brown, C. E., and Badie, B. Chimeric antigen receptors T cell therapy in solid tumor: challenges and clinical applications. Front. Immunol. 8, 1850 (2017).
Dang, L. H., Bettegowda, C., Huso, D. L., Kinzler, K. W. & Vogelstein, B. Combination bacteriolytic therapy for the treatment of experimental tumors. Proc. Natl Acad. Sci. USA 98, 15155–15160 (2001).
Google Scholar
Leschner, S., et al. Tumor invasion of Salmonella enterica Serovar Typhimurium is accompanied by strong hemorrhage promoted by TNF-α. PLoS One 4, e6692 (2009).
Kang, S.-R. et al. Imaging of tumor colonization by Escherichia coli using 18F-FDS PET. Theranostics 10, 4958–4966 (2020).
Google Scholar
Gurbatri, C. R., et al. Engineered probiotics for local tumor delivery of checkpoint blockade nanobodies. Science Translational Medicine 12, eaax0876 (2020).
Jiang, S.-N. et al. Inhibition of tumor growth and metastasis by a combination of Escherichia coli–mediated Cytolytic therapy and radiotherapy. Mol. Ther. 18, 635–642 (2010).
Google Scholar
Ryan, R. M. et al. Bacterial delivery of a novel cytolysin to hypoxic areas of solid tumors. Gene Ther. 16, 329–339 (2009).
Google Scholar
Groot, A. J. et al. Functional antibodies produced by oncolytic clostridia. Biochemical Biophysical Res. Commun. 364, 985–989 (2007).
Google Scholar
Duong, M. T.-Q., Qin, Y., You, S.-H. & Min, J.-J. Bacteria-cancer interactions: bacteria-based cancer therapy. Exp. Mol. Med. 51, 1–15 (2019).
Google Scholar
Coley, W. B. II. Contribution to the Knowledge of Sarcoma. Ann. Surg. 14, 199–220 (1891).
Google Scholar
Felgner, S., Pawar, V., Kocijancic, D., Erhardt, M. & Weiss, S. Tumour-targeting bacteria-based cancer therapies for increased specificity and improved outcome. Microb. Biotechnol. 10, 1074–1078 (2017).
Google Scholar
Chien, T. et al. Multiplexed biosensors for precision bacteria tropism in vivo. bioRxiv 851311, (2019)
Clairmont, C. et al. Biodistribution and genetic stability of the novel antitumor agent VNP20009, a genetically modified strain of salmonella typhimuvium. J. Infect. Dis. 181, 1996–2002 (2000).
Google Scholar
Park, S.-H. et al. RGD peptide cell-surface display enhances the targeting and therapeutic efficacy of attenuated Salmonella-mediated cancer therapy. Theranostics 6, 1672–1682 (2016).
Google Scholar
Stritzker, J. et al. Tumor-specific colonization, tissue distribution, and gene induction by probiotic Escherichia coli Nissle 1917 in live mice. Int. J. Med. Microbiol. 297, 151–162 (2007).
Google Scholar
Massa, P. E., Paniccia, A., Monegal, A., de Marco, A. & Rescigno, M. Salmonella engineered to express CD20-targeting antibodies and a drug-converting enzyme can eradicate human lymphomas. Blood 122, 705–714 (2013).
Google Scholar
Zheng, J. H., et al. Two-step enhanced cancer immunotherapy with engineered Salmonella typhimurium secreting heterologous flagellin. Science Translational Medicine 9, eaak9537 (2017).
Dai, Y., Toley, B. J., Swofford, C. A. & Forbes, N. S. Construction of an inducible cell-communication system that amplifies Salmonella gene expression in tumor tissue. Biotechnol. Bioeng. 110, 1769–1781 (2013).
Google Scholar
Nguyen, V. H. et al. Genetically engineered salmonella typhimurium as an imageable therapeutic probe for cancer. Cancer Res 70, 18–23 (2010).
Google Scholar
Loessner, H. et al. Remote control of tumour-targeted Salmonella enterica serovar Typhimurium by the use of l-arabinose as inducer of bacterial gene expression in vivo. Cell. Microbiol. 9, 1529–1537 (2007).
Google Scholar
Royo, J. L. et al. In vivo gene regulation in Salmonella spp. by a salicylate-dependent control circuit. Nat. Methods 4, 937–942 (2007).
Google Scholar
Hartsough, L. A., et al. Optogenetic control of gut bacterial metabolism to promote longevity. eLife 9, e56849 (2020).
Lalwani, M. A. et al. Optogenetic control of the lac operon for bacterial chemical and protein production. Nat. Chem. Biol. 17, 71–79 (2021).
Google Scholar
Liu, Z., et al. Programming bacteria with light—sensors and applications in synthetic biology. Front Microbiol 9, 2692 (2018).
Ash, C., Dubec, M., Donne, K. & Bashford, T. Effect of wavelength and beam width on penetration in light-tissue interaction using computational methods. Lasers Med Sci. 32, 1909–1918 (2017).
Google Scholar
Nuyts, S. et al. The use of radiation-induced bacterial promoters in anaerobic conditions: a means to control gene expression in clostridium-mediated therapy for cancer. rare 155, 716–723 (2001).
Google Scholar
McDannold, N. J., King, R. L., Jolesz, F. A. & Hynynen, K. H. Usefulness of MR imaging-derived thermometry and dosimetry in determining the threshold for tissue damage induced by thermal surgery in rabbits. Radiology 216, 517–523 (2000).
Google Scholar
McDannold, N., Vykhodtseva, N., Jolesz, F. A. & Hynynen, K. MRI investigation of the threshold for thermally induced blood–brain barrier disruption and brain tissue damage in the rabbit brain. Magn. Reson. Med. 51, 913–923 (2004).
Google Scholar
Rome, C., Couillaud, F. & Moonen, C. T. W. Spatial and temporal control of expression of therapeutic genes using heat shock protein promoters. Methods 35, 188–198 (2005).
Google Scholar
Moonen, C. T. W. Spatio-temporal control of gene expression and cancer treatment using magnetic resonance imaging–guided focused ultrasound. Clin. Cancer Res. 13, 3482–3489 (2007).
Google Scholar
Kruse, D. E., Mackanos, M. A., Connell-Rodwell, C. E., Contag, C. H. & Ferrara, K. W. Short-duration-focused ultrasound stimulation of Hsp70 expressionin vivo. Phys. Med. Biol. 53, 3641–3660 (2008).
Google Scholar
Piraner, D. I., Abedi, M. H., Moser, B. A., Lee-Gosselin, A. & Shapiro, M. G. Tunable thermal bioswitches for in vivo control of microbial therapeutics. Nat. Chem. Biol. 13, 75–80 (2017).
Google Scholar
Leventhal, D. S. et al. Immunotherapy with engineered bacteria by targeting the STING pathway for anti-tumor immunity. Nat. Commun. 11, 2739 (2020).
Google Scholar
Hsiao, V., Hori, Y., Rothemund, P. W. & Murray, R. M. A population-based temporal logic gate for timing and recording chemical events. Mol. Syst. Biol. 12, 869 (2016).
Google Scholar
Meysman, P., Sánchez-Rodríguez, A., Fu, Q., Marchal, K. & Engelen, K. Expression divergence between escherichia coli and salmonella enterica serovar typhimurium reflects their lifestyles. Mol. Biol. Evolution 30, 1302–1314 (2013).
Google Scholar
Hurme, R., Berndt, K. D., Normark, S. J. & Rhen, M. A proteinaceous gene regulatory thermometer in Salmonella. Cell 90, 55–64 (1997).
Google Scholar
Valdez-Cruz, N. A., Caspeta, L., Pérez, N. O., Ramírez, O. T. & Trujillo-Roldán, M. A. Production of recombinant proteins in E. coli by the heat inducible expression system based on the phage lambda pL and/or pR promoters. Micro. Cell Fact. 9, 18 (2010).
Lewis, D., Le, P., Zurla, C., Finzi, L. & Adhya, S. Multilevel autoregulation of λ repressor protein CI by DNA looping in vitro. PNAS 108, 14807–14812 (2011).
Google Scholar
Abedi, M. H., Lee, J., Piraner, D. I. & Shapiro, M. G. Thermal control of engineered T-cells. ACS Synth. Biol. 9, 1941–1950 (2020).
Google Scholar
Echols, H. Lysogeny: viral repression and site-specific recombination. Annu. Rev. Biochem. 40, 827–854 (1971).
Google Scholar
Xu, Z. et al. Accuracy and efficiency define Bxb1 integrase as the best of fifteen candidate serine recombinases for the integration of DNA into the human genome. BMC Biotechnol. 13, 87 (2013).
Google Scholar
Mutalik, V. K. et al. Precise and reliable gene expression via standard transcription and translation initiation elements. Nat. Methods 10, 354–360 (2013).
Google Scholar
Chen, Y.-J. et al. Characterization of 582 natural and synthetic terminators and quantification of their design constraints. Nat. Methods 10, 659–664 (2013).
Google Scholar
Flynn, J. M. et al. Overlapping recognition determinants within the ssrA degradation tag allow modulation of proteolysis. PNAS 98, 10584–10589 (2001).
Google Scholar
Courbet, A., Endy, D., Renard, E., Molina, F. & Bonnet, J. Detection of pathological biomarkers in human clinical samples via amplifying genetic switches and logic gates. Sci. Transl. Med. 7, 289ra83–289ra83 (2015).
Google Scholar
Righetti, F., and Narberhaus, F. How to find RNA thermometers. Front. Cell. Infect. Microbiol. 4, 132 (2014).
Roßmanith, J., Weskamp, M. & Narberhaus, F. Design of a temperature-responsive transcription terminator. ACS Synth. Biol. 7, 613–621 (2018).
Google Scholar
Martins, F. et al. Adverse effects of immune-checkpoint inhibitors: epidemiology, management and surveillance. Nat. Rev. Clin. Oncol. 16, 563–580 (2019).
Google Scholar
Bertrand, A., Kostine, M., Barnetche, T., Truchetet, M.-E. & Schaeverbeke, T. Immune related adverse events associated with anti-CTLA-4 antibodies: systematic review and meta-analysis. BMC Med. 13, 211 (2015).
Google Scholar
Mukherjee, K. J., Rowe, D. C. D., Watkins, N. A. & Summers, D. K. Studies of single-chain antibody expression in quiescent Escherichia coli. Appl. Environ. Microbiol. 70, 3005–3012 (2004).
Google Scholar
Lei, S. P., Lin, H. C., Wang, S. S., Callaway, J. & Wilcox, G. Characterization of the Erwinia carotovora pelB gene and its product pectate lyase. J. Bacteriol. 169, 4379–4383 (1987).
Google Scholar
Grady, R. & Hayes, F. Axe-Txe, a broad-spectrum proteic toxin-antitoxin system specified by a multidrug-resistant, clinical isolate of Enterococcus faecium. Mol. Microbiol 47, 1419–1432 (2003).
Google Scholar
Fedorec, A. J. H. et al. Two new plasmid post-segregational killing mechanisms for the implementation of synthetic gene networks in Escherichia coli. iScience 14, 323–334 (2019).
Google Scholar
Sleight, S. C. & Sauro, H. M. Visualization of evolutionary stability dynamics and competitive fitness of escherichia coli engineered with randomized multigene circuits. ACS Synth. Biol. 2, 519–528 (2013).
Google Scholar
Haar, G. T. & Coussios, C. High intensity focused ultrasound: physical principles and devices. Int. J. Hyperth.: Off. J. Eur. Soc. Hyperthermic Oncol., North Am. Hyperth. Group 23, 89–104 (2007).
Escoffre, J.-M., and Bouakaz, A. (Eds.). (2016) Therapeutic Ultrasound. Springer International Publishing, Cham.
Chavez, M. et al. Distinct immune signatures in directly treated and distant tumors result from TLR adjuvants and focal ablation. Theranostics 8, 3611–3628 (2018).
Google Scholar
Silvestrini, M. T. et al. Priming is key to effective incorporation of image-guided thermal ablation into immunotherapy protocols. JCI Insight 2. e90521 (2017).
Bar-Zion, A. et al. Acoustically triggered mechanotherapy using genetically encoded gas vesicles. Nat. Nanotechnol. 16, 1403–1412 (2021).
Google Scholar
Salomir, R., Vimeux, F. C., Zwart, J. A., de, Grenier, N. & Moonen, C. T. W. Hyperthermia by MR-guided focused ultrasound: Accurate temperature control based on fast MRI and a physical model of local energy deposition and heat conduction. Magn. Reson. Med. 43, 342–347 (2000).
Google Scholar
Landry, B. P. & Tabor, J. J. Engineering diagnostic and therapeutic gut bacteria, in Bugs as Drugs, pp 331–361. (John Wiley & Sons, Ltd., 2018).
Chien, T., Doshi, A. & Danino, T. Advances in bacterial cancer therapies using synthetic biology. Curr. Opin. Syst. Biol. 5, 1–8 (2017).
Google Scholar
Dou, J. & Bennett, M. R. Synthetic biology and the gut. Microbiome. Biotechnol. J. 13, 1700159 (2018).
Riglar, D. T. & Silver, P. A. Engineering bacteria for diagnostic and therapeutic applications. Nat. Rev. Microbiol 16, 214–225 (2018).
Google Scholar
Couture, O., Foley, J., Kassell, N. F., Larrat, B., and Aubry, J.-F. Review of ultrasound mediated drug delivery for cancer treatment: updates from pre-clinical studies. Translational Cancer Research 3 (2014).
Deckers, R. & Moonen, C. T. W. Ultrasound triggered, image guided, local drug delivery. J. Controlled Release 148, 25–33 (2010).
Google Scholar
Chowdhury, S. et al. Programmable bacteria induce durable tumor regression and systemic antitumor immunity. Nat. Med. 25, 1057–1063 (2019).
Google Scholar
Kocijancic, D. et al. Local application of bacteria improves safety of Salmonella-mediated tumor therapy and retains advantages of systemic infection. Oncotarget 8, 49988–50001 (2017).
Google Scholar
Mimee, M., Citorik, R. J. & Lu, T. K. Microbiome therapeutics — Advances and challenges. Adv. Drug Deliv. Rev. 105, 44–54 (2016).
Google Scholar
Voigt, C. A. Synthetic biology 2020–2030: six commercially-available products that are changing our world. Nat. Commun. 11, 6379 (2020).
Google Scholar
González, L. M., Mukhitov, N. & Voigt, C. A. Resilient living materials built by printing bacterial spores. Nat. Chem. Biol. 16, 126–133 (2020).
Google Scholar
Nguyen, P. Q., Courchesne, N.-M. D., Duraj‐Thatte, A., Praveschotinunt, P. & Joshi, N. S. Engineered living materials: prospects and challenges for using biological systems to direct the assembly of smart materials. Adv. Mater. 30, 1704847 (2018).
Gilbert, C. et al. Living materials with programmable functionalities grown from engineered microbial co-cultures. Nat Mater 20, 691–700 (2021).
Lee, S. J., Lee, S.-J., and Lee, D.-W. Design and development of synthetic microbial platform cells for bioenergy. Front. Microbiol. 4 (2013).

