Preloader

Two high-fidelity variants: efSaCas9 and SaCas9-HF, which one is better?

  • 1.

    Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337:816–21.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 2.

    Cong L, Ran FA, Cox D, Lin SL, Barretto R, Habib N, et al. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013;339:819–23.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 3.

    Mali P, Yang LH, Esvelt KM, Aach J, Guell M, DiCarlo JE, et al. RNA-guided human genome engineering via Cas9. Science. 2013;339:823–6.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 4.

    Nelson CE, Hakim CH, Ousterout DG, Thakore PI, Moreb EA, Rivera RMC, et al. In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy. Science. 2016;351:403–7.

    PubMed 

    Google Scholar 

  • 5.

    Hsu PD, Scott DA, Weinstein JA, Ran FA, Konermann S, Agarwala V, et al. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol. 2013;31:827–32.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 6.

    Fu YF, Foden JA, Khayter C, Maeder ML, Reyon D, Joung JK, et al. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol. 2013;31:822–6.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 7.

    Tsai SQ, Zheng Z, Nguyen NT, Liebers M, Topkar VV, Thapar V, et al. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat Biotechnol. 2015;33:187–97.

    PubMed 

    Google Scholar 

  • 8.

    Kuscu C, Arslan S, Singh R, Thorpe J, Adli M. Genome-wide analysis reveals characteristics of off-target sites bound by the Cas9 endonuclease. Nat Biotechnol. 2014;32:677–83.

    PubMed 

    Google Scholar 

  • 9.

    Kim S, Kim D, Cho SW, Kim J, Kim JS. Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res. 2014;24:1012–9.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 10.

    Kim K, Park SW, Kim JH, Lee SH, Kim D, Koo T, et al. Genome surgery using Cas9 ribonucleoproteins for the treatment of age-related macular degeneration. Genome Res. 2017;27:419–26.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 11.

    Vakulskas CA, Dever DP, Rettig GR, Turk R, Jacobi AM, Collingwood MA, et al. A high-fidelity Cas9 mutant delivered as a ribonucleoprotein complex enables efficient gene editing in human hematopoietic stem and progenitor cells. Nat Med. 2018;24:1216–24.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 12.

    Ran FA, Hsu PD, Lin CY, Gootenberg JS, Konermann S, Trevino AE, et al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell. 2013;155:479–80.

    Google Scholar 

  • 13.

    Fu YF, Sander JD, Reyon D, Cascio VM, Joung JK. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat Biotechnol. 2014;32:279–84.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 14.

    Guilinger JP, Thompson DB, Liu DR. Fusion of catalytically inactive Cas9 to Fokl nuclease improves the specificity of genome modification. Nat Biotechnol. 2014;32:577–82.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 15.

    Slaymaker IM, Gao LY, Zetsche B, Scott DA, Yan WX, Zhang F. Rationally engineered Cas9 nucleases with improved specificity. Science. 2016;351:84–88.

    PubMed 

    Google Scholar 

  • 16.

    Kleinstiver BP, Pattanayak V, Prew MS, Tsai SQ, Nguyen NT, Zheng ZL, et al. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature. 2016;529:490–5.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 17.

    Chen JS, Dagdas YS, Kleinstiver BP, Welch MM, Sousa AA, Harrington LB, et al. Enhanced proofreading governs CRISPR-Cas9 targeting accuracy. Nature. 2017;550:407–10.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 18.

    Lee JK, Jeong E, Lee J, Jung M, Shin E, Kim YH, et al. Directed evolution of CRISPR-Cas9 to increase its specificity. Nat Commun. 2018;9:3048.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 19.

    Hu JH, Miller SM, Geurts MH, Tang WX, Chen LW, Sun N, et al. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature. 2018;556:57–63.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 20.

    Casini A, Olivieri M, Petris G, Montagna C, Reginato G, Maule G, et al. A highly specific SpCas9 variant is identified by in vivo screening in yeast. Nat Biotechnol. 2018;36:265–71.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 21.

    Nishimasu H, Shi X, Ishiguro S, Gao LY, Hirano S, Okazaki S, et al. Engineered CRISPR-Cas9 nuclease with expanded targeting space. Science. 2018;361:1259–62.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 22.

    Zinn E, Vandenberghe LH. Adeno-associated virus: fit to serve. Curr Opin Virol. 2014;8:90–97.

    PubMed 

    Google Scholar 

  • 23.

    Truong DJJ, Kuhner K, Kuhn R, Werfel S, Engelhardt S, Wurst W, et al. Development of an intein-mediated split-Cas9 system for gene therapy. Nucleic Acids Res. 2015;43:6450–8.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 24.

    Chew WL, Tabebordbar M, Cheng JKW, Mali P, Wu EY, Ng AHM, et al. A multifunctional AAV-CRISPR-Cas9 and its host response. Nat Methods. 2016;13:868–74.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 25.

    Moreno AM, Fu X, Zhu J, Katrekar D, Shih YRV, Marlett J, et al. In situ gene therapy via AAV-CRISPR-Cas9-mediated targeted gene regulation. Mol Ther. 2018;26:1818–27.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 26.

    Ran FA, Cong L, Yan WX, Scott DA, Gootenberg JS, Kriz AJ, et al. In vivo genome editing using Staphylococcus aureus Cas9. Nature. 2015;520:186–98.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 27.

    Maeder ML, Stefanidakis M, Wilson CJ, Baral R, Barrera LA, Bounoutas GS, et al. Development of a gene-editing approach to restore vision loss in Leber congenital amaurosis type 10. Nat Med. 2019;25:229–33.

    PubMed 

    Google Scholar 

  • 28.

    Gu X, Wang DQ, Xu ZJ, Wang JH, Guo L, Chai RJ, et al. Prevention of acquired sensorineural hearing loss in mice by in vivo Htra2 gene editing. Genome Biol. 2021;22:86.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 29.

    Li Q, Su J, Liu Y, Jin X, Zhong XM, Mo L, et al. In vivo PCSK9 gene editing using an all-in-one self-cleavage AAV-CRISPR system. Mol Ther-Meth Clin D. 2021;20:652–9.

    Google Scholar 

  • 30.

    Xie HH, Ge XL, Yang FY, Wang B, Li S, Duan JZ, et al. High-fidelity SaCas9 identified by directional screening in human cells. Plos Biol. 2020;18:e3000747.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 31.

    Tan YY, Chu AHY, Bao SY, Hoang DA, Kebede FT, Xiong WJ, et al. Rationally engineered Staphylococcus aureus Cas9 nucleases with high genome-wide specificity. P Natl Acad Sci USA. 2019;116:20969–76.

    Google Scholar 

  • 32.

    Zhang YL, Ge XL, Yang FY, Zhang LP, Zheng JY, Tan XF, et al. Comparison of non-canonical PAMs for CRISPR/Cas9-mediated DNA cleavage in human cells. Sci Rep-Uk. 2014;4:5405.

    Google Scholar 

  • 33.

    Pinello L, Canver MC, Hoban MD, Orkin SH, Kohn DB, Bauer DE, et al. Analyzing CRISPR genome-editing experiments with CRISPResso. Nat Biotechnol. 2016;34:695–7.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 34.

    Gao N, Zhang CD, Hu ZY, Li MM, Wei JJ, Wang YM, et al. Characterization of Brevibacillus laterosporus Cas9 (BlatCas9) for Mammalian Genome Editing. Front Cell Dev Biol. 2020;8:583164.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 35.

    Karvelis T, Gasiunas G, Young JS, Bigelyte G, Silanskas A, Cigan M, et al. Rapid characterization of CRISPR-Cas9 protospacer adjacent motif sequence elements. Genome Biol. 2015;16:253.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 36.

    Esvelt KM, Mali P, Braff JL, Moosburner M, Yaung SJ, Church GM. Orthogonal Cas9 proteins for RNA-guided gene regulation and editing. Nat Methods. 2013;10:1116–21.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 37.

    Edraki A, Mir A, Ibraheim R, Gainetdinov I, Yoon Y, Song CQ, et al. A Compact, High-Accuracy Cas9 with a Dinucleotide PAM for In Vivo Genome Editing. Mol Cell. 2019;73:714–26.

    PubMed 

    Google Scholar 

  • 38.

    Hu ZY, Wang S, Zhang CD, Gao N, Li MM, Wang DQ, et al. A compact Cas9 ortholog from Staphylococcus Auricularis (SauriCas9) expands the DNA targeting scope. Plos Biol. 2020;18:e3000686.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 39.

    Kim E, Koo T, Park SW, Kim D, Kim K, Cho HY, et al. In vivo genome editing with a small Cas9 orthologue derived from Campylobacter jejuni. Nat Commun. 2017;8:14500.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 40.

    Xie HH, Tang LC, He XB, Liu XX, Zhou CC, Liu JJ, et al. SaCas9 Requires 5-NNGRRT-3 PAM for Sufficient Cleavage and Possesses Higher Cleavage Activity than SpCas9 or FnCpf1 in Human Cells. Biotechnol J. 2018;13:e1700561.

    PubMed 

    Google Scholar 

  • 41.

    Tu MJ, Lin L, Cheng YL, He XB, Sun HH, Xie HH, et al. A ‘new lease of life’: FnCpf1 possesses DNA cleavage activity for genome editing in human cells. Nucleic Acids Res. 2017;45:11295–304.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 42.

    Lin L, He XB, Zhao TY, Gu LK, Liu YQ, Liu XY, et al. Engineering the Direct Repeat Sequence of crRNA for Optimization of FnCpf1-Mediated Genome Editing in Human Cells. Mol Ther. 2018;26:2650–7.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 43.

    Kim YH, Ramakrishna S, Kim H, Kim JS. Enrichment of cells with TALEN-induced mutations using surrogate reporters. Methods. 2014;69:108–17.

    PubMed 

    Google Scholar 

  • 44.

    He XB, Wang YF, Yang FY, Wang B, Xie HH, Gu LK, et al. Boosting activity of high-fidelity CRISPR/Cas9 variants using a tRNA(Gln)-processing system in human cells. J Biol Chem. 2019;294:9308–15.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 45.

    Hua K, Tao XP, Zhu JK. Expanding the base editing scope in rice by using Cas9 variants. Plant Biotechnol J. 2019;17:499–504.

    PubMed 

    Google Scholar 

  • 46.

    Anzalone AV, Randolph PB, Davis JR, Sousa AA, Koblan LW, Levy JM, et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature. 2019;576:149–57.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 47.

    Zhao DD, Li J, Li SW, Xin XQ, Hu MZ, Price MA, et al. Glycosylase base editors enable C-to-A and C-to-G base changes. Nat Biotechnol. 2021;39:35–40.

    PubMed 

    Google Scholar 

  • 48.

    Kurt IC, Zhou RH, Iyer S, Garcia SP, Miller BR, Langner LM, et al. CRISPR C-to-G base editors for inducing targeted DNA transversions in human cells. Nat Biotechnol. 2021;39:41–46.

    PubMed 

    Google Scholar 

  • Source link