Preloader

Treatment with MG132 prevents spontaneous activation of rat oocyte in culture and promotes embryonic development after intracytoplasmic sperm injection

  • Jacob, H. J. Functional genomics and rat models. Genome Res. 9, 1013–1016 (1999).

    CAS 
    Article 

    Google Scholar 

  • Aitman, T. J. et al. Progress and prospects in rat genetics: a community view. Nat. Genet. 40, 516–522 (2008).

    CAS 
    Article 

    Google Scholar 

  • Li, D. et al. Heritable gene targeting in the mouse and rat using a CRISPR-Cas system. Nat. Biotechnol. 31, 681–683 (2013).

    CAS 
    Article 

    Google Scholar 

  • Li, W., Teng, F., Li, T. & Zhou, Q. Simultaneous generation and germline transmission of multiple gene mutations in rat using CRISPR-Cas systems. Nat. Biotechnol. 31, 684–686 (2013).

    CAS 
    Article 

    Google Scholar 

  • Kaneko, T., Sakuma, T., Yamamoto, T. & Mashimo, T. Simple knockout by electroporation of engineered endonucleases into intact rat embryos. Sci. Rep. 4, 6382 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Kaneko, T. Genome editing in mouse and rat by electroporation. Methods Mol Biol. 1630, 81–89 (2017).

    CAS 
    Article 

    Google Scholar 

  • Kaneko, T. & Tanaka, S. Improvement of genome editing by electroporation using embryos artificially removed cumulus cells in the oviducts. Biochem. Biophys. Res. Commun. 527, 1039–1042 (2020).

    CAS 
    Article 

    Google Scholar 

  • Varisli, O., Uguz, C., Agca, C. & Agca, Y. Various physical stress factors on rat sperm motility, integrity of acrosome, and plasma membrane. J. Androl. 30, 75–86 (2009).

    Article 

    Google Scholar 

  • Hirabayashi, M. et al. Offspring derived from intracytoplasmic injection of transgenic rat sperm. Transgenic Res. 11, 221–228 (2002).

    CAS 
    Article 

    Google Scholar 

  • Said, S., Han, M. S. & Niwa, K. Development of rat oocytes following intracytoplasmic injection of sperm heads isolated from testicular and epididymal spermatozoa. Theriogenology 60, 359–369 (2003).

    CAS 
    Article 

    Google Scholar 

  • Nakai, M. et al. Offspring derived from intracytoplasmic injection of sonicated rat sperm heads. J. Mamm. Ova Res. 22, 159–162 (2005).

    Article 

    Google Scholar 

  • Kaneko, T., Kimura, S. & Nakagata, N. Offspring derived from oocytes injected with rat sperm, frozen or freeze-dried without cryoprotection. Theriogenology 68, 1017–1021 (2007).

    CAS 
    Article 

    Google Scholar 

  • Nakagawa, Y. & Kaneko, T. Rapid and efficient production of genome-edited animals by electroporation into oocytes injected with frozen or freeze-dried sperm. Cryobiology 90, 71–74 (2019).

    CAS 
    Article 

    Google Scholar 

  • Hirabayashi, M., Kato, M., Ito, J. & Hochi, S. Viable rat offspring derived from oocytes intracytoplasmically injected with freeze-dried sperm heads. Zygote 13, 79–85 (2005).

    Article 

    Google Scholar 

  • Kaneko, T. & Serikawa, T. Successful long-term preservation of rat sperm by freeze-drying. PLoS ONE 7, e35043 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Tripathi, A., Kumar, K. V. & Chaube, S. K. Meiotic cell cycle arrest in mammalian oocytes. J. Cell. Physiol. 223, 592–600 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • Keefer, C. L. & Schuetz, A. W. Spontaneous activation of ovulated rat oocytes during in vitro culture. J. Exp. Zool. 224, 371–377 (1982).

    CAS 
    Article 

    Google Scholar 

  • Zernicka-Goetz, M. Spontaneous and induced activation of rat oocytes. Mol. Reprod. Dev. 28, 169–176 (1991).

    CAS 
    Article 

    Google Scholar 

  • Chebotareva, T., Taylor, J., Mullins, J. J. & Wilmut, I. Rat eggs cannot wait: spontaneous exit from meiotic metaphase-II arrest. Mol. Reprod. Dev. 78, 798–807 (2011).

    Article 

    Google Scholar 

  • Cui, W. Oocyte spontaneous activation: an overlooked cellular event that impairs female fertility in mammals. Front. Cell Dev. Biol. 9, 648057 (2021).

    Article 

    Google Scholar 

  • Kato, M. et al. Strontium-induced activation regimen for rat oocytes in somatic cell nuclear transplantation. J. Reprod. Dev. 47, 407–413 (2001).

    CAS 
    Article 

    Google Scholar 

  • Miyata, T. et al. Effect of oocyte preincubation and intra-ovarian bursa transfer on the development of oocytes following intracytoplasmic sperm injection in rats. J. Mamm. Ova Res. 24, 29–34 (2007).

    Article 

    Google Scholar 

  • Josefsberg, L. B., Kaufman, O., Galiani, D., Kovo, M. & Dekel, N. Inactivation of M-phase promoting factor at exit from first embryonic mitosis in the rat is independent of cyclin B1 degradation. Biol. Reprod. 64, 871–878 (2001).

    CAS 
    Article 

    Google Scholar 

  • Zhou, Q. et al. Generation of fertile cloned rats by regulating oocyte activation. Science 302, 1179 (2003).

    CAS 
    Article 

    Google Scholar 

  • Ito, J. et al. Contribution of high p34cdc2 kinase activity to premature chromosome condensation of injected somatic cell nuclei in rat oocytes. Reproduction 129, 171–180 (2005).

    CAS 
    Article 

    Google Scholar 

  • Nakajima, N., Inomata, T., Ito, J. & Kashiwazaki, N. Treatment with proteasome inhibitor MG132 during cloning improves survival and pronuclear number of reconstructed rat embryos. Cloning Stem Cells 10, 461–468 (2008).

    CAS 
    Article 

    Google Scholar 

  • Toyoda, Y. & Chang, M. C. Fertilization of rat eggs in vitro by epididymal spermatozoa and the development of eggs following transfer. J. Reprod. Fertil. 36, 9–22 (1974).

    CAS 
    Article 

    Google Scholar 

  • Ishibashi, I. Morphological studies on superovulated rat ova. II. Maturation and time of ovulation of oocytes in adult rats following gonadotrophin treatment. Jap. J. Anim. Reprod. 13, 109–114 (1967).

    Article 

    Google Scholar 

  • Miao, Y. L., Kikuchi, K., Sun, Q. Y. & Schatten, H. Oocyte aging: cellular and molecular changes, developmental potential and reversal possibility. Hum. Reprod. Update 15, 573–585 (2009).

    Article 

    Google Scholar 

  • Ross, P. J., Yabuuchi, A. & Cibelli, J. B. Oocyte spontaneous activation in different rat strains. Cloning Stem Cells 8, 275–282 (2006).

    CAS 
    Article 

    Google Scholar 

  • Cui, W. et al. Roles of MAPK and spindle assembly checkpoint in spontaneous activation and MIII arrest of rat oocytes. PLoS ONE 7, e32044 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Li, L., Zheng, P. & Dean, J. Maternal control of early mouse development. Development 137, 859–870 (2010).

    CAS 
    Article 

    Google Scholar 

  • Mizumoto, S., Kato, Y. & Tsunoda, Y. The developmental potential of parthenogenetic and somatic cell nuclear-transferred rat oocytes in vitro. Cloning Stem Cells 10, 453–459 (2008).

    CAS 
    Article 

    Google Scholar 

  • Sterthaus, O., Skoczylas, E., De Geyter, C., Bürki, K. & Ledermann, B. Evaluation of in vitro cultured rat oocytes, from different strains, by spindle morphology and maturation-promoting-factor activity combined with nuclear-transfer experiments. Cloning Stem Cells 11, 463–472 (2009).

    CAS 
    Article 

    Google Scholar 

  • Kaneko, T., Kimura, S. & Nakagata, N. Importance of primary culture conditions for the development of rat ICSI embryos and long-term preservation of freeze-dried sperm. Cryobiology 58, 293–297 (2009).

    CAS 
    Article 

    Google Scholar 

  • Miyoshi, K., Abeydeera, L. R., Okuda, K. & Niwa, K. Effects of osmolarity and amino acids in a chemically defined medium on development of rat one-cell embryos. J. Reprod. Fertil. 103, 27–32 (1995).

    CAS 
    Article 

    Google Scholar 

  • Kaneko, T. Simple sperm preservation by freeze-drying for conserving animal strains. Methods Mol Biol. 1239, 317–329 (2015).

    Article 

    Google Scholar 

  • Source link