Preloader

Transcriptome based identification and validation of heat stress transcription factors in wheat progenitor species Aegilops speltoides

  • 1.

    Akter, N. & Rafiqul Islam, M. Heat stress effects and management in wheat. A review. Agron. Sustain. Dev. 37, 37. https://doi.org/10.1007/s13593-017-0443-9 (2017).

    CAS 
    Article 

    Google Scholar 

  • 2.

    Arora, S., Cheema, J., Poland, J., Uauy, C. & Chhuneja, P. Genome-wide association mapping of grain micronutrients concentration in Aegilops tauschii. Front. Plant Sci. 10, 54. https://doi.org/10.3389/fpls.2019.00054 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 3.

    Climate change 2007: The Physical Science Basis: Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, 2007).

  • 4.

    Wollenweber, B., Porter, J. R. & Schellberg, J. Lack of interaction between extreme high-temperature events at vegetative and reproductive growth stages in wheat. J. Agron. Crop. Sci. 189, 142–150 (2003).

    Google Scholar 

  • 5.

    Gupta, P. K., Balyan, H. S., Gahlaut, V. & Kulwal, P. L. Phenotyping, genetic dissection, and breeding for drought and heat tolerance in common wheat: Status and prospects. in Plant Breeding Reviews (ed. Janick, J.) 85–168 (Wiley, 2012). https://doi.org/10.1002/9781118358566.ch2

  • 6.

    Awlachew, Z. T., Singh, R., Kaur, S., Bains, N. S. & Chhuneja, P. Transfer and mapping of the heat tolerance component traits of Aegilops speltoides in tetraploid wheat Triticum durum. Mol. Breed. 36, 78. https://doi.org/10.1007/s11032-016-0499-2 (2016).

    CAS 
    Article 

    Google Scholar 

  • 7.

    Li, J., Wan, H. & Yang, W. Synthetic hexaploid wheat enhances variation and adaptive evolution of bread wheat in breeding processes. J. Syst. Evol. 52, 735–742 (2014).

    Google Scholar 

  • 8.

    Farooq, S. Co-existence of salt and drought tolerance in Triticeae. Hereditas 135, 205–210 (2004).

    Google Scholar 

  • 9.

    Waines, J. High temperature stress in wild wheats and spring wheats. Funct. Plant Biol. 21, 705–715 (1994).

    Google Scholar 

  • 10.

    Jafarzadeh, J. et al. Breeding value of primary synthetic wheat genotypes for grain yield. PLoS ONE 11(9), e0162860. https://doi.org/10.1371/journal.pone.0162860 (2016).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 11.

    Colmer, T. D., Flowers, T. J. & Munns, R. Use of wild relatives to improve salt tolerance in wheat. J. Exp. Bot. 57, 1059–1078 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • 12.

    Vikas, V. K. et al. Stem and leaf rust resistance in wild relatives of wheat with D genome (Aegilops spp.). Genet. Resour. Crop Evol. 61, 861–874 (2014).

    CAS 

    Google Scholar 

  • 13.

    Huang, M. et al. Genetic analysis of heading date in winter and spring wheat. Euphytica 214, 128. https://doi.org/10.1007/s10681-018-2199-y (2018).

    CAS 
    Article 

    Google Scholar 

  • 14.

    Olivera, P. D., Rouse, M. N. & Jin, Y. Identification of new sources of resistance to wheat stem rust in Aegilops spp. in the tertiary genepool of wheat. Front. Plant Sci. 9, 1719. https://doi.org/10.3389/fpls.2018.01719 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 15.

    Von Koskull-Döring, P., Scharf, K.-D. & Nover, L. The diversity of plant heat stress transcription factors. Trends Plant Sci. 12, 452–457 (2007).

    Google Scholar 

  • 16.

    Baniwal, S. K. et al. Heat stress response in plants: a complex game with chaperones and more than twenty heat stress transcription factors. J. Biosci. 29, 471–487 (2004).

    CAS 
    PubMed 

    Google Scholar 

  • 17.

    Nover, L., Bharti, K. & Scharf, K.-D. Arabidopsis and the heat stress transcription factor world: How many heat stress transcription factors do we need?. Cell Stress Chaperones 6(3), 177–189 (2001).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 18.

    Fragkostefanakis, S., Röth, S., Schleiff, E. & Scharf, K.-D. Prospects of engineering thermotolerance in crops through modulation of heat stress transcription factor and heat shock protein networks: HSFs and HSPs for improvement of crop thermotolerance. Plant Cell Environ. 38, 1881–1895 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 19.

    Guo, M. et al. Genome-wide analysis, expression profile of heat shock factor gene family (CaHSFs) and characterisation of CaHsfA2 in pepper (Capsicum annuum L.). BMC Plant Biol. 15, 151. https://doi.org/10.1186/s12870-015-0512-7 (2015).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 20.

    Scharf, K.-D., Berberich, T., Ebersberger, I. & Nover, L. The plant heat stress transcription factor (Hsf) family: Structure, function and evolution. Biochimica et Biophysica Acta BBA Gene Regul. Mech. 1819, 104–119 (2012).

    CAS 

    Google Scholar 

  • 21.

    Xue, G.-P., Sadat, S., Drenth, J. & McIntyre, C. L. The heat shock factor family from Triticum aestivum in response to heat and other major abiotic stresses and their role in regulation of heat shock protein genes. J. Exp. Bot. 65, 539–557 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • 22.

    Agarwal, P. & Khurana, P. Functional characterization of HSFs from wheat in response to heat and other abiotic stress conditions. Funct. Integr. Genomics 19, 497–513 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 23.

    Chauhan, H., Khurana, N., Agarwal, P., Khurana, J. P. & Khurana, P. A seed preferential heat shock transcription factor from wheat provides abiotic stress tolerance and yield enhancement in transgenic Arabidopsis under heat stress environment. PLoS ONE 8(11), e79577. https://doi.org/10.1371/journal.pone.0079577 (2013).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 24.

    Hu, Q. et al. Meiotic chromosome association 1 interacts with TOP3α and regulates meiotic recombination in rice. Plant Cell 29, 1697–1708 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 25.

    Chauhan, H., Khurana, N., Agarwal, P. & Khurana, P. Heat shock factors in rice (Oryza sativa L.): Genome-wide expression analysis during reproductive development and abiotic stress. Mol. Genet. Genomics 286, 171. https://doi.org/10.1007/s00438-011-0638-8 (2011).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 26.

    Zaharieva, M., Gaulin, E., Havaux, M., Acevedo, E. & Monneveux, P. Drought and heat responses in the wild wheat relative Aegilops geniculata Roth: Potential interest for wheat improvement. Crop Sci. 41, 1321–1329 (2001).

    Google Scholar 

  • 27.

    Pradhan, G. P., Prasad, P. V. V., Fritz, A. K., Kirkham, M. B. & Gill, B. S. High temperature tolerance in Aegilops species and its potential transfer to wheat. Crop Sci. 52, 292–304 (2012).

    Google Scholar 

  • 28.

    Jakhu, P. et al. Cloning, expression analysis and In silico characterization of HSP101: A potential player conferring heat stress in Aegilops speltoides (Tausch) Gren. Physiol. Mol. Biol. Plants 27, 1205–1218 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • 29.

    Salse, J. et al. New insights into the origin of the B genome of hexaploid wheat: Evolutionary relationships at the SPA genomic region with the S genome of the diploid relative Aegilops speltoides. BMC Genomics 9, 555. https://doi.org/10.1186/1471-2164-9-555 (2008).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 30.

    Borrill, P., Adamski, N. & Uauy, C. Genomics as the key to unlocking the polyploid potential of wheat. New Phytol. 208, 1008–1022 (2015).

    PubMed 

    Google Scholar 

  • 31.

    Ruban, A. S. & Badaeva, E. D. Evolution of the S-genomes in TriticumAegilops alliance: Evidences from chromosome analysis. Front. Plant Sci. 9, 1756. https://doi.org/10.3389/fpls.2018.01756 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 32.

    El Baidouri, M. et al. Reconciling the evolutionary origin of bread wheat (Triticum aestivum ). New Phytol 213, 1477–1486 (2017).

    PubMed 

    Google Scholar 

  • 33.

    Appels, R. et al. Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 361, 6403. https://doi.org/10.1126/science.aar7191 (2018).

    CAS 
    Article 

    Google Scholar 

  • 34.

    Miki, Y. et al. Origin of wheat B-genome chromosomes inferred from RNA sequencing analysis of leaf transcripts from section Sitopsis species of Aegilops. DNA Res. 26, 171–182 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 35.

    Liu, W. et al. Transcriptome analysis of wheat grain using RNA-Seq. Front. Agric. Sci. Eng. 1(3), 214–222. https://doi.org/10.15302/J-FASE-2014024 (2014).

    Article 

    Google Scholar 

  • 36.

    Yadav, I. S. et al. Comparative temporal transcriptome profiling of wheat near isogenic line carrying Lr57 under compatible and incompatible interactions. Front. Plant Sci. 7, 1943. https://doi.org/10.3389/fpls.2016.01943 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 37.

    Chen, Z. J. & Ni, Z. Mechanisms of genomic rearrangements and gene expression changes in plant polyploids. BioEssays 28, 240–252 (2006).

    PubMed 

    Google Scholar 

  • 38.

    Kumar Kushwaha, S. et al. Differential gene expression analysis of wheat breeding lines reveal molecular insights in yellow rust resistance under field conditions. Agronomy 10, 1888. https://doi.org/10.3390/agronomy10121888 (2020).

    CAS 
    Article 

    Google Scholar 

  • 39.

    Kumar, R. R. et al. Harnessing next generation sequencing in climate change: RNA-Seq analysis of heat stress-responsive genes in wheat (Triticum aestivum L.). OMICS 19, 632–647 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 40.

    Schleiff, E. & Becker, T. Common ground for protein translocation: access control for mitochondria and chloroplasts. Nat. Rev. Mol. Cell. Biol. 12, 48–59 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • 41.

    Xue, G.-P., Drenth, J. & McIntyre, C. L. TaHsfA6f is a transcriptional activator that regulates a suite of heat stress protection genes in wheat (Triticum aestivum L.) including previously unknown Hsf targets. J. Exp. Bot. 66, 1025–1039 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 42.

    Mishra, S. K. et al. Genome-wide identification, phylogeny and expression analysis of HSF gene family in barley during abiotic stress response and reproductive development. Plant Gene 23, 100231. https://doi.org/10.1016/j.plgene.2020.100231 (2020).

    CAS 
    Article 

    Google Scholar 

  • 43.

    Zhuang, L. et al. Characterization and functional analysis of FaHsfC1b from Festuca arundinacea conferring heat tolerance in Arabidopsis. IJMS 19, 2702. https://doi.org/10.3390/ijms19092702 (2018).

    CAS 
    Article 
    PubMed Central 

    Google Scholar 

  • 44.

    Mittal, D., Madhyastha, D. A. & Grover, A. Gene expression analysis in response to low and high temperature and oxidative stresses in rice: Combination of stresses evokes different transcriptional changes as against stresses applied individually. Plant Sci. 197, 102–113 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • 45.

    Qin, F. et al. Regulation and functional analysis of ZmDREB2A in response to drought and heat stresses in Zea mays L: ZmDREB2A in drought and heat stress response. Plant J. 50, 54–69 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • 46.

    Kotak, S. et al. Complexity of the heat stress response in plants. Curr. Opin. Plant Biol. 10, 310–316 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • 47.

    Zhang, S. et al. Overexpression of TaHSF3 in transgenic Arabidopsis enhances tolerance to extreme temperatures. Plant Mol. Biol. Rep. 31, 688–697 (2013).

    CAS 

    Google Scholar 

  • 48.

    Li, M., Berendzen, K. W. & Schöffl, F. Promoter specificity and interactions between early and late Arabidopsis heat shock factors. Plant Mol. Biol. 73, 559–567 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 49.

    Lu, F.-H. et al. Reduced chromatin accessibility underlies gene expression differences in homologous chromosome arms of diploid Aegilops tauschii and hexaploid wheat. GigaScience 9(giaa070), 1–11. https://doi.org/10.1093/gigascience/giaa070 (2020).

    CAS 
    Article 

    Google Scholar 

  • 50.

    Hu, G. & Wendel, J. F. Cis–trans controls and regulatory novelty accompanying allopolyploidization. New Phytol. 221, 1691–1700 (2019).

    PubMed 

    Google Scholar 

  • 51.

    Anders, S. & Huber, W. Differential expression analysis for sequence count data. Genome Biol. 11, R106 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 52.

    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 53.

    Haas, B. J. et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 8, 1494–1512 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • 54.

    Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: Assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212 (2015).

    PubMed 

    Google Scholar 

  • 55.

    Finn, R. D. et al. Pfam: the protein families database. Nucl. Acids Res. 42, D222–D230 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • 56.

    Conesa, A. & Götz, S. Blast2GO: A comprehensive suite for functional analysis in plant genomics. Int. J. Plant Genomics 2008, 1–12 (2008).

    Google Scholar 

  • 57.

    Thimm, O. et al. mapman: A user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J. 37, 914–939 (2004).

    CAS 
    PubMed 

    Google Scholar 

  • 58.

    Ye, J. et al. WEGO: A web tool for plotting GO annotations. Nucleic Acids Res. 34, W293–W297 (2006).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 59.

    Li, L. OrthoMCL: Identification of ortholog groups for eukaryotic genomes. Genome Res. 13, 2178–2189 (2003).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 60.

    Doring, P. et al. The role of AHA motifs in the activator function of tomato heat stress transcription factors HsfA1 and HsfA2. Plant Cell 12, 265–278 (2000).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 61.

    Choulet, F. et al. Structural and functional partitioning of bread wheat chromosome 3B. Science 345, 1249721–1249721 (2014).

    PubMed 

    Google Scholar 

  • 62.

    Liu, Z. et al. Temporal transcriptome profiling reveals expression partitioning of homeologous genes contributing to heat and drought acclimation in wheat (Triticum aestivum L.). BMC Plant Biol. 15, 152. https://doi.org/10.1186/s12870-015-0511-8 (2015).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 63.

    Shannon, P. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 64.

    Kumar, S., Stecher, G. & Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 65.

    Risk, J. M. et al. The wheat Lr34 gene provides resistance against multiple fungal pathogens in barley. Plant Biotechnol. J. 11, 847–854 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • 66.

    Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25, 402–408 (2001).

    CAS 

    Google Scholar 

  • Source link