Akter, N. & Rafiqul Islam, M. Heat stress effects and management in wheat. A review. Agron. Sustain. Dev. 37, 37. https://doi.org/10.1007/s13593-017-0443-9 (2017).
Google Scholar
Arora, S., Cheema, J., Poland, J., Uauy, C. & Chhuneja, P. Genome-wide association mapping of grain micronutrients concentration in Aegilops tauschii. Front. Plant Sci. 10, 54. https://doi.org/10.3389/fpls.2019.00054 (2019).
Google Scholar
Climate change 2007: The Physical Science Basis: Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, 2007).
Wollenweber, B., Porter, J. R. & Schellberg, J. Lack of interaction between extreme high-temperature events at vegetative and reproductive growth stages in wheat. J. Agron. Crop. Sci. 189, 142–150 (2003).
Gupta, P. K., Balyan, H. S., Gahlaut, V. & Kulwal, P. L. Phenotyping, genetic dissection, and breeding for drought and heat tolerance in common wheat: Status and prospects. in Plant Breeding Reviews (ed. Janick, J.) 85–168 (Wiley, 2012). https://doi.org/10.1002/9781118358566.ch2
Awlachew, Z. T., Singh, R., Kaur, S., Bains, N. S. & Chhuneja, P. Transfer and mapping of the heat tolerance component traits of Aegilops speltoides in tetraploid wheat Triticum durum. Mol. Breed. 36, 78. https://doi.org/10.1007/s11032-016-0499-2 (2016).
Google Scholar
Li, J., Wan, H. & Yang, W. Synthetic hexaploid wheat enhances variation and adaptive evolution of bread wheat in breeding processes. J. Syst. Evol. 52, 735–742 (2014).
Farooq, S. Co-existence of salt and drought tolerance in Triticeae. Hereditas 135, 205–210 (2004).
Waines, J. High temperature stress in wild wheats and spring wheats. Funct. Plant Biol. 21, 705–715 (1994).
Jafarzadeh, J. et al. Breeding value of primary synthetic wheat genotypes for grain yield. PLoS ONE 11(9), e0162860. https://doi.org/10.1371/journal.pone.0162860 (2016).
Google Scholar
Colmer, T. D., Flowers, T. J. & Munns, R. Use of wild relatives to improve salt tolerance in wheat. J. Exp. Bot. 57, 1059–1078 (2006).
Google Scholar
Vikas, V. K. et al. Stem and leaf rust resistance in wild relatives of wheat with D genome (Aegilops spp.). Genet. Resour. Crop Evol. 61, 861–874 (2014).
Google Scholar
Huang, M. et al. Genetic analysis of heading date in winter and spring wheat. Euphytica 214, 128. https://doi.org/10.1007/s10681-018-2199-y (2018).
Google Scholar
Olivera, P. D., Rouse, M. N. & Jin, Y. Identification of new sources of resistance to wheat stem rust in Aegilops spp. in the tertiary genepool of wheat. Front. Plant Sci. 9, 1719. https://doi.org/10.3389/fpls.2018.01719 (2018).
Google Scholar
Von Koskull-Döring, P., Scharf, K.-D. & Nover, L. The diversity of plant heat stress transcription factors. Trends Plant Sci. 12, 452–457 (2007).
Baniwal, S. K. et al. Heat stress response in plants: a complex game with chaperones and more than twenty heat stress transcription factors. J. Biosci. 29, 471–487 (2004).
Google Scholar
Nover, L., Bharti, K. & Scharf, K.-D. Arabidopsis and the heat stress transcription factor world: How many heat stress transcription factors do we need?. Cell Stress Chaperones 6(3), 177–189 (2001).
Google Scholar
Fragkostefanakis, S., Röth, S., Schleiff, E. & Scharf, K.-D. Prospects of engineering thermotolerance in crops through modulation of heat stress transcription factor and heat shock protein networks: HSFs and HSPs for improvement of crop thermotolerance. Plant Cell Environ. 38, 1881–1895 (2015).
Google Scholar
Guo, M. et al. Genome-wide analysis, expression profile of heat shock factor gene family (CaHSFs) and characterisation of CaHsfA2 in pepper (Capsicum annuum L.). BMC Plant Biol. 15, 151. https://doi.org/10.1186/s12870-015-0512-7 (2015).
Google Scholar
Scharf, K.-D., Berberich, T., Ebersberger, I. & Nover, L. The plant heat stress transcription factor (Hsf) family: Structure, function and evolution. Biochimica et Biophysica Acta BBA Gene Regul. Mech. 1819, 104–119 (2012).
Google Scholar
Xue, G.-P., Sadat, S., Drenth, J. & McIntyre, C. L. The heat shock factor family from Triticum aestivum in response to heat and other major abiotic stresses and their role in regulation of heat shock protein genes. J. Exp. Bot. 65, 539–557 (2014).
Google Scholar
Agarwal, P. & Khurana, P. Functional characterization of HSFs from wheat in response to heat and other abiotic stress conditions. Funct. Integr. Genomics 19, 497–513 (2019).
Google Scholar
Chauhan, H., Khurana, N., Agarwal, P., Khurana, J. P. & Khurana, P. A seed preferential heat shock transcription factor from wheat provides abiotic stress tolerance and yield enhancement in transgenic Arabidopsis under heat stress environment. PLoS ONE 8(11), e79577. https://doi.org/10.1371/journal.pone.0079577 (2013).
Google Scholar
Hu, Q. et al. Meiotic chromosome association 1 interacts with TOP3α and regulates meiotic recombination in rice. Plant Cell 29, 1697–1708 (2017).
Google Scholar
Chauhan, H., Khurana, N., Agarwal, P. & Khurana, P. Heat shock factors in rice (Oryza sativa L.): Genome-wide expression analysis during reproductive development and abiotic stress. Mol. Genet. Genomics 286, 171. https://doi.org/10.1007/s00438-011-0638-8 (2011).
Google Scholar
Zaharieva, M., Gaulin, E., Havaux, M., Acevedo, E. & Monneveux, P. Drought and heat responses in the wild wheat relative Aegilops geniculata Roth: Potential interest for wheat improvement. Crop Sci. 41, 1321–1329 (2001).
Pradhan, G. P., Prasad, P. V. V., Fritz, A. K., Kirkham, M. B. & Gill, B. S. High temperature tolerance in Aegilops species and its potential transfer to wheat. Crop Sci. 52, 292–304 (2012).
Jakhu, P. et al. Cloning, expression analysis and In silico characterization of HSP101: A potential player conferring heat stress in Aegilops speltoides (Tausch) Gren. Physiol. Mol. Biol. Plants 27, 1205–1218 (2021).
Google Scholar
Salse, J. et al. New insights into the origin of the B genome of hexaploid wheat: Evolutionary relationships at the SPA genomic region with the S genome of the diploid relative Aegilops speltoides. BMC Genomics 9, 555. https://doi.org/10.1186/1471-2164-9-555 (2008).
Google Scholar
Borrill, P., Adamski, N. & Uauy, C. Genomics as the key to unlocking the polyploid potential of wheat. New Phytol. 208, 1008–1022 (2015).
Google Scholar
Ruban, A. S. & Badaeva, E. D. Evolution of the S-genomes in Triticum–Aegilops alliance: Evidences from chromosome analysis. Front. Plant Sci. 9, 1756. https://doi.org/10.3389/fpls.2018.01756 (2018).
Google Scholar
El Baidouri, M. et al. Reconciling the evolutionary origin of bread wheat (Triticum aestivum ). New Phytol 213, 1477–1486 (2017).
Google Scholar
Appels, R. et al. Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 361, 6403. https://doi.org/10.1126/science.aar7191 (2018).
Google Scholar
Miki, Y. et al. Origin of wheat B-genome chromosomes inferred from RNA sequencing analysis of leaf transcripts from section Sitopsis species of Aegilops. DNA Res. 26, 171–182 (2019).
Google Scholar
Liu, W. et al. Transcriptome analysis of wheat grain using RNA-Seq. Front. Agric. Sci. Eng. 1(3), 214–222. https://doi.org/10.15302/J-FASE-2014024 (2014).
Google Scholar
Yadav, I. S. et al. Comparative temporal transcriptome profiling of wheat near isogenic line carrying Lr57 under compatible and incompatible interactions. Front. Plant Sci. 7, 1943. https://doi.org/10.3389/fpls.2016.01943 (2016).
Google Scholar
Chen, Z. J. & Ni, Z. Mechanisms of genomic rearrangements and gene expression changes in plant polyploids. BioEssays 28, 240–252 (2006).
Google Scholar
Kumar Kushwaha, S. et al. Differential gene expression analysis of wheat breeding lines reveal molecular insights in yellow rust resistance under field conditions. Agronomy 10, 1888. https://doi.org/10.3390/agronomy10121888 (2020).
Google Scholar
Kumar, R. R. et al. Harnessing next generation sequencing in climate change: RNA-Seq analysis of heat stress-responsive genes in wheat (Triticum aestivum L.). OMICS 19, 632–647 (2015).
Google Scholar
Schleiff, E. & Becker, T. Common ground for protein translocation: access control for mitochondria and chloroplasts. Nat. Rev. Mol. Cell. Biol. 12, 48–59 (2011).
Google Scholar
Xue, G.-P., Drenth, J. & McIntyre, C. L. TaHsfA6f is a transcriptional activator that regulates a suite of heat stress protection genes in wheat (Triticum aestivum L.) including previously unknown Hsf targets. J. Exp. Bot. 66, 1025–1039 (2015).
Google Scholar
Mishra, S. K. et al. Genome-wide identification, phylogeny and expression analysis of HSF gene family in barley during abiotic stress response and reproductive development. Plant Gene 23, 100231. https://doi.org/10.1016/j.plgene.2020.100231 (2020).
Google Scholar
Zhuang, L. et al. Characterization and functional analysis of FaHsfC1b from Festuca arundinacea conferring heat tolerance in Arabidopsis. IJMS 19, 2702. https://doi.org/10.3390/ijms19092702 (2018).
Google Scholar
Mittal, D., Madhyastha, D. A. & Grover, A. Gene expression analysis in response to low and high temperature and oxidative stresses in rice: Combination of stresses evokes different transcriptional changes as against stresses applied individually. Plant Sci. 197, 102–113 (2012).
Google Scholar
Qin, F. et al. Regulation and functional analysis of ZmDREB2A in response to drought and heat stresses in Zea mays L: ZmDREB2A in drought and heat stress response. Plant J. 50, 54–69 (2007).
Google Scholar
Kotak, S. et al. Complexity of the heat stress response in plants. Curr. Opin. Plant Biol. 10, 310–316 (2007).
Google Scholar
Zhang, S. et al. Overexpression of TaHSF3 in transgenic Arabidopsis enhances tolerance to extreme temperatures. Plant Mol. Biol. Rep. 31, 688–697 (2013).
Google Scholar
Li, M., Berendzen, K. W. & Schöffl, F. Promoter specificity and interactions between early and late Arabidopsis heat shock factors. Plant Mol. Biol. 73, 559–567 (2010).
Google Scholar
Lu, F.-H. et al. Reduced chromatin accessibility underlies gene expression differences in homologous chromosome arms of diploid Aegilops tauschii and hexaploid wheat. GigaScience 9(giaa070), 1–11. https://doi.org/10.1093/gigascience/giaa070 (2020).
Google Scholar
Hu, G. & Wendel, J. F. Cis–trans controls and regulatory novelty accompanying allopolyploidization. New Phytol. 221, 1691–1700 (2019).
Google Scholar
Anders, S. & Huber, W. Differential expression analysis for sequence count data. Genome Biol. 11, R106 (2010).
Google Scholar
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
Google Scholar
Haas, B. J. et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 8, 1494–1512 (2013).
Google Scholar
Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: Assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212 (2015).
Google Scholar
Finn, R. D. et al. Pfam: the protein families database. Nucl. Acids Res. 42, D222–D230 (2014).
Google Scholar
Conesa, A. & Götz, S. Blast2GO: A comprehensive suite for functional analysis in plant genomics. Int. J. Plant Genomics 2008, 1–12 (2008).
Thimm, O. et al. mapman: A user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J. 37, 914–939 (2004).
Google Scholar
Ye, J. et al. WEGO: A web tool for plotting GO annotations. Nucleic Acids Res. 34, W293–W297 (2006).
Google Scholar
Li, L. OrthoMCL: Identification of ortholog groups for eukaryotic genomes. Genome Res. 13, 2178–2189 (2003).
Google Scholar
Doring, P. et al. The role of AHA motifs in the activator function of tomato heat stress transcription factors HsfA1 and HsfA2. Plant Cell 12, 265–278 (2000).
Google Scholar
Choulet, F. et al. Structural and functional partitioning of bread wheat chromosome 3B. Science 345, 1249721–1249721 (2014).
Google Scholar
Liu, Z. et al. Temporal transcriptome profiling reveals expression partitioning of homeologous genes contributing to heat and drought acclimation in wheat (Triticum aestivum L.). BMC Plant Biol. 15, 152. https://doi.org/10.1186/s12870-015-0511-8 (2015).
Google Scholar
Shannon, P. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).
Google Scholar
Kumar, S., Stecher, G. & Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874 (2016).
Google Scholar
Risk, J. M. et al. The wheat Lr34 gene provides resistance against multiple fungal pathogens in barley. Plant Biotechnol. J. 11, 847–854 (2013).
Google Scholar
Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25, 402–408 (2001).
Google Scholar

