Abbo, S., Berger, J. & Turner, N. C. Evolution of cultivated chickpea: four bottlenecks limit diversity and constrain adaptation. Funct. Plant Biol. 30, 1081–1087 (2003).
Google Scholar
Castillo, P., Navas-Cortés, J. A., Landa, B. B., Jiménez-Díaz, R. M. & Vovlas, N. Plant-parasitic nematodes attacking chickpea and their in planta interactions with rhizobia and phytopathogenic fungi. Plant Dis. 92, 840–853 (2008).
Google Scholar
Ali, S.S. Status of nematode problem and research in India. Diagnosis of key nematode pests of chickpea and pigeonpea and their management : Proceedings of a Regional Training Course, 25–30 Nov 1996, ICRISAT, Patancheru, India. Patancheru 502 324, Andhra Pradesh, India: International Crops Research Institute for the Semi-Arid Tropics 74–82 (1997).
Reen, R. A., Thompson, J. P., Clewett, T. G., Sheedy, J. G. & Bell, K. L. Yield response in chickpea cultivars and wheat following crop rotations affecting population densities of Pratylenchus thornei and arbuscular mycorrhizal fungi. Crop Pasture Sci. 65, 428–441 (2014).
Google Scholar
Fosu-Nyarko, J. & Jones, M. G. Advances in understanding the molecular mechanisms of root lesion nematode host interactions. Annu. Rev. Phytopathol. 54, 253–278 (2016).
Google Scholar
Thompson, J. P., Owen, K. J., Stirling, G. R. & Bell, M. J. Root-lesion nematodes (Pratylenchus thornei and P. neglectus): a review of recent progress in managing a significant pest of grain crops in northern Australia. Australas. Plant Pathol. 37, 235–242 (2008).
Google Scholar
Zwart, R. S. et al. Resistance to plant-parasitic nematodes in chickpea: current status and future perspectives. Front. Plant Sci. 10, 966 (2019).
Google Scholar
Rahman, M. S. et al. Fine mapping of root lesion nematode (Pratylenchus thornei) resistance loci on chromosomes 6D and 2B of wheat. Theor. Appl. Genet. 133, 635–652 (2020).
Google Scholar
Rahaman, M. M., Zwart, R. S., Rupasinghe, T. W., Hayden, H. L. & Thompson, J. P. Metabolomic profiling of wheat genotypes resistant and susceptible to root-lesion nematode Pratylenchus thornei. Plant Mol. Biol. 106, 381–406 (2021)
Google Scholar
Vieira, P., Mowery, J., Eisenback, J. D., Shao, J. & Nemchinov, L. G. Cellular and transcriptional responses of resistant and susceptible cultivars of alfalfa to the root-lesion nematode, Pratylenchus penetrans. Front. Plant Sci. 10, 971 (2019).
Google Scholar
Varshney, R. K. et al. Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nat. Biotechnol. 31, 240–246 (2013).
Google Scholar
Thudi, M. et al. Recent breeding programs enhanced genetic diversity in both desi and kabuli varieties of chickpea (Cicer arietinum L.). Sci. Rep. 6, 1–10 (2016).
Google Scholar
Thudi, M. et al. Whole genome re-sequencing reveals genome-wide variations among parental lines of 16 mapping populations in chickpea (Cicer arietinum L.). BMC Plant Biol. 16, 53–64 (2016).
Google Scholar
Varshney, R. K. et al. Resequencing of 429 chickpea accessions from 45 countries provides insights into genome diversity, domestication and agronomic traits. Nat. Genet. 51, 857–864 (2019).
Google Scholar
Mannur, D. et al. Super Annigeri 1 and improved JG 74: two Fusarium wilt-resistant introgression lines developed using marker-assisted backcrossing approach in chickpea (Cicer arietinum L.). Mol. Breed. 39, 1–13 (2019).
Google Scholar
Roorkiwal, M. et al. Integrating genomics for chickpea improvement: achievements and opportunities. Theor. App. Genet. 133, 1703–1720 (2020).
Google Scholar
Hiremath, P. J. et al. Large‐scale transcriptome analysis in chickpea (Cicer arietinum L.), an orphan legume crop of the semi‐arid tropics of Asia and Africa. Plant Biotechnol. J. 9, 922–931 (2011).
Google Scholar
Mashaki, K. M. et al. RNA-Seq analysis revealed genes associated with drought stress response in kabuli chickpea (Cicer arietinum L.). PLoS One 13, e0199774 (2018).
Google Scholar
Upasani, M. L. et al. Chickpea-Fusarium oxysporum interaction transcriptome reveals differential modulation of plant defense strategies. Sci. Rep. 7, 1–12 (2017).
Google Scholar
Kudapa, H., Garg, V., Chitikineni, A. & Varshney, R. K. The RNA‐Seq‐based high resolution gene expression atlas of chickpea (Cicer arietinum L.) reveals dynamic spatio‐temporal changes associated with growth and development. Plant Cell Environ. 41, 2209–2225 (2018).
Google Scholar
Sanabria, N. M., Huang, J. C. & Dubery, I. A. Self/non-self perception in plants in innate immunity and defense. Self/Nonself 1, 40–54 (2010).
Google Scholar
Sun, J. et al. Early responses given distinct tactics to infection of Peronophythora litchii in susceptible and resistant litchi cultivar. Sci. Rep. 9, 1–14 (2019).
Google Scholar
Chern, M. et al. A genetic screen identifies a requirement for cysteine-rich–receptor-like kinases in rice NH1 (OsNPR1)-mediated immunity. PLoS Genetics 12, e1006049 (2016).
Yeh, Y. H., Chang, Y. H., Huang, P.-Y., Huang, J.-B. & Zimmerli, L. Enhanced Arabidopsis pattern-triggered immunity by overexpression of cysteine-rich receptor-like kinases. Front. Plant Sci. 6, 322 (2015).
Google Scholar
Ali, M. A., Wieczorek, K., Kreil, D. P. & Bohlmann, H. The beet cyst nematode Heterodera schachtii modulates the expression of WRKY transcription factors in syncytia to favour its development in Arabidopsis roots. PloS One 9, e102360 (2014).
Google Scholar
Romeis, T. et al. Rapid Avr9-and Cf-9–dependent activation of MAP kinases in tobacco cell cultures and leaves: convergence of resistance gene, elicitor, wound, and salicylate responses. Plant Cell 11, 273–287 (1999).
Google Scholar
Chen, L. Q. et al. Sugar transporters for intercellular exchange and nutrition of pathogens. Nature 468, 527–532 (2010).
Google Scholar
Morkunas, I. & Ratajczak, L. The role of sugar signaling in plant defense responses against fungal pathogens. Acta Physiol. Plant. 36, 1607–1619 (2014).
Google Scholar
Meteier, E. et al. Overexpression of the VvSWEET4 transporter in Grapevine hairy roots increases sugar transport and contents and enhances resistance to Pythium irregulare, a soilborne pathogen. Front. Plant Sci. 10, 884 (2019).
Google Scholar
Tzin, V. & Galili, G. New insights into the shikimate and aromatic amino acids biosynthesis pathways in plants. Mol. Plant. 3, 956–972 (2010).
Google Scholar
Balakireva, A. V. & Zamyatnin, A. A. Indispensable role of proteases in plant innate immunity. Int. J. Mol. Sci. 19, 629 (2018).
Google Scholar
Pogány, M., Dankó, T., Kámán-Tóth, E., Schwarczinger, I. & Bozsó, Z. Regulatory proteolysis in Arabidopsis-pathogen interactions. Int. J. Mol. Sci. 16, 23177–23194 (2015).
Google Scholar
Xia, Y. et al. An extracellular aspartic protease functions in Arabidopsis disease resistance signaling. EMBO J. 23, 980–988 (2004).
Google Scholar
Pusztahelyi, T. Chitin and chitin-related compounds in plant–fungal interactions. Mycology 9, 189–201 (2018).
Google Scholar
Perry, R. & Trett, M. Ultrastructure of the eggshell of Heterodera schachtii and Heterodera glycines (Nematoda: Tylenchida). J. Nematol. 18, 129–135 (1986).
Gortari, M. C. & Hours, R. A. Fungal chitinases and their biological role in the antagonism onto nematode eggs. Mycol Prog. 7, 221–238 (2008).
Google Scholar
Bagnaresi, P. et al. Solanum torvum responses to the root-knot nematode Meloidogyne incognita. BMC Genomics 14, 1–21 (2013).
Google Scholar
Schaller, A., Stintzi, A. & Graff, L. Subtilases–versatile tools for protein turnover, plant development, and interactions with the environment. Physiol. Plant. 145, 52–66 (2012).
Google Scholar
Ramírez, V., López, A., Mauch-Mani, B., Gil, M. J. & Vera, P. An extracellular subtilase switch for immune priming in Arabidopsis. PLoS Pathog. 9, e1003445 (2013).
Google Scholar
Ghanashyam, C. & Jain, M. Role of auxin-responsive genes in biotic stress responses. Plant Signal. Behav. 4, 846–848 (2009).
Google Scholar
Denance, N., Sánchez-Vallet, A., Goffner, D. & Molina, A. Disease resistance or growth: the role of plant hormones in balancing immune responses and fitness costs. Front. Plant Sci. 24, 155 (2013).
Atamian, H. S., Eulgem, T. & Kaloshian, I. SlWRKY70 is required for Mi-1-mediated resistance to aphids and nematodes in tomato. Planta 235, 299–309 (2012).
Google Scholar
Eulgem, T. & Somssich, I. E. Networks of WRKY transcription factors in defense signaling. Curr. Opin. Plant Biol. 10, 366–371 (2007).
Google Scholar
Noman, A. et al. Basic leucine zipper domain transcription factors: the vanguards in plant immunity. Biotechnol. Lett. 39, 1779–1791 (2017).
Google Scholar
Zwart, R. S., Thompson, J. P. & Godwin, I. D. Genetic analysis of resistance to root-lesion nematode (Pratylenchus thornei) in wheat. Plant Breed. 123, 209–212 (2004).
Google Scholar
Thompson, J. P. et al. Hybridisation of Australian chickpea cultivars with wild Cicer spp. increases resistance to root-lesion nematodes (Pratylenchus thornei and P. neglectus). Australas. Plant Pathol. 40, 601–611 (2011).
Google Scholar
Rodda, M. et al. Highly heritable resistance to root-lesion nematode (Pratylenchus thornei) in Australian chickpea germplasm observed using an optimised glasshouse method and multi-environment trial analysis. Australas. Plant Pathol. 45, 309–319 (2016).
Google Scholar
O’Reilly, M. M. & Thompson, J. P. Open-pot culture proved more convenient than carrot callus culture for producing Pratylenchus thornei inoculum for glasshouse experiments. In Pratylenchus Workshop. 5–9 (Australas. Plant Pathol. Soc. Conf., Hobart, 1993).
Reen, R. A., Mumford, M. H. & Thompson, J. P. Novel sources of resistance to root-lesion nematode (Pratylenchus thornei) in a new collection of wild Cicer species (C. reticulatum and C. echinospermum) to improve resistance in cultivated chickpea (C. arietinum). Phytopathology 109, 1270–1279 (2019).
Google Scholar
De Mendiburu, F. & Yaseen, M. agricolae: Statistical Procedures for Agricultural Research. R package version 1.4.0, https://cran.r-project.org/package=agricolae (2020).
Bybd Jr, D. W., Kirkpatrick, T. & Barker, K. An improved technique for clearing and staining plant tissues for detection of nematodes. J. Nematol. 15, 142–143 (1983).
Welham, S., Cullis, B., Gogel, B., Gilmour, A. & Thompson, R. Prediction in linear mixed models. Aust. NZ. J. Statist. 46, 325–347 (2004).
Google Scholar
Castillo, P., Vovlas, N. & Jiménez-Díaz, R. M. Pathogenicity and histopathology of Pratylenchus thornei populations on selected chickpea genotypes. Plant Pathol. 47, 370–376 (1998).
Google Scholar
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
Google Scholar
Kim, D., Langmead, B. & Salzberg, S. L. HISAT: a fast spliced aligner with low memory requirements. Nat. Methods 12, 357–360 (2015).
Google Scholar
Pertea, M., Kim, D., Pertea, G. M., Leek, J. T. & Salzberg, S. L. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat. Protoc. 11, 1650–1667 (2016).
Google Scholar
Anders, S. & Huber, W. Differential expression analysis for sequence count data. Genome Biol. 11, R106 (2010)
Google Scholar
Metsalu, T. & Vilo, J. Clustvis: a web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap. Nucl. Acids Res. 43(W1), W566–W570 (2015).
Google Scholar
Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinform. 10, 1–9 (2009).
Google Scholar
Götz, S. et al. High-throughput functional annotation and data mining with the Blast2GO suite. Nucl. Acids Res. 36, 3420–3435 (2008).
Google Scholar
Tsuda, K. & Somssich, I. E. Transcriptional networks in plant immunity. New Phytol. 206, 932–947 (2015).
Google Scholar
Ye, J. et al. Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinform. 13, 1–11 (2012).
Google Scholar
Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25, 402–408 (2001).
Google Scholar

