Preloader

Transcriptome analysis reveals key genes associated with root-lesion nematode Pratylenchus thornei resistance in chickpea

  • 1.

    Abbo, S., Berger, J. & Turner, N. C. Evolution of cultivated chickpea: four bottlenecks limit diversity and constrain adaptation. Funct. Plant Biol. 30, 1081–1087 (2003).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 2.

    Castillo, P., Navas-Cortés, J. A., Landa, B. B., Jiménez-Díaz, R. M. & Vovlas, N. Plant-parasitic nematodes attacking chickpea and their in planta interactions with rhizobia and phytopathogenic fungi. Plant Dis. 92, 840–853 (2008).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 3.

    Ali, S.S. Status of nematode problem and research in India. Diagnosis of key nematode pests of chickpea and pigeonpea and their management : Proceedings of a Regional Training Course, 25–30 Nov 1996, ICRISAT, Patancheru, India. Patancheru 502 324, Andhra Pradesh, India: International Crops Research Institute for the Semi-Arid Tropics 74–82 (1997).

  • 4.

    Reen, R. A., Thompson, J. P., Clewett, T. G., Sheedy, J. G. & Bell, K. L. Yield response in chickpea cultivars and wheat following crop rotations affecting population densities of Pratylenchus thornei and arbuscular mycorrhizal fungi. Crop Pasture Sci. 65, 428–441 (2014).

    Article 

    Google Scholar 

  • 5.

    Fosu-Nyarko, J. & Jones, M. G. Advances in understanding the molecular mechanisms of root lesion nematode host interactions. Annu. Rev. Phytopathol. 54, 253–278 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 6.

    Thompson, J. P., Owen, K. J., Stirling, G. R. & Bell, M. J. Root-lesion nematodes (Pratylenchus thornei and P. neglectus): a review of recent progress in managing a significant pest of grain crops in northern Australia. Australas. Plant Pathol. 37, 235–242 (2008).

    Article 

    Google Scholar 

  • 7.

    Zwart, R. S. et al. Resistance to plant-parasitic nematodes in chickpea: current status and future perspectives. Front. Plant Sci. 10, 966 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 8.

    Rahman, M. S. et al. Fine mapping of root lesion nematode (Pratylenchus thornei) resistance loci on chromosomes 6D and 2B of wheat. Theor. Appl. Genet. 133, 635–652 (2020).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 9.

    Rahaman, M. M., Zwart, R. S., Rupasinghe, T. W., Hayden, H. L. & Thompson, J. P. Metabolomic profiling of wheat genotypes resistant and susceptible to root-lesion nematode Pratylenchus thornei. Plant Mol. Biol. 106, 381–406 (2021)

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 10.

    Vieira, P., Mowery, J., Eisenback, J. D., Shao, J. & Nemchinov, L. G. Cellular and transcriptional responses of resistant and susceptible cultivars of alfalfa to the root-lesion nematode, Pratylenchus penetrans. Front. Plant Sci. 10, 971 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 11.

    Varshney, R. K. et al. Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nat. Biotechnol. 31, 240–246 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 12.

    Thudi, M. et al. Recent breeding programs enhanced genetic diversity in both desi and kabuli varieties of chickpea (Cicer arietinum L.). Sci. Rep. 6, 1–10 (2016).

    Article 
    CAS 

    Google Scholar 

  • 13.

    Thudi, M. et al. Whole genome re-sequencing reveals genome-wide variations among parental lines of 16 mapping populations in chickpea (Cicer arietinum L.). BMC Plant Biol. 16, 53–64 (2016).

    Article 
    CAS 

    Google Scholar 

  • 14.

    Varshney, R. K. et al. Resequencing of 429 chickpea accessions from 45 countries provides insights into genome diversity, domestication and agronomic traits. Nat. Genet. 51, 857–864 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 15.

    Mannur, D. et al. Super Annigeri 1 and improved JG 74: two Fusarium wilt-resistant introgression lines developed using marker-assisted backcrossing approach in chickpea (Cicer arietinum L.). Mol. Breed. 39, 1–13 (2019).

    CAS 
    Article 

    Google Scholar 

  • 16.

    Roorkiwal, M. et al. Integrating genomics for chickpea improvement: achievements and opportunities. Theor. App. Genet. 133, 1703–1720 (2020).

    Article 

    Google Scholar 

  • 17.

    Hiremath, P. J. et al. Large‐scale transcriptome analysis in chickpea (Cicer arietinum L.), an orphan legume crop of the semi‐arid tropics of Asia and Africa. Plant Biotechnol. J. 9, 922–931 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 18.

    Mashaki, K. M. et al. RNA-Seq analysis revealed genes associated with drought stress response in kabuli chickpea (Cicer arietinum L.). PLoS One 13, e0199774 (2018).

    Article 
    CAS 

    Google Scholar 

  • 19.

    Upasani, M. L. et al. Chickpea-Fusarium oxysporum interaction transcriptome reveals differential modulation of plant defense strategies. Sci. Rep. 7, 1–12 (2017).

    CAS 
    Article 

    Google Scholar 

  • 20.

    Kudapa, H., Garg, V., Chitikineni, A. & Varshney, R. K. The RNA‐Seq‐based high resolution gene expression atlas of chickpea (Cicer arietinum L.) reveals dynamic spatio‐temporal changes associated with growth and development. Plant Cell Environ. 41, 2209–2225 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 21.

    Sanabria, N. M., Huang, J. C. & Dubery, I. A. Self/non-self perception in plants in innate immunity and defense. Self/Nonself 1, 40–54 (2010).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 22.

    Sun, J. et al. Early responses given distinct tactics to infection of Peronophythora litchii in susceptible and resistant litchi cultivar. Sci. Rep. 9, 1–14 (2019).

    ADS 

    Google Scholar 

  • 23.

    Chern, M. et al. A genetic screen identifies a requirement for cysteine-rich–receptor-like kinases in rice NH1 (OsNPR1)-mediated immunity. PLoS Genetics 12, e1006049 (2016).

    Google Scholar 

  • 24.

    Yeh, Y. H., Chang, Y. H., Huang, P.-Y., Huang, J.-B. & Zimmerli, L. Enhanced Arabidopsis pattern-triggered immunity by overexpression of cysteine-rich receptor-like kinases. Front. Plant Sci. 6, 322 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 25.

    Ali, M. A., Wieczorek, K., Kreil, D. P. & Bohlmann, H. The beet cyst nematode Heterodera schachtii modulates the expression of WRKY transcription factors in syncytia to favour its development in Arabidopsis roots. PloS One 9, e102360 (2014).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 26.

    Romeis, T. et al. Rapid Avr9-and Cf-9–dependent activation of MAP kinases in tobacco cell cultures and leaves: convergence of resistance gene, elicitor, wound, and salicylate responses. Plant Cell 11, 273–287 (1999).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 27.

    Chen, L. Q. et al. Sugar transporters for intercellular exchange and nutrition of pathogens. Nature 468, 527–532 (2010).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 28.

    Morkunas, I. & Ratajczak, L. The role of sugar signaling in plant defense responses against fungal pathogens. Acta Physiol. Plant. 36, 1607–1619 (2014).

    CAS 
    Article 

    Google Scholar 

  • 29.

    Meteier, E. et al. Overexpression of the VvSWEET4 transporter in Grapevine hairy roots increases sugar transport and contents and enhances resistance to Pythium irregulare, a soilborne pathogen. Front. Plant Sci. 10, 884 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 30.

    Tzin, V. & Galili, G. New insights into the shikimate and aromatic amino acids biosynthesis pathways in plants. Mol. Plant. 3, 956–972 (2010).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 31.

    Balakireva, A. V. & Zamyatnin, A. A. Indispensable role of proteases in plant innate immunity. Int. J. Mol. Sci. 19, 629 (2018).

    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 32.

    Pogány, M., Dankó, T., Kámán-Tóth, E., Schwarczinger, I. & Bozsó, Z. Regulatory proteolysis in Arabidopsis-pathogen interactions. Int. J. Mol. Sci. 16, 23177–23194 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 33.

    Xia, Y. et al. An extracellular aspartic protease functions in Arabidopsis disease resistance signaling. EMBO J. 23, 980–988 (2004).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 34.

    Pusztahelyi, T. Chitin and chitin-related compounds in plant–fungal interactions. Mycology 9, 189–201 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 35.

    Perry, R. & Trett, M. Ultrastructure of the eggshell of Heterodera schachtii and Heterodera glycines (Nematoda: Tylenchida). J. Nematol. 18, 129–135 (1986).

    Google Scholar 

  • 36.

    Gortari, M. C. & Hours, R. A. Fungal chitinases and their biological role in the antagonism onto nematode eggs. Mycol Prog. 7, 221–238 (2008).

    Article 

    Google Scholar 

  • 37.

    Bagnaresi, P. et al. Solanum torvum responses to the root-knot nematode Meloidogyne incognita. BMC Genomics 14, 1–21 (2013).

    Article 
    CAS 

    Google Scholar 

  • 38.

    Schaller, A., Stintzi, A. & Graff, L. Subtilases–versatile tools for protein turnover, plant development, and interactions with the environment. Physiol. Plant. 145, 52–66 (2012).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 39.

    Ramírez, V., López, A., Mauch-Mani, B., Gil, M. J. & Vera, P. An extracellular subtilase switch for immune priming in Arabidopsis. PLoS Pathog. 9, e1003445 (2013).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 40.

    Ghanashyam, C. & Jain, M. Role of auxin-responsive genes in biotic stress responses. Plant Signal. Behav. 4, 846–848 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 41.

    Denance, N., Sánchez-Vallet, A., Goffner, D. & Molina, A. Disease resistance or growth: the role of plant hormones in balancing immune responses and fitness costs. Front. Plant Sci. 24, 155 (2013).

    Google Scholar 

  • 42.

    Atamian, H. S., Eulgem, T. & Kaloshian, I. SlWRKY70 is required for Mi-1-mediated resistance to aphids and nematodes in tomato. Planta 235, 299–309 (2012).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 43.

    Eulgem, T. & Somssich, I. E. Networks of WRKY transcription factors in defense signaling. Curr. Opin. Plant Biol. 10, 366–371 (2007).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 44.

    Noman, A. et al. Basic leucine zipper domain transcription factors: the vanguards in plant immunity. Biotechnol. Lett. 39, 1779–1791 (2017).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 45.

    Zwart, R. S., Thompson, J. P. & Godwin, I. D. Genetic analysis of resistance to root-lesion nematode (Pratylenchus thornei) in wheat. Plant Breed. 123, 209–212 (2004).

    Article 

    Google Scholar 

  • 46.

    Thompson, J. P. et al. Hybridisation of Australian chickpea cultivars with wild Cicer spp. increases resistance to root-lesion nematodes (Pratylenchus thornei and P. neglectus). Australas. Plant Pathol. 40, 601–611 (2011).

    Article 

    Google Scholar 

  • 47.

    Rodda, M. et al. Highly heritable resistance to root-lesion nematode (Pratylenchus thornei) in Australian chickpea germplasm observed using an optimised glasshouse method and multi-environment trial analysis. Australas. Plant Pathol. 45, 309–319 (2016).

    CAS 
    Article 

    Google Scholar 

  • 48.

    O’Reilly, M. M. & Thompson, J. P. Open-pot culture proved more convenient than carrot callus culture for producing Pratylenchus thornei inoculum for glasshouse experiments. In Pratylenchus Workshop. 5–9 (Australas. Plant Pathol. Soc. Conf., Hobart, 1993).

  • 49.

    Reen, R. A., Mumford, M. H. & Thompson, J. P. Novel sources of resistance to root-lesion nematode (Pratylenchus thornei) in a new collection of wild Cicer species (C. reticulatum and C. echinospermum) to improve resistance in cultivated chickpea (C. arietinum). Phytopathology 109, 1270–1279 (2019).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 50.

    De Mendiburu, F. & Yaseen, M. agricolae: Statistical Procedures for Agricultural Research. R package version 1.4.0, https://cran.r-project.org/package=agricolae (2020).

  • 51.

    Bybd Jr, D. W., Kirkpatrick, T. & Barker, K. An improved technique for clearing and staining plant tissues for detection of nematodes. J. Nematol. 15, 142–143 (1983).

    Google Scholar 

  • 52.

    Welham, S., Cullis, B., Gogel, B., Gilmour, A. & Thompson, R. Prediction in linear mixed models. Aust. NZ. J. Statist. 46, 325–347 (2004).

    MathSciNet 
    MATH 
    Article 

    Google Scholar 

  • 53.

    Castillo, P., Vovlas, N. & Jiménez-Díaz, R. M. Pathogenicity and histopathology of Pratylenchus thornei populations on selected chickpea genotypes. Plant Pathol. 47, 370–376 (1998).

    Article 

    Google Scholar 

  • 54.

    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 55.

    Kim, D., Langmead, B. & Salzberg, S. L. HISAT: a fast spliced aligner with low memory requirements. Nat. Methods 12, 357–360 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 56.

    Pertea, M., Kim, D., Pertea, G. M., Leek, J. T. & Salzberg, S. L. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat. Protoc. 11, 1650–1667 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 57.

    Anders, S. & Huber, W. Differential expression analysis for sequence count data. Genome Biol. 11, R106 (2010)

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 58.

    Metsalu, T. & Vilo, J. Clustvis: a web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap. Nucl. Acids Res. 43(W1), W566–W570 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 59.

    Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinform. 10, 1–9 (2009).

    Article 
    CAS 

    Google Scholar 

  • 60.

    Götz, S. et al. High-throughput functional annotation and data mining with the Blast2GO suite. Nucl. Acids Res. 36, 3420–3435 (2008).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 61.

    Tsuda, K. & Somssich, I. E. Transcriptional networks in plant immunity. New Phytol. 206, 932–947 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 62.

    Ye, J. et al. Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinform. 13, 1–11 (2012).

    Article 

    Google Scholar 

  • 63.

    Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25, 402–408 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Source link