Preloader

Towards translational optogenetics | Nature Biomedical Engineering

  • 1.

    Deisseroth, K. Optogenetics. Nat. Methods 8, 26–29 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • 2.

    Duarte, M. J. et al. Ancestral adeno-associated virus vector delivery of opsins to spiral ganglion neurons: implications for optogenetic cochlear implants. Mol. Ther. 26, 1931–1939 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 3.

    Wang, S. et al. Non-invasive, focused ultrasound-facilitated gene delivery for optogenetics. Sci. Rep. 7, 39955 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 4.

    Pathak, G. P. et al. Bidirectional approaches for optogenetic regulation of gene expression in mammalian cells using Arabidopsis cryptochrome 2. Nucleic Acids Res. 45, e167/161–e167/112 (2017).

    Google Scholar 

  • 5.

    Kim, T.-i et al. Injectable, cellular-scale optoelectronics with applications for wireless optogenetics. Science 340, 211–216 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 6.

    Wykes, R. C. et al. Optogenetic and potassium channel gene therapy in a rodent model of focal neocortical epilepsy. Sci. Transl. Med. 4, 161ra152 (2012).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 7.

    Chow, B. Y. & Boyden, E. S. Optogenetics and translational medicine. Sci. Transl. Med. 5, 177ps175 (2013).

    Google Scholar 

  • 8.

    Galvan, A. et al. Nonhuman primate optogenetics: recent advances and future directions. J. Neurosci. 37, 10894–10903 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 9.

    Eichler, J., Knof, J. & Lenz, H. Measurements on the depth of penetration of light (0.35–1.0 µm) in tissue. Radiat. Environ. Biophys. 14, 239–242 (1977).

    CAS 
    PubMed 

    Google Scholar 

  • 10.

    Lin, X. et al. Core–shell–shell upconversion nanoparticles with enhanced emission for wireless optogenetic inhibition. Nano Lett. 18, 948–956 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 11.

    Mager, T. et al. High frequency neural spiking and auditory signaling by ultrafast red-shifted optogenetics. Nat. Commun. 9, 1750 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 12.

    Nagel, G. et al. Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc. Natl Acad. Sci. USA 100, 13940–13945 (2003).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 13.

    Pathak, G. P., Vrana, J. D. & Tucker, C. L. Optogenetic control of cell function using engineered photoreceptors. Biol. Cell 105, 59–72 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • 14.

    Reichhart, E., Ingles-Prieto, A., Tichy, A. M., McKenzie, C. & Janovjak, H. A phytochrome sensory domain permits receptor activation by red light. Angew. Chem. Int. Ed. 55, 6339–6342 (2016).

    CAS 

    Google Scholar 

  • 15.

    Zhang, F. et al. The microbial opsin family of optogenetic tools. Cell 147, 1446–1457 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 16.

    Zhang, F., Wang, L.-P., Boyden, E. S. & Deisseroth, K. Channelrhodopsin-2 and optical control of excitable cells. Nat. Methods 3, 785–792 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • 17.

    Krook-Magnuson, E., Armstrong, C., Oijala, M. & Soltesz, I. On-demand optogenetic control of spontaneous seizures in temporal lobe epilepsy. Nat. Commun. 4, 1376 (2013).

    PubMed 

    Google Scholar 

  • 18.

    Chen, Y., Xiong, M. & Zhang, S.-C. Illuminating Parkinson’s therapy with optogenetics. Nat. Biotechnol. 33, 149–150 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 19.

    Lüscher, C. & Malenka, R. C. Drug-evoked synaptic plasticity in addiction: from molecular changes to circuit remodeling. Neuron 69, 650–663 (2011).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 20.

    Gradinaru, V., Thompson, K. R. & Deisseroth, K. eNpHR: a Natronomonas halorhodopsin enhanced for optogenetic applications. Brain Cell Biol. 36, 129–139 (2008).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 21.

    Han, X. et al. A high-light sensitivity optical neural silencer: development and application to optogenetic control of non-human primate cortex. Front. Syst. Neurosci. 5, 18 (2011).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 22.

    Tye, K. M. et al. Amygdala circuitry mediating reversible and bidirectional control of anxiety. Nature 471, 358–362 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 23.

    Tye, K. M. et al. Dopamine neurons modulate neural encoding and expression of depression-related behaviour. Nature 493, 537–541 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • 24.

    Wietek, J. et al. Conversion of channelrhodopsin into a light-gated chloride channel. Science 344, 409–412 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • 25.

    Berndt, A., Lee, S. Y., Ramakrishnan, C. & Deisseroth, K. Structure-guided transformation of channelrhodopsin into a light-activated chloride channel. Science 344, 420–424 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 26.

    Berndt, A. & Deisseroth, K. Expanding the optogenetics toolkit. Science 349, 590–591 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 27.

    Govorunova, E. G., Sineshchekov, O. A., Janz, R., Liu, X. & Spudich, J. L. Natural light-gated anion channels: a family of microbial rhodopsins for advanced optogenetics. Science 349, 647–650 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 28.

    Arrenberg, A. B., Stainier, D. Y., Baier, H. & Huisken, J. Optogenetic control of cardiac function. Science 330, 971–974 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • 29.

    Bruegmann, T. et al. Optogenetic control of heart muscle in vitro and in vivo. Nat. Methods 7, 897–900 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • 30.

    Doroudchi, M. M. et al. Virally delivered channelrhodopsin-2 safely and effectively restores visual function in multiple mouse models of blindness. Mol. Ther. 19, 1220–1229 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 31.

    Ye, H., Daoud-El Baba, M., Peng, R.-W. & Fussenegger, M. A synthetic optogenetic transcription device enhances blood-glucose homeostasis in mice. Science 332, 1565–1568 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • 32.

    Chen, D., Gibson, E. S. & Kennedy, M. J. A light-triggered protein secretion system. J. Cell Biol. 201, 631–640 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 33.

    Tyszkiewicz, A. B. & Muir, T. W. Activation of protein splicing with light in yeast. Nat. Methods 5, 303–305 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • 34.

    Liu, H., Gomez, G., Lin, S., Lin, S. & Lin, C. Optogenetic control of transcription in zebrafish. PLoS ONE 7, e50738 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 35.

    Zhou, X. X., Chung, H. K., Lam, A. J. & Lin, M. Z. Optical control of protein activity by fluorescent protein domains. Science 338, 810–814 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 36.

    Wu, Y. I. et al. A genetically encoded photoactivatable Rac controls the motility of living cells. Nature 461, 104–108 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 37.

    Zhang, K. & Cui, B. Optogenetic control of intracellular signaling pathways. Trends Biotechnol. 33, 92–100 (2015).

    PubMed 

    Google Scholar 

  • 38.

    Madisen, L. et al. A toolbox of Cre-dependent optogenetic transgenic mice for light-induced activation and silencing. Nat. Neurosci. 15, 793–802 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 39.

    Zhang, F. et al. Optogenetic interrogation of neural circuits: technology for probing mammalian brain structures. Nat. Protoc. 5, 439–456 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 40.

    Williams, J. C. & Denison, T. From optogenetic technologies to neuromodulation therapies. Sci. Transl. Med. 5, 177ps176 (2013).

    Google Scholar 

  • 41.

    Edelstein, M. L., Abedi, M. R. & Wixon, J. Gene therapy clinical trials worldwide to 2007—an update. J. Gene Med. 9, 833–842 (2007).

    PubMed 

    Google Scholar 

  • 42.

    Kaplitt, M. G. et al. Safety and tolerability of gene therapy with an adeno-associated virus (AAV) borne GAD gene for Parkinson’s disease: an open label, phase I trial. Lancet 369, 2097–2105 (2007).

    CAS 

    Google Scholar 

  • 43.

    Pickar, A. K. & Gersbach, C. A. Gene therapies for hemophilia hit the mark in clinical trials. Nat. Med. 24, 121–122 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 44.

    Mingozzi, F. & High, K. A. Immune responses to AAV vectors: overcoming barriers to successful gene therapy. Blood 122, 23–36 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 45.

    Smalley, E. First AAV gene therapy poised for landmark approval. Nat. Biotechnol. 35, 998–1000 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • 46.

    Ambrosi, C. M., Sadananda, G., Klimas, A. & Entcheva, E. Adeno-associated virus mediated gene delivery: Implications for scalable in vitro and in vivo cardiac optogenetic models. Front Physiol. 10, 168 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 47.

    Ginn, S. L., Amaya, A. K., Alexander, I. E., Edelstein, M. & Abedi, M. R. Gene therapy clinical trials worldwide to 2017: an update. J. Gene Med. 20, e3015 (2018).

    PubMed 

    Google Scholar 

  • 48.

    Colella, P., Ronzitti, G. & Mingozzi, F. Emerging issues in AAV-mediated in vivo gene therapy. Mol. Ther. Methods Clin. Dev. 8, 87–104 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 49.

    Pastrana, E. Optogenetics: controlling cell function with light. Nat. Methods 8, 24–25 (2010).

    Google Scholar 

  • 50.

    Stujenske, J. M., Spellman, T. & Gordon, J. A. Modeling the spatiotemporal dynamics of light and heat propagation for in vivo optogenetics. Cell Rep. 12, 525–534 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 51.

    Yizhar, O., Fenno, L. E., Davidson, T. J., Mogri, M. & Deisseroth, K. Optogenetics in neural systems. Neuron 71, 9–34 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 52.

    Fowley, C., Nomikou, N., McHale, A. P., McCaughan, B. & Callan, J. F. Extending the tissue penetration capability of conventional photosensitisers: a carbon quantum dot–protoporphyrin IX conjugate for use in two-photon excited photodynamic therapy. Chem. Commun. 49, 8934–8936 (2013).

    CAS 

    Google Scholar 

  • 53.

    Brancaleon, L. & Moseley, H. Laser and non-laser light sources for photodynamic therapy. Lasers Med. Sci. 17, 173–186 (2002).

    CAS 
    PubMed 

    Google Scholar 

  • 54.

    Aravanis, A. M. et al. An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology. J. Neural Eng. 4, S143–S156 (2007).

    PubMed 

    Google Scholar 

  • 55.

    Wilson, B. & Adam, G. A Monte Carlo model for the absorption and flux distributions of light in tissue. Med. Phys. 10, 824–830 (1983).

    CAS 
    PubMed 

    Google Scholar 

  • 56.

    Montgomery, K. L. et al. Wirelessly powered, fully internal optogenetics for brain, spinal and peripheral circuits in mice. Nat. Methods 12, 969–974 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 57.

    Won, S. M., Cai, L., Gutruf, P. & Rogers, J. A. Wireless and battery-free technologies for neuroengineering. Nat. Biomed. Eng. https://doi.org/10.1038/s41551-021-00683-3 (2021).

  • 58.

    Krook-Magnuson, E. et al. In vivo evaluation of the dentate gate theory in epilepsy. J. Physiol. 593, 2379–2388 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 59.

    Tønnesen, J., Sørensen, A. T., Deisseroth, K., Lundberg, C. & Kokaia, M. Optogenetic control of epileptiform activity. Proc. Natl Acad. Sci. USA 106, 12162–12167 (2009).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 60.

    Soper, C., Wicker, E., Kulick, C. V., N’Gouemo, P. & Forcelli, P. A. Optogenetic activation of superior colliculus neurons suppresses seizures originating in diverse brain networks. Neurobiol. Dis. 87, 102–115 (2016).

    PubMed 

    Google Scholar 

  • 61.

    Krook-Magnuson, E., Szabo, G. G., Armstrong, C., Oijala, M. & Soltesz, I. Cerebellar directed optogenetic intervention inhibits spontaneous hippocampal seizures in a mouse model of temporal lobe epilepsy. eNeuro 1, PMC4293636 (2014).

  • 62.

    Sidor, M. M. Psychiatry’s age of enlightenment: optogenetics and the discovery of novel targets for the treatment of psychiatric disorders. J. Psychiatry Neurosci. 37, 4–6 (2012).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 63.

    Stefanik, M. T. et al. Optogenetic inhibition of cocaine seeking in rats. Addict. Biol. 18, 50–53 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • 64.

    Chaudhury, D. et al. Rapid regulation of depression-related behaviours by control of midbrain dopamine neurons. Nature 493, 532–536 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • 65.

    Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 66.

    Tsai, S. Q. & Joung, J. K. Defining and improving the genome-wide specificities of CRISPR–Cas9 nucleases. Nat. Rev. Genet. 17, 300–312 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 67.

    Nihongaki, Y., Kawano, F., Nakajima, T. & Sato, M. Photoactivatable CRISPR-Cas9 for optogenetic genome editing. Nat. Biotechnol. 33, 755–760 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 68.

    Busskamp, V., Picaud, S., Sahel, J.-A. & Roska, B. Optogenetic therapy for retinitis pigmentosa. Gene Ther. 19, 169–175 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • 69.

    Marc, R., Pfeiffer, R. & Jones, B. Retinal prosthetics, optogenetics, and chemical photoswitches. ACS Chem. Neurosci. 5, 895–901 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • 70.

    Busskamp, V. et al. Genetic reactivation of cone photoreceptors restores visual responses in retinitis pigmentosa. Science 329, 413–417 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • 71.

    Kalloniatis, M., Nivison-Smith, L., Chua, J., Acosta, M. & Fletcher, E. Using the rd1 mouse to understand functional and anatomical retinal remodelling and treatment implications in retinitis pigmentosa: a review. Exp. Eye Res. 150, 106–121 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 72.

    Bi, A. et al. Ectopic expression of a microbial-type rhodopsin restores visual responses in mice with photoreceptor degeneration. Neuron 50, 23–33 (2006).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 73.

    Tomita, H. et al. Channelrhodopsin-2 gene transduced into retinal ganglion cells restores functional vision in genetically blind rats. Exp. Eye Res. 90, 429–436 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • 74.

    Thyagarajan, S. et al. Visual function in mice with photoreceptor degeneration and transgenic expression of channelrhodopsin 2 in ganglion cells. J. Neurosci. 30, 8745–8758 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 75.

    Tomita, H. et al. Visual properties of transgenic rats harboring the channelrhodopsin-2 gene regulated by the thy-1.2 promoter. PLoS ONE 4, e7679 (2009).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 76.

    Fradot, M. et al. Gene therapy in ophthalmology: validation on cultured retinal cells and explants from postmortem human eyes. Hum. Gene Ther. 22, 587–593 (2010).

    Google Scholar 

  • 77.

    Sahel, J.-A. et al. Partial recovery of visual function in a blind patient after optogenetic therapy. Nat. Med. 27, 1223–1229 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • 78.

    van Wyk, M., Pielecka-Fortuna, J., Löwel, S. & Kleinlogel, S. Restoring the ON switch in blind retinas: opto-mGluR6, a next-generation, cell-tailored optogenetic tool. PLoS Biol. 13, e1002143 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 79.

    Mager, T. et al. High frequency neural spiking and auditory signaling by ultrafast red-shifted optogenetics. Nat. Commun. 9, 1750 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 80.

    Weiss, R. S., Voss, A. & Hemmert, W. Optogenetic stimulation of the cochlea—A review of mechanisms, measurements, and first models. Network 27, 212–236 (2016).

    PubMed 

    Google Scholar 

  • 81.

    Furman, A. C., Kujawa, S. G. & Liberman, M. C. Noise-induced cochlear neuropathy is selective for fibers with low spontaneous rates. J. Neurophysiol. 110, 577–586 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 82.

    Jeschke, M. & Moser, T. Considering optogenetic stimulation for cochlear implants. Hear. Res. 322, 224–234 (2015).

    PubMed 

    Google Scholar 

  • 83.

    Caracciolo, L. et al. CREB controls cortical circuit plasticity and functional recovery after stroke. Nat. Commun. 9, 2250 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 84.

    Hernandez, V. H. et al. Optogenetic stimulation of the auditory pathway. J. Clin. Invest. 124, 1114–1129 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 85.

    Miller, C. A. et al. Electrical excitation of the acoustically sensitive auditory nerve: single-fiber responses to electric pulse trains. J. Assoc. Res. Otolaryngol. 7, 195–210 (2006).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 86.

    Hight, A. E. et al. Superior temporal resolution of Chronos versus channelrhodopsin-2 in an optogenetic model of the auditory brainstem implant. Hear. Res. 322, 235–241 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 87.

    Wrobel, C. et al. Optogenetic stimulation of cochlear neurons activates the auditory pathway and restores auditory-driven behavior in deaf adult gerbils. Sci. Transl. Med. 10, eaao0540 (2018).

    PubMed 

    Google Scholar 

  • 88.

    Goßler, C. et al. GaN-based micro-LED arrays on flexible substrates for optical cochlear implants. J. Phys. D Appl. Phys. 47, 205401 (2014).

    Google Scholar 

  • 89.

    Iyer, S. M. et al. Virally mediated optogenetic excitation and inhibition of pain in freely moving nontransgenic mice. Nat. Biotechnol. 32, 274–278 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 90.

    May, T. et al. Detection of optogenetic stimulation in somatosensory cortex by non-human primates – towards artificial tactile sensation. PLoS ONE 9, e114529 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 91.

    Stauffer, W. R. et al. Dopamine neuron-specific optogenetic stimulation in rhesus macaques. Cell 166, 1564–1571.e6 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 92.

    Cavanaugh, J. et al. Optogenetic inactivation modifies monkey visuomotor behavior. Neuron 76, 901–907 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 93.

    Kim, H. K., Alexander, A. L. & Soltesz, I. in Optogenetics: A Roadmap (ed. Stroh, A.) 277–300 (Springer, 2018).

  • 94.

    Cardin, J. A. et al. Targeted optogenetic stimulation and recording of neurons in vivo using cell-type-specific expression of Channelrhodopsin-2. Nat. Protoc. 5, 247–254 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 95.

    Murlidharan, G., Samulski, R. J. & Asokan, A. Biology of adeno-associated viral vectors in the central nervous system. Front. Mol. Neurosci. 7, 76 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 96.

    Dunbar, C. E. et al. Gene therapy comes of age. Science 359, eaan4672 (2018).

    PubMed 

    Google Scholar 

  • 97.

    Kessler, P. D. et al. Gene delivery to skeletal muscle results in sustained expression and systemic delivery of a therapeutic protein. Proc. Natl Acad. Sci. USA 93, 14082–14087 (1996).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 98.

    Nussinovitch, U. & Gepstein, L. Optogenetics for in vivo cardiac pacing and resynchronization therapies. Nat. Biotechnol. 33, 750–754 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 99.

    Kravitz, A. V. et al. Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry. Nature 466, 622–626 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 100.

    Metzger, D. & Feil, R. Engineering the mouse genome by site-specific recombination. Curr. Opin. Biotechnol. 10, 470–476 (1999).

    CAS 
    PubMed 

    Google Scholar 

  • 101.

    Kohara, K. et al. Cell type-specific genetic and optogenetic tools reveal hippocampal CA2 circuits. Nat. Neurosci. 17, 269–279 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • 102.

    Han, S. Y., McLennan, T., Czieselsky, K. & Herbison, A. E. Selective optogenetic activation of arcuate kisspeptin neurons generates pulsatile luteinizing hormone secretion. Proc. Natl Acad. Sci. USA 112, 13109–13114 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 103.

    Li, Y. et al. Optogenetic activation of adenosine A 2A receptor signaling in the dorsomedial striatopallidal neurons suppresses goal-directed behavior. Neuropsychopharmacology 41, 1003–1013 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 104.

    Cronin, T. et al. Efficient transduction and optogenetic stimulation of retinal bipolar cells by a synthetic adeno-associated virus capsid and promoter. EMBO Mol. Med. 6, 1175–1190 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 105.

    Lu, Q. et al. AAV-mediated transduction and targeting of retinal bipolar cells with improved mGluR6 promoters in rodents and primates. Gene Ther. 23, 680–689 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 106.

    Chan, K. Y. et al. Engineered AAVs for efficient noninvasive gene delivery to the central and peripheral nervous systems. Nat. Neurosci. 20, 1172–1179 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 107.

    Manno, C. S. et al. Successful transduction of liver in hemophilia by AAV-Factor IX and limitations imposed by the host immune response. Nat. Med. 12, 342–347 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • 108.

    Boutin, S. et al. Prevalence of serum IgG and neutralizing factors against adeno-associated virus (AAV) types 1, 2, 5, 6, 8, and 9 in the healthy population: implications for gene therapy using AAV vectors. Hum. Gene Ther. 21, 704–712 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • 109.

    Salganik, M., Hirsch, M. L. & Samulski, R. J. Adeno-associated virus as a mammalian DNA vector. Microbiol. Spectr. 3, 827–849 (2015).

    Google Scholar 

  • 110.

    Senova, S. et al. Optogenetic tractography for anatomo-functional characterization of cortico-subcortical neural circuits in non-human primates. Sci. Rep. 8, 3362 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 111.

    Kyung, T. et al. Optogenetic control of endogenous Ca 2+ channels in vivo. Nat. Biotechnol. 33, 1092–1096 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 112.

    Paonessa, F. et al. Regulation of neural gene transcription by optogenetic inhibition of the RE1-silencing transcription factor. Proc. Natl Acad. Sci. USA 113, E91–E100 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 113.

    Danjo, T., Yoshimi, K., Funabiki, K., Yawata, S. & Nakanishi, S. Aversive behavior induced by optogenetic inactivation of ventral tegmental area dopamine neurons is mediated by dopamine D2 receptors in the nucleus accumbens. Proc. Natl. Acad. Sci. USA 111, 6455–6460 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 114.

    Ben-Simon, Y. et al. A combined optogenetic-knockdown strategy reveals a major role of tomosyn in mossy fiber synaptic plasticity. Cell Rep. 12, 396–404 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 115.

    Seeger-Armbruster, S. et al. Patterned, but not tonic, optogenetic stimulation in motor thalamus improves reaching in acute drug-induced parkinsonian rats. J. Neurosci. 35, 1211–1216 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 116.

    Andersson, M. et al. Optogenetic control of human neurons in organotypic brain cultures. Sci. Rep. 6, 24818 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 117.

    Jackman, S. L. et al. Silk fibroin films facilitate single-step targeted expression of optogenetic proteins. Cell Rep. 22, 3351–3361 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 118.

    Galvan, A., Hu, X., Smith, Y. & Wichmann, T. Effects of optogenetic activation of corticothalamic terminals in the motor thalamus of awake monkeys. J. Neurosci. 36, 3519–3530 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 119.

    Naso, M. F., Tomkowicz, B., Perry, W. L. & Strohl, W. R. Adeno-associated virus (AAV) as a vector for gene therapy. BioDrugs 31, 317–334 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 120.

    Nathwani, A. C. et al. Long-term safety and efficacy following systemic administration of a self-complementary AAV vector encoding human FIX pseudotyped with serotype 5 and 8 capsid proteins. Mol. Ther. 19, 876–885 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 121.

    Niemeyer, G. P. et al. Long-term correction of inhibitor-prone hemophilia B dogs treated with liver-directed AAV2-mediated factor IX gene therapy. Blood 113, 797–806 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 122.

    Nathwani, A. C. et al. Adenovirus-associated virus vector-mediated gene transfer in hemophilia B. N. Engl. J. Med. 365, 2357–2365 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 123.

    Yin, H. et al. Non-viral vectors for gene-based therapy. Nat. Rev. Genet. 15, 541–555 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 124.

    Kesharwani, P. & Iyer, A. K. Recent advances in dendrimer-based nanovectors for tumor-targeted drug and gene delivery. Drug Discov. Today 20, 536–547 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 125.

    Lv, H., Zhang, S., Wang, B., Cui, S. & Yan, J. Toxicity of cationic lipids and cationic polymers in gene delivery. J. Control. Release 114, 100–109 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • 126.

    Sharei, A. et al. A vector-free microfluidic platform for intracellular delivery. Proc. Natl. Acad. Sci. USA 110, 2082–2087 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 127.

    Mehier-Humbert, S. & Guy, R. H. Physical methods for gene transfer: improving the kinetics of gene delivery into cells. Adv. Drug Deliv. Rev. 57, 733–753 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • 128.

    Buerli, T. et al. Efficient transfection of DNA or shRNA vectors into neurons using magnetofection. Nat. Protoc. 2, 3090–3101 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • 129.

    Soto-Sánchez, C. et al. Enduring high-efficiency in vivo transfection of neurons with non-viral magnetoparticles in the rat visual cortex for optogenetic applications. Nanomedicine 11, 835–843 (2015).

    PubMed 

    Google Scholar 

  • 130.

    Hsieh, F.-Y., Lin, H.-H. & Hsu, S.-h 3D bioprinting of neural stem cell-laden thermoresponsive biodegradable polyurethane hydrogel and potential in central nervous system repair. Biomaterials 71, 48–57 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 131.

    Hsieh, F.-Y. et al. Non-viral delivery of an optogenetic tool into cells with self-healing hydrogel. Biomaterials 174, 31–40 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 132.

    Steinbeck, J. A. et al. Optogenetics enables functional analysis of human embryonic stem cell-derived grafts in a Parkinson’s disease model. Nat. Biotechnol. 33, 204–209 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 133.

    Piña-Crespo, J. C. et al. High-frequency hippocampal oscillations activated by optogenetic stimulation of transplanted human ESC-derived neurons. J. Neurosci. 32, 15837–15842 (2012).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 134.

    Weick, J. P. et al. Functional control of transplantable human ESC-derived neurons via optogenetic targeting. Stem Cells 28, 2008–2016 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 135.

    Henderson, K. W. et al. Long-term seizure suppression and optogenetic analyses of synaptic connectivity in epileptic mice with hippocampal grafts of GABAergic interneurons. J. Neurosci. 34, 13492–13504 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 136.

    Tønnesen, J. et al. Functional integration of grafted neural stem cell-derived dopaminergic neurons monitored by optogenetics in an in vitro Parkinson model. PLoS ONE 6, e17560 (2011).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 137.

    Weitz, A. J. & Lee, J. H. Probing neural transplant networks in vivo with optogenetics and optogenetic fMRI. Stem Cells Int. 2016, 8612751 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 138.

    Byers, B. et al. Direct in vivo assessment of human stem cell graft–host neural circuits. Neuroimage 114, 328–337 (2015).

    PubMed 

    Google Scholar 

  • 139.

    Shao, J. et al. Smartphone-controlled optogenetically engineered cells enable semiautomatic glucose homeostasis in diabetic mice. Sci. Transl. Med. 9, eaal2298 (2017).

    PubMed 

    Google Scholar 

  • 140.

    Adil, M. M. et al. Engineered hydrogels increase the post-transplantation survival of encapsulated hESC-derived midbrain dopaminergic neurons. Biomaterials 136, 1–11 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • 141.

    Picanço-Castro, V., Moreira, L. F., Kashima, S. & Covas, D. T. Can pluripotent stem cells be used in cell-based therapy? Cell. Reprogram. 16, 98–107 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 142.

    Scholl, H. P. et al. Emerging therapies for inherited retinal degeneration. Sci. Transl. Med. 8, 368rv366 (2016).

    Google Scholar 

  • 143.

    Schwartz, S. D. et al. Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt’s macular dystrophy: follow-up of two open-label phase 1/2 studies. Lancet 385, 509–516 (2015).

    PubMed 

    Google Scholar 

  • 144.

    Azad, T. D., Veeravagu, A. & Steinberg, G. K. Neurorestoration after stroke. Neurosurg. Focus 40, E2 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 145.

    Wang, W. et al. Tuning the electronic absorption of protein-embedded all-trans-retinal. Science 338, 1340–1343 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 146.

    Gradinaru, V. et al. Molecular and cellular approaches for diversifying and extending optogenetics. Cell 141, 154–165 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 147.

    Zhang, F. et al. Red-shifted optogenetic excitation: a tool for fast neural control derived from Volvox carteri. Nat. Neurosci. 11, 631–633 (2008).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 148.

    Yizhar, O. et al. Neocortical excitation/inhibition balance in information processing and social dysfunction. Nature 477, 171–178 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 149.

    Erbguth, K., Prigge, M., Schneider, F., Hegemann, P. & Gottschalk, A. Bimodal activation of different neuron classes with the spectrally red-shifted channelrhodopsin chimera C1V1 in Caenorhabditis elegans. PLoS ONE 7, e46827 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 150.

    Packer, A. M. et al. Two-photon optogenetics of dendritic spines and neural circuits. Nat. Methods 9, 1202–1205 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 151.

    Lin, J. Y., Knutsen, P. M., Muller, A., Kleinfeld, D. & Tsien, R. Y. ReaChR: a red-shifted variant of channelrhodopsin enables deep transcranial optogenetic excitation. Nat. Neurosci. 16, 1499–1508 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 152.

    Inagaki, H. K. et al. Optogenetic control of Drosophila using a red-shifted channelrhodopsin reveals experience-dependent influences on courtship. Nat. Methods 11, 325–332 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • 153.

    Klapoetke, N. C. et al. Independent optical excitation of distinct neural populations. Nat. Methods 11, 338–346 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 154.

    Oda, K. et al. Crystal structure of the red light-activated channelrhodopsin Chrimson. Nat. Commun. 9, 3949 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 155.

    Maimon, B. E., Sparks, K., Srinivasan, S., Zorzos, A. N. & Herr, H. M. Spectrally distinct channelrhodopsins for two-colour optogenetic peripheral nerve stimulation. Nat. Biomed. Eng. 2, 485–496 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 156.

    McIsaac, R. S. et al. Directed evolution of a far-red fluorescent rhodopsin. Proc. Natl Acad. Sci. USA 111, 13034–13039 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 157.

    Ma, D. et al. Role of ER export signals in controlling surface potassium channel numbers. Science 291, 316–319 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • 158.

    Chuong, A. S. et al. Noninvasive optical inhibition with a red-shifted microbial rhodopsin. Nat. Neurosci. 17, 1123–1129 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 159.

    Müller, K. et al. A red/far-red light-responsive bi-stable toggle switch to control gene expression in mammalian cells. Nucleic Acids Res. 41, e77 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 160.

    Müller, K., Zurbriggen, M. D. & Weber, W. Control of gene expression using a red- and far-red light-responsive bi-stable toggle switch. Nat. Protoc. 9, 622–632 (2014).

    PubMed 

    Google Scholar 

  • 161.

    Strauss, H. M., Schmieder, P. & Hughes, J. Light-dependent dimerisation in the N-terminal sensory module of cyanobacterial phytochrome 1. FEBS Lett. 579, 3970–3974 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • 162.

    Kim, S., Tathireddy, P., Normann, R. A. & Solzbacher, F. Thermal impact of an active 3-D microelectrode array implanted in the brain. IEEE Trans. Neural Syst. Rehabil. Eng. 15, 493–501 (2007).

    PubMed 

    Google Scholar 

  • 163.

    Kienzler, M. A. et al. A red-shifted, fast-relaxing azobenzene photoswitch for visible light control of an ionotropic glutamate receptor. J. Am. Chem. Soc. 135, 17683–17686 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 164.

    Klein, E., Gossler, C., Paul, O. & Ruther, P. High-density μLED-based optical cochlear implant with improved thermomechanical behavior. Front. Neurosci. 12, PMC6174235 (2018).

  • 165.

    Park, S. I. et al. Soft, stretchable, fully implantable miniaturized optoelectronic systems for wireless optogenetics. Nat. Biotechnol. 33, 1280–1286 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 166.

    Chow, B. Y. et al. High-performance genetically targetable optical neural silencing by light-driven proton pumps. Nature 463, 98–102 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 167.

    Jeong, J.-W. et al. Wireless optofluidic systems for programmable in vivo pharmacology and optogenetics. Cell 162, 662–674 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 168.

    Folcher, M. et al. Mind-controlled transgene expression by a wireless-powered optogenetic designer cell implant. Nat. Commun. 5, 5392 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • 169.

    Noh, K. N. et al. Miniaturized, battery-free optofluidic systems with potential for wireless pharmacology and optogenetics. Small 14, 1702479 (2018).

    Google Scholar 

  • 170.

    Park, S. I. et al. Stretchable multichannel antennas in soft wireless optoelectronic implants for optogenetics. Proc. Natl Acad. Sci. USA 113, E8169–E8177 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 171.

    Shin, G. et al. Flexible near-field wireless optoelectronics as subdermal implants for broad applications in optogenetics. Neuron 93, 509–521.e3 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 172.

    Samineni, V. K. et al. Fully implantable, battery-free wireless optoelectronic devices for spinal optogenetics. Pain 158, 2108–2116 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 173.

    Shah, S. et al. Hybrid upconversion nanomaterials for optogenetic neuronal control. Nanoscale 7, 16571–16577 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 174.

    Jayakumar, M. K. G., Idris, N. M. & Zhang, Y. Remote activation of biomolecules in deep tissues using near-infrared-to-UV upconversion nanotransducers. Proc. Natl Acad. Sci. USA 109, 8483–8488 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 175.

    Chen, G., Qiu, H., Prasad, P. N. & Chen, X. Upconversion nanoparticles: design, nanochemistry, and applications in theranostics. Chem. Rev. 114, 5161–5214 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 176.

    Bansal, A., Liu, H., Jayakumar, M. K. G., Andersson-Engels, S. & Zhang, Y. Quasi-continuous wave near-infrared excitation of upconversion nanoparticles for optogenetic manipulation of C. elegans. Small 12, 1732–1743 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 177.

    Idris, N. M. et al. In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers. Nat. Med. 18, 1580–1585 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • 178.

    Pliss, A. et al. Subcellular optogenetics enacted by targeted nanotransformers of near-infrared light. ACS Photonics 4, 806–814 (2017).

    CAS 

    Google Scholar 

  • 179.

    Chatterjee, D. K., Gnanasammandhan, M. K. & Zhang, Y. Small upconverting fluorescent nanoparticles for biomedical applications. Small 6, 2781–2795 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • 180.

    Toettcher, J. E., Weiner, O. D. & Lim, W. A. Using optogenetics to interrogate the dynamic control of signal transmission by the Ras/Erk module. Cell 155, 1422–1434 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 181.

    Wu, X. et al. Dye-sensitized core/active shell upconversion nanoparticles for optogenetics and bioimaging applications. ACS Nano 10, 1060–1066 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 182.

    Zhao, F. et al. Huge enhancement of upconversion luminescence by dye/Nd 3+ sensitization of quenching-shield sandwich structured upconversion nanocrystals under 808 nm excitation. Dalton Trans. 46, 16180–16189 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • 183.

    Chen, S. et al. Near-infrared deep brain stimulation via upconversion nanoparticle-mediated optogenetics. Science 359, 679–684 (2018).

    CAS 

    Google Scholar 

  • 184.

    Zheng, B. et al. Near-infrared light triggered upconversion optogenetic nanosystem for cancer therapy. ACS nano 11, 11898–11907 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • 185.

    Han, S., Deng, R., Xie, X. & Liu, X. Enhancing luminescence in lanthanide-doped upconversion nanoparticles. Angew. Chem. Int. Ed. 53, 11702–11715 (2014).

    CAS 

    Google Scholar 

  • 186.

    Lin, X. et al. Multiplexed optogenetic stimulation of neurons with spectrum-selective upconversion nanoparticles. Adv. Healthc. Mater. 6, 1700446 (2017).

    Google Scholar 

  • 187.

    Wang, Y. et al. Tetherless near-infrared control of brain activity in behaving animals using fully implantable upconversion microdevices. Biomaterials 142, 136–148 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • 188.

    Kwon, K. Y., Lee, H.-M., Ghovanloo, M., Weber, A. & Li, W. Design, fabrication, and packaging of an integrated, wirelessly-powered optrode array for optogenetics application. Front. Syst. Neurosci. 9, 69 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 189.

    Gerits, A. & Vanduffel, W. Optogenetics in primates: a shining future? Trends Genet. 29, 403–411 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • 190.

    Chernov, M. M., Friedman, R. M., Chen, G., Stoner, G. R. & Roe, A. W. Functionally specific optogenetic modulation in primate visual cortex. Proc. Natl Acad. Sci. USA 115, 10505–10510 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 191.

    Koch, S. F. et al. Halting progressive neurodegeneration in advanced retinitis pigmentosa. J. Clin. Invest. 125, 3704–3713 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 192.

    Keppeler, D. et al. Ultrafast optogenetic stimulation of the auditory pathway by targeting-optimized Chronos. EMBO J. 37, e99649 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 193.

    Schenkl, S., van Mourik, F., van der Zwan, G., Haacke, S. & Chergui, M. Probing the ultrafast charge translocation of photoexcited retinal in bacteriorhodopsin. Science 309, 917–920 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • 194.

    Groth, G. & Walker, J. E. ATP synthase from bovine heart mitochondria: reconstitution into unilamellar phospholipid vesicles of the pure enzyme in a functional state. Biochem. J. 318, 351–357 (1996).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 195.

    Li, D., Hérault, K., Isacoff, E. Y., Oheim, M. & Ropert, N. Optogenetic activation of LiGluR-expressing astrocytes evokes anion channel-mediated glutamate release. J. Physiol. 590, 855–873 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 196.

    Levskaya, A., Weiner, O. D., Lim, W. A. & Voigt, C. A. Spatiotemporal control of cell signalling using a light-switchable protein interaction. Nature 461, 997–1001 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 197.

    Shimizu-Sato, S., Huq, E., Tepperman, J. M. & Quail, P. H. A light-switchable gene promoter system. Nat. Biotechnol. 20, 1041–1044 (2002).

    CAS 
    PubMed 

    Google Scholar 

  • 198.

    Mühlhäuser, W. W., Hörner, M., Weber, W. & Radziwill, G. in Synthetic Protein Switches 257–270 (Springer, 2017).

  • 199.

    Zhang, K. et al. Light-mediated kinetic control reveals the temporal effect of the Raf/MEK/ERK pathway in PC12 cell neurite outgrowth. PLoS ONE 9, e92917 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 200.

    Kim, N. et al. Spatiotemporal control of fibroblast growth factor receptor signals by blue light. Chem. Biol. 21, 903–912 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • 201.

    Wend, S. et al. Optogenetic control of protein kinase activity in mammalian cells. ACS Synth. Biol. 3, 280–285 (2013).

    PubMed 

    Google Scholar 

  • 202.

    Zhou, X. X., Fan, L. Z., Li, P., Shen, K. & Lin, M. Z. Optical control of cell signaling by single-chain photoswitchable kinases. Science 355, 836–842 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 203.

    Strickland, D. et al. TULIPs: tunable, light-controlled interacting protein tags for cell biology. Nat. Methods 9, 379–384 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 204.

    Renicke, C., Schuster, D., Usherenko, S., Essen, L.-O. & Taxis, C. A LOV2 domain-based optogenetic tool to control protein degradation and cellular function. Chem. Biol. 20, 619–626 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • 205.

    Bonger, K. M., Rakhit, R., Payumo, A. Y., Chen, J. K. & Wandless, T. J. General method for regulating protein stability with light. ACS Chem. Biol. 9, 111–115 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 206.

    Crefcoeur, R. P., Yin, R., Ulm, R. & Halazonetis, T. D. Ultraviolet-B-mediated induction of protein–protein interactions in mammalian cells. Nat. Commun. 4, 1779 (2013).

    PubMed 

    Google Scholar 

  • 207.

    Müller, K., Engesser, R., Timmer, J., Zurbriggen, M. D. & Weber, W. Orthogonal optogenetic triple-gene control in mammalian cells. ACS Synth. Biol. 3, 796–801 (2014).

    PubMed 

    Google Scholar 

  • 208.

    Sukhotinsky, I. et al. Optogenetic delay of status epilepticus onset in an in vivo rodent epilepsy model. PLoS ONE 8, e62013 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 209.

    Paz, J. T. et al. Closed-loop optogenetic control of thalamus as a tool for interrupting seizures after cortical injury. Nat. Neurosci. 16, 64–70 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • 210.

    Gu, L. et al. Pain inhibition by optogenetic activation of specific anterior cingulate cortical neurons. PLoS ONE 10, e0117746 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 211.

    Gradinaru, V., Mogri, M., Thompson, K. R., Henderson, J. M. & Deisseroth, K. Optical deconstruction of parkinsonian neural circuitry. Science 324, 354–359 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 212.

    Bryson, J. B. et al. Optical control of muscle function by transplantation of stem cell–derived motor neurons in mice. Science 344, 94–97 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 213.

    Tennant, K. A., Taylor, S. L., White, E. R. & Brown, C. E. Optogenetic rewiring of thalamocortical circuits to restore function in the stroke injured brain. Nat. Commun. 8, 15879 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 214.

    Cheng, M. Y. et al. Optogenetic neuronal stimulation promotes functional recovery after stroke. Proc. Natl Acad. Sci. USA 111, 12913–12918 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 215.

    Alex, A., Li, A., Tanzi, R. E. & Zhou, C. Optogenetic pacing in Drosophila melanogaster. Sci. Adv. 1, e1500639 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 216.

    Bruegmann, T. et al. Optogenetic control of contractile function in skeletal muscle. Nat. Commun. 6, 7153 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 217.

    Mei, Y. & Zhang, F. Molecular tools and approaches for optogenetics. Biol. Psychiatry 71, 1033–1038 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 218.

    Venkatachalam, V. & Cohen, A. E. Imaging GFP-based reporters in neurons with multiwavelength optogenetic control. Biophys. J. 107, 1554–1563 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Source link