Preloader

Towards organoid culture without Matrigel

  • 1.

    Lancaster, M. A. & Knoblich, J. A. Organogenesis in a dish: modeling development and disease using organoid technologies. Science 345, 10 (2014).

    Google Scholar 

  • 2.

    Grapin-Botton, A. Three-dimensional pancreas organogenesis models. Diabetes Obes. Metab. 18, 33–40 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 3.

    Boj, S. F. et al. Organoid models of human and mouse ductal pancreatic cancer. Cell 160, 324–338 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 4.

    Qian, X. Y., Nguyen, H. N., Jacob, F., Song, H. J. & Ming, G. L. Using brain organoids to understand Zika virus-induced microcephaly. Development 144, 952–957 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 5.

    Choi, H., Song, J., Park, G. & Kim, J. Modeling of autism using organoid technology. Mol. Neurobiol. 54, 7789–7795 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • 6.

    van de Wetering, M. et al. Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell 161, 933–945 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 7.

    Schwank, G. et al. Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell 13, 653–658 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • 8.

    Takebe, T. et al. Vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature 499, 481–48 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • 9.

    Takebe, T. et al. Generation of a vascularized and functional human liver from an iPSC-derived organ bud transplant. Nat. Protoc. 9, 396–409 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • 10.

    Dekkers, J. F. et al. Characterizing responses to CFTR-modulating drugs using rectal organoids derived from subjects with cystic fibrosis. Sci. Transl. Med. 8, 12 (2016).

    Google Scholar 

  • 11.

    Chatterjee, S., Basak, P., Buchel, E., Murphy, L. C. & Raouf, A. A robust cell culture system for large scale feeder cell-free expansion of human breast epithelial progenitors. Stem Cell Res. Ther. 9, 264–264 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 12.

    Drost, J. & Clevers, H. Translational applications of adult stem cell-derived organoids. Development 144, 968–975 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • 13.

    Nugraha, B., Buono, M. F., von Boehmer, L., Hoerstrup, S. P. & Emmert, M. Y. Human cardiac organoids for disease modeling. Clin. Pharmacol. Therap. 105, 79–85 (2019).

    Google Scholar 

  • 14.

    Miyamoto, M., Nam, L., Kannan, S. & Kwon, C. Heart organoids and tissue models for modeling development and disease. Sem. Cell Develop. Biol. https://doi.org/10.1016/j.semcdb.2021.03.011 (2021).

  • 15.

    Sidhaye, J. & Knoblich, J. A. Brain organoids: an ensemble of bioassays to investigate human neurodevelopment and disease. Cell death Differ. 28, 52–67 (2021).

    PubMed 

    Google Scholar 

  • 16.

    Wang, H. Modeling neurological diseases with human brain organoids. Front. Synaptic Neurosci. https://doi.org/10.3389/fnsyn.2018.00015 (2018).

  • 17.

    Qian, X., Song, H. & Ming, G. L. Brain organoids: advances, applications and challenges. Development https://doi.org/10.1242/dev.166074 (2019).

  • 18.

    Schneeberger, K. et al. Converging biofabrication and organoid technologies: the next frontier in hepatic and intestinal tissue engineering? Biofabrication 9, 013001–013001 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 19.

    Ogoke, O., Maloy, M. & Parashurama, N. The science and engineering of stem cell-derived organoids-examples from hepatic, biliary, and pancreatic tissues. Biol. Rev. Camb. Philos. Soc. 96, 179–204 (2021).

    PubMed 

    Google Scholar 

  • 20.

    Yousef Yengej, F. A., Jansen, J., Rookmaaker, M. B., Verhaar, M. C. & Clevers, H. Kidney Organoids and Tubuloids. Cells https://doi.org/10.3390/cells9061326 (2020).

  • 21.

    Little, M. H. & Combes, A. N. Kidney organoids: accurate models or fortunate accidents. Genes Dev. 33, 1319–1345 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 22.

    Shimizu, T., Yamagata, K. & Osafune, K. Kidney organoids: research in developmental biology and emerging applications. Dev. Growth Differ. 63, 166–177 (2021).

    PubMed 

    Google Scholar 

  • 23.

    Balak, J. R. A., Juksar, J., Carlotti, F., Lo Nigro, A. & de Koning, E. J. P. Organoids from the human fetal and adult pancreas. Curr. Diabetes Rep. 19, 160 (2019).

    CAS 

    Google Scholar 

  • 24.

    Moreira, L. et al. Pancreas 3D organoids: current and future aspects as a research platform for personalized medicine in pancreatic cancer. Cell. Mol. Gastroenterol. Hepatol. 5, 289–298 (2018).

    PubMed 

    Google Scholar 

  • 25.

    Driehuis, E. et al. Pancreatic cancer organoids recapitulate disease and allow personalized drug screening. Proc. Natl Acad. Sci. USA 116, 26580 (2019).

    CAS 
    PubMed Central 

    Google Scholar 

  • 26.

    Chumduri, C. & Turco, M. Y. Organoids of the female reproductive tract. J. Mol. Med. 99, 531–553 (2021).

    PubMed 

    Google Scholar 

  • 27.

    Kleinman, H. K. & Martin, G. R. Matrigel: basement membrane matrix with biological activity. Semin. Cancer Biol. 15, 378–386 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • 28.

    Sato, T. et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459, 262–U147 (2009).

    CAS 

    Google Scholar 

  • 29.

    Sato, T. et al. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett’s epithelium. Gastroenterology 141, 1762–1772 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • 30.

    Stange, D. E. et al. Differentiated Troy(+) chief cells act as reserve stem cells to generate all lineages of the stomach epithelium. Cell 155, 357–368 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 31.

    Barker, N. et al. Lgr5(+ve) stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro. Cell Stem Cell 6, 25–36 (2010).

    CAS 

    Google Scholar 

  • 32.

    Dekkers, J. F. et al. A functional CFTR assay using primary cystic fibrosis intestinal organoids. Nat. Med. 19, 939–93 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • 33.

    Huch, M. et al. In vitro expansion of single Lgr5(+) liver stem cells induced by Wnt-driven regeneration. Nature 494, 247–250 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 34.

    Nie, J., Koehler, K. R. & Hashino, E. Directed differentiation of mouse embryonic stem cells into inner ear sensory epithelia in 3D culture. Methods Mol. Biol. 1597, 67–83 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 35.

    Huch, M. et al. Unlimited in vitro expansion of adult bi-potent pancreas progenitors through the Lgr5/R-spondin axis. EMBO J. 32, 2708–2721 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 36.

    Tiriac, H. et al. Organoid profiling identifies common responders to chemotherapy in pancreatic cancer. Cancer Discov. 8, 1112–1129 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 37.

    Tsai, S. et al. Development of primary human pancreatic cancer organoids, matched stromal and immune cells and 3D tumor microenvironment models. BMC Cancer 18, 13 (2018).

    Google Scholar 

  • 38.

    Seino, T. et al. Human pancreatic tumor organoids reveal loss of stem cell niche factor dependence during disease progression. Cell Stem Cell 22, 454–45 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 39.

    Wang, W. W., Jin, S. & Ye, K. M. Development of islet organoids from H9 human embryonic stem cells in biomimetic 3D scaffolds. Stem Cells Dev. 26, 394–404 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • 40.

    Dorrell, C. et al. The organoid-initiating cells in mouse pancreas and liver are phenotypically and functionally similar. Stem Cell Res. 13, 275–283 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 41.

    Fatehullah, A., Tan, S. H. & Barker, N. Organoids as an in vitro model of human development and disease. Nat. Cell Biol. 18, 246–254 (2016).

    PubMed 

    Google Scholar 

  • 42.

    Yiangou, L., Ross, A. D. B., Goh, K. J. & Vallier, L. Human pluripotent stem cell-derived endoderm for modeling development and clinical applications. Cell Stem Cell 22, 485–499 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 43.

    Kim, J., Koo, B. K. & Knoblich, J. A. Human organoids: model systems for human biology and medicine. Nat. Rev. Mol. Cell Biol. https://doi.org/10.1038/s41580-020-0259-3 (2020).

  • 44.

    Hughes, C. S., Postovit, L. M. & Lajoie, G. A. Matrigel: a complex protein mixture required for optimal growth of cell culture. Proteomics 10, 1886–1890 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • 45.

    Goldstein, A. S. et al. Purification and direct transformation of epithelial progenitor cells from primary human prostate. Nat. Protoc. 6, 656–667 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 46.

    Vukicevic, S. et al. Identification of multiple active growth-factors in basement-membrane matrigel suggests caution in interpretation of cellular-activity related to extracellular-matrix components. Exp. Cell Res. 202, 1–8 (1992).

    CAS 
    PubMed 

    Google Scholar 

  • 47.

    Spence, J. R. Taming the wild west of organoids, enteroids, and mini-guts. Cell. Mol. Gastroenterol. Hepatol. 5, 159–160 (2018).

    PubMed 

    Google Scholar 

  • 48.

    Huch, M., Knoblich, J. A., Lutolf, M. P. & Martinez-Arias, A. The hope and the hype of organoid research. Development 144, 938–941 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • 49.

    Mahoney, Z. X., Stappenbeck, T. S. & Miner, J. H. Laminin alpha 5 influences the architecture of the mouse small intestine mucosa. J. Cell Sci. 121, 2493–2502 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • 50.

    Gjorevski, N., Ranga, A. & Lutolf, M. P. Bioengineering approaches to guide stem cell-based organogenesis. Development 141, 1794–1804 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • 51.

    Engler, A. J., Sen, S., Sweeney, H. L. & Discher, D. E. Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • 52.

    Dahl-Jensen, S. & Grapin-Botton, A. The physics of organoids: a biophysical approach to understanding organogenesis. Development 144, 946–951 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • 53.

    Nelson, C. M. & Gleghorn, J. P. in Annual Review of Biomedical Engineering Vol. 14 (ed. Yarmush, M. L.) (Annual Reviews, 2012).

  • 54.

    Murphy, W. L., McDevitt, T. C. & Engler, A. J. Materials as stem cell regulators. Nat. Mater. 13, 547–557 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 55.

    Vining, K. H. & Mooney, D. J. Mechanical forces direct stem cell behaviour in development and regeneration. Nat. Rev. Mol. Cell Biol. 18, 728–742 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 56.

    Chaudhuri, O. Viscoelastic hydrogels for 3D cell culture. Biomater. Sci. 5, 1480–1490 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • 57.

    Slater, K., Partridge, J. & Nandivada, H. Tuning the Elastic Moduli of Corning® Matrigel® and Collagen I 3D Matrices by Varying the Protein Concentration: Application Note https://www.corning.com/catalog/cls/documents/application-notes/CLS-AC-AN-449.pdf (2018).

  • 58.

    Nemir, S. & West, J. L. Synthetic materials in the study of cell response to substrate rigidity. Ann. Biomed. Eng. 38, 2–20 (2010).

    PubMed 

    Google Scholar 

  • 59.

    Miroshnikova, Y. A. et al. Engineering strategies to recapitulate epithelial morphogenesis within synthetic three-dimensional extracellular matrix with tunable mechanical properties. Phys. Biol. 8, 13 (2011).

    Google Scholar 

  • 60.

    Soofi, S. S., Last, J. A., Liliensiek, S. J., Nealey, P. F. & Murphy, C. J. The elastic modulus of matrigel (TM) as determined by atomic force microscopy. J. Struct. Biol. 167, 216–219 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 61.

    Reed, J., Walczak, W. J., Petzold, O. N. & Gimzewski, J. K. In situ mechanical interferometry of matrigel films. Langmuir 25, 36–39 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 62.

    Hussey, G. S. D. & J.L.; Badylak, S. F. Extracellular matrix- based materials for regenerative medicine. Nat. Rev. Mater. 3, 159–173 (2018).

    CAS 

    Google Scholar 

  • 63.

    Keane, T. J., Swinehart, I. T. & Badylak, S. F. Methods of tissue decellularization used for preparation of biologic scaffolds and in vivo relevance. Methods 84, 25–34 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 64.

    Allman, A. J. et al. Xenogeneic extracellular matrix grafts elicit a Th2-restricted immune response. Transplantation 71, 1631–1640 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • 65.

    Parmaksiz, M., Dogan, A., Odabas, S., Elcin, A. E. & Elcin, Y. M. Clinical applications of decellularized extracellular matrices for tissue engineering and regenerative medicine. Biomed. Mater. 11, 14 (2016).

    Google Scholar 

  • 66.

    Yu, Y., Alkhawaji, A., Ding, Y. & Mei, J. Decellularized scaffolds in regenerative medicine. Oncotarget https://doi.org/10.18632/oncotarget.10945 (2016).

  • 67.

    Orlando, G. et al. Discarded human kidneys as a source of ECM scaffold for kidney regeneration technologies. Biomaterials 34, 5915–5925 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • 68.

    Batchelder, C. A., Martinez, M. L. & Tarantal, A. F. Natural scaffolds for renal differentiation of human embryonic stem cells for kidney tissue engineering. PLoS ONE 10, 18 (2015).

    Google Scholar 

  • 69.

    Hong, X. et al. Skeletal extracellular matrix supports cardiac differentiation of embryonic stem cells: a potential scaffold for engineered cardiac tissue. Cell. Physiol. Biochem. 45, 319–331 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 70.

    Guyette, J. P. et al. Perfusion decellularization of whole organs. Nat. Protoc. 9, 1451–1468 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • 71.

    Gilpin, S. E. et al. Perfusion decellularization of human and porcine lungs: bringing the matrix to clinical scale. J. Heart Lung Transplant. 33, 298–308 (2014).

    PubMed 

    Google Scholar 

  • 72.

    Vermeulen, M. D. V. et al. Generation of organized porcine testicular organoids in solubilized hydrogels from decellularized extracellular matrix. Int. J. Mol. Sci. 20, 5476 (2019).

    CAS 
    PubMed Central 

    Google Scholar 

  • 73.

    Lin, P., Chan, W. C. W., Badylak, S. F. & Bhatia, S. N. Assessing porcine liver-derived biomatrix for hepatic tissue engineering. Tissue Eng. 10, 1046–1053 (2004).

    CAS 
    PubMed 

    Google Scholar 

  • 74.

    Baptista, P. M. et al. The use of whole organ decellularization for the generation of a vascularized liver organoid. Hepatology 53, 604–617 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • 75.

    Lee, J. S. et al. Liver extracellular matrix providing dual functions of two-dimensional substrate coating and three-dimensional injectable hydrogel platform for liver tissue engineering. Biomacromolecules 15, 206–218 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • 76.

    Saheli, M. et al. Three-dimensional liver-derived extracellular matrix hydrogel promotes liver organoids function. J. Cell Biochem. 119, 4320–4333 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 77.

    Lewis, P. L. et al. Complex bile duct network formation within liver decellularized extracellular matrix hydrogels. Sci. Rep. 8, 12220 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 78.

    Zachos, N. C. et al. Human enteroids/colonoids and intestinal organoids functionally recapitulate normal intestinal physiology and pathophysiology. J. Biol. Chem. 291, 3759–3766 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 79.

    Finkbeiner, S. R. et al. Generation of tissue-engineered small intestine using embryonic stem cell-derived human intestinal organoids. Biol. Open 4, 1462–1472 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 80.

    Giobbe, G. G. et al. Extracellular matrix hydrogel derived from decellularized tissues enables endodermal organoid culture. Nat. Commun. 10, 5658 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 81.

    Sackett, S. D. et al. Extracellular matrix scaffold and hydrogel derived from decellularized and delipidized human pancreas. Sci. Rep. 8, 16 (2018).

    Google Scholar 

  • 82.

    Chaimov, D. et al. Innovative encapsulation platform based on pancreatic extracellular matrix achieve substantial insulin delivery. J. Controlled Release. 257, 91–101 (2017).

    CAS 

    Google Scholar 

  • 83.

    Bi, H., Ye, K. & Jin, S. Proteomic analysis of decellularized pancreatic matrix identifies collagen V as a critical regulator for islet organogenesis from human pluripotent stem cells. Biomaterials 233, 119673 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • 84.

    Devarasetty, M., Skardal, A., Cowdrick, K., Marini, F. & Soker, S. Bioengineered submucosal organoids for in vitro modeling of colorectal cancer. Tissue Eng. Part A 23, 1026–1041 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 85.

    Jee, J. H. et al. Development of collagen-based 3D matrix for gastrointestinal tract-derived organoid culture. Stem Cells Int. 2019, 8472712–8472712 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 86.

    Takezawa, T., Ozaki, K., Nitani, A., Takabayashi, C. & Shimo-Oka, T. Collagen vitrigel: a novel scaffold that can facilitate a three-dimensional culture for reconstructing organoids. Cell Transplant. 13, 463–473 (2004).

    PubMed 

    Google Scholar 

  • 87.

    Wang, P. C. & Takezawa, T. Reconstruction of renal glomerular tissue using collagen vitrigel scaffold. J. Biosci. Bioeng. 99, 529–540 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • 88.

    Broguiere, N. et al. Growth of epithelial organoids in a defined hydrogel. Adv. Mater. 30, 1801621 (2018).

    Google Scholar 

  • 89.

    Yui, S. R. et al. Functional engraftment of colon epithelium expanded in vitro from a single adult Lgr5(+) stem cell. Nat. Med. 18, 618–623 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • 90.

    Ootani, A. et al. Sustained in vitro intestinal epithelial culture within a Wnt-dependent stem cell niche. Nat. Med. 15, 1–U140 (2009).

    Google Scholar 

  • 91.

    Isshiki, H. et al. Establishment of a refined culture method for rat colon organoids. Biochem. Biophys. Res. Commun. 489, 305–311 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • 92.

    Streuli, C. H. Integrins and cell-fate determination. J. Cell Sci. 122, 171 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • 93.

    Khoshnoodi, J., Pedchenko, V. & Hudson, B. G. Mammalian collagen IV. Microsc. Res. Tech. 71, 357–370 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 94.

    Fatehullah, A., Appleton, P. L. & Nathke, I. S. Cell and tissue polarity in the intestinal tract during tumourigenesis: cells still know the right way up, but tissue organization is lost. Philos. Trans. R. Soc. Lond. Ser. B, Biol. Sci. 368, 20130014 (2013).

    Google Scholar 

  • 95.

    Lee, J. L. & Streuli, C. H. Integrins and epithelial cell polarity. J. Cell Sci. 127, 3217–3225 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 96.

    Myllymäki, S. M., Teräväinen, T. P. & Manninen, A. Two distinct integrin-mediated mechanisms contribute to apical lumen formation in epithelial cells. PLoS ONE 6, e19453 (2011).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 97.

    Co, J. Y. et al. Controlling epithelial polarity: a human enteroid model for host-pathogen interactions. Cell Rep. 26, 2509–2520.e2504 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 98.

    Wang, Y. et al. Extracellular matrix functionalization and Huh-7.5 cell coculture promote the hepatic differentiation of human adipose-derived mesenchymal stem cells in a 3D ICC hydrogel scaffold. ACS Biomater. Sci. Eng. 2, 2255–2265 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 99.

    Wilkinson, D. C. et al. Development of a three-dimensional bioengineering technology to generate lung tissue for personalized disease modeling. Stem Cells Transl. Med. 6, 622–633 (2017).

    PubMed 

    Google Scholar 

  • 100.

    Wilkinson, D. C. et al. Development of a three-dimensional bioengineering technology to generate lung tissue for personalized disease modeling. Curr. Protoc. Stem Cell Biol. 46, e56 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 101.

    Zhu, Y. J. et al. A hollow fiber system for simple generation of human brain organoids. Integr. Biol. 9, 774–781 (2017).

    CAS 

    Google Scholar 

  • 102.

    Lu, Y.-C. et al. Scalable production and cryostorage of organoids using core-shell decoupled hydrogel capsules. Adv. Biosyst. 1, 1700165 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 103.

    Capeling, M. M. et al. Nonadhesive alginate hydrogels support growth of pluripotent stem cell-derived intestinal organoids. Stem Cell Rep. 12, 381–394 (2019).

    CAS 

    Google Scholar 

  • 104.

    Liu, H. T. et al. A droplet microfluidic system to fabricate hybrid capsules enabling stem cell organoid engineering. Adv. Sci. 7, 9 (2020).

    Google Scholar 

  • 105.

    Rossen, N. S. et al. Injectable therapeutic organoids using sacrificial hydrogels. iScience 23, 101052 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 106.

    Chen, X., Zhao, X. & Wang, G. Review on marine carbohydrate-based gold nanoparticles represented by alginate and chitosan for biomedical application. Carbohydr. Polym. 244, 116311 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • 107.

    Fernando, I. P. S., Lee, W., Han, E. J. & Ahn, G. Alginate-based nanomaterials: fabrication techniques, properties, and applications. Chem. Eng. J. 391, 13 (2020).

    Google Scholar 

  • 108.

    Cattelan, G. et al. Alginate formulations: current developments in the race for hydrogel-based cardiac regeneration. Front. Bioeng. Biotechnol. 8, 16 (2020).

    Google Scholar 

  • 109.

    Kong, H. J., Wong, E. & Mooney, D. J. Independent control of rigidity and toughness of polymeric hydrogels. Macromolecules 36, 4582–4588 (2003).

    CAS 

    Google Scholar 

  • 110.

    Fu, S. et al. Rheological evaluation of inter-grade and inter-batch variability of sodium alginate. AAPS PharmSciTech. 11, 1662–1674 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 111.

    Führmann, T. et al. Injectable hydrogel promotes early survival of induced pluripotent stem cell-derived oligodendrocytes and attenuates longterm teratoma formation in a spinal cord injury model. Biomaterials 83, 23–36 (2016).

    PubMed 

    Google Scholar 

  • 112.

    Lindborg, B. A. et al. A chitosan-hyaluronan-based hydrogel-hydrocolloid supports in vitro culture and differentiation of human mesenchymal stem/stromal cells. Tissue Eng. Part A 21, 1952–1962 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 113.

    Lindborg, B. A. et al. Rapid induction of cerebral organoids from human induced pluripotent stem cells using a chemically defined hydrogel and defined cell culture medium. Stem Cells Transl. Med. 5, 970–979 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 114.

    Wu, S. H., Xu, R. J., Duan, B. & Jiang, P. Three-dimensional hyaluronic acid hydrogel-based models for in vitro human iPSC-derived NPC culture and differentiation. J. Mat. Chem. B 5, 3870–3878 (2017).

    CAS 

    Google Scholar 

  • 115.

    Lam, J., Carmichael, S. T., Lowry, W. E. & Segura, T. Hydrogel design of experiments methodology to optimize hydrogel for iPSC-NPC culture. Adv. Healthc. Mater. 4, 534–539 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 116.

    Bejoy, J. et al. Differential effects of heparin and hyaluronic acid on neural patterning of human induced pluripotent stem cells. ACS Biomater. Sci. Eng. 4, 4354–4366 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 117.

    Matarasso, S. L. The use of injectable collagens for aesthetic rejuvenation. Semin. Cutan. Med. Surg. 25, 151–157 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • 118.

    Wagner, D. E. et al. Comparative decellularization and recellularization of normal versus emphysematous human lungs. Biomaterials 35, 3281–3297 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 119.

    Booth, A. J. et al. Acellular normal and fibrotic human lung matrices as a culture system for in vitro investigation. Am. J. Respir. Crit. Care Med. 186, 866–876 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 120.

    Sullivan, K. E., Quinn, K. P., Tang, K. M., Georgakoudi, I. & Black, L. D. Extracellular matrix remodeling following myocardial infarction influences the therapeutic potential of mesenchymal stem cells. Stem Cell Res. Ther. 5, 15 (2014).

    Google Scholar 

  • 121.

    Shojaie, S. et al. Acellular lung scaffolds direct differentiation of endoderm to functional airway epithelial cells: requirement of matrix-bound HS proteoglycans. Stem Cell Rep. 4, 419–430 (2015).

    CAS 

    Google Scholar 

  • 122.

    Keane, T. J., Londono, R., Turner, N. J. & Badylak, S. F. Consequences of ineffective decellularization of biologic scaffolds on the host response. Biomaterials 33, 1771–1781 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • 123.

    Hynes, R. O. & Naba, A. Overview of the matrisome−an inventory of extracellular matrix constituents and functions. Cold Spring Harb. Perspect. Biol. 4, a004903–a004903 (2012).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 124.

    Sternlicht, M. D. & Werb, Z. How matrix metalloproteinases regulate cell behavior. Annu. Rev. Cell Dev. Biol. 17, 463–516 (2001).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 125.

    Qi, D. J. et al. Establishment of a human iPSC- and nanofiber-based microphysiological blood-brain barrier system. ACS Appl. Mater. Interfaces 10, 21825–21835 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 126.

    Kloxin, A. M., Kasko, A. M., Salinas, C. N. & Anseth, K. S. Photodegradable hydrogels for dynamic tuning of physical and chemical properties. Science 324, 59–63 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 127.

    Guvendiren, M. & Burdick, J. A. Stiffening hydrogels to probe short- and long-term cellular responses to dynamic mechanics. Nat. Commun. 3, 9 (2012).

    Google Scholar 

  • 128.

    Qayyum, A. S. et al. Design of electrohydrodynamic sprayed polyethylene glycol hydrogel microspheres for cell encapsulation. Biofabrication 9, 16 (2017).

    Google Scholar 

  • 129.

    Skardal, A. et al. Bioprinting cellularized constructs using a tissue-specific hydrogel bioink. J. Vis. Exp. https://doi.org/10.3791/53606 (2016).

  • 130.

    Tabata, Y. & Lutolf, M. P. Multiscale microenvironmental perturbation of pluripotent stem cell fate and self-organization. Sci. Rep. 7, 11 (2017).

    Google Scholar 

  • 131.

    Malandrino, A., Mak, M., Kamm, R. D. & Moeendarbary, E. Complex mechanics of the heterogeneous extracellular matrix in cancer. Extrem. Mech. Lett. 21, 25–34 (2018).

    Google Scholar 

  • 132.

    Zhu, J. R., Liang, L., Jiao, Y. & Liu, L. Y., Allianc, U. S.-C. P. S.-O. Enhanced invasion of metastatic cancer cells via extracellular matrix interface. PLoS ONE 10, 17 (2015).

    Google Scholar 

  • 133.

    Ekerdt, B. L. et al. Thermoreversible hyaluronic acid-PNIPAAm hydrogel systems for 3D stem cell culture. Adv. Healthc. Mater. 7, 12 (2018).

    Google Scholar 

  • 134.

    Qin, X. H., Wang, X. P., Rottmar, M., Nelson, B. J. & Maniura-Weber, K. Near-infrared light-sensitive polyvinyl alcohol hydrogel photoresist for spatiotemporal control of cell-instructive 3D microenvironments. Adv. Mater. 30, 7 (2018).

    Google Scholar 

  • 135.

    Dye, B. R. et al. Human lung organoids develop into adult airway-like structures directed by physico-chemical biomaterial properties. Biomaterials 234, 119757 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 136.

    Choi, J.-W. et al. Fabrication of 3D biocompatible/biodegradable micro-scaffolds using dynamic mask projection microstereolithography. J. Mater. Process. Technol. 209, 5494–5503 (2009).

    CAS 

    Google Scholar 

  • 137.

    Li, W., Shepherd, D. E. T. & Espino, D. M. Frequency dependent viscoelastic properties of porcine brain tissue. J. Mech. Behav. Biomed. Mater. 102, 103460 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • 138.

    Budday, S., Sommer, G., Holzapfel, G. A., Steinmann, P. & Kuhl, E. Viscoelastic parameter identification of human brain tissue. J. Mech. Behav. Biomed. Mater. 74, 463–476 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • 139.

    Chaudhuri, O. et al. Hydrogels with tunable stress relaxation regulate stem cell fate and activity. Nat. Mater. 15, 326–334 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 140.

    Chaudhuri, O., Cooper-White, J., Janmey, P. A., Mooney, D. J. & Shenoy, V. B. Effects of extracellular matrix viscoelasticity on cellular behaviour. Nature 584, 535–546 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 141.

    Crispim, J. F. & Ito, K. De novo neo-hyaline-cartilage from bovine organoids in viscoelastic hydrogels. Acta Biomater. 128, 236–249 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • 142.

    Hofer, M. & Lutolf, M. P. Engineering organoids. Nat. Rev. Mater. 6, 402–420 (2021).

    CAS 

    Google Scholar 

  • 143.

    Ranga, A. & Lutolf, M. P. High-throughput approaches for the analysis of extrinsic regulators of stem cell fate. Curr. Opin. Cell Biol. 24, 236–244 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • 144.

    Gobaa, S. et al. Artificial niche microarrays for probing single stem cell fate in high throughput. Nat. Methods 8, 949–955 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • 145.

    Anderson, D. G., Levenberg, S. & Langer, R. Nanoliter-scale synthesis of arrayed biomaterials and application to human embryonic stem cells. Nat. Biotechnol. 22, 863–866 (2004).

    CAS 
    PubMed 

    Google Scholar 

  • 146.

    Lutolf, M. P. & Hubbell, J. A. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat. Biotechnol. 23, 47–55 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • 147.

    Nguyen, K. T. & West, J. L. Photopolymerizable hydrogels for tissue engineering applications. Biomaterials 23, 4307–4314 (2002).

    CAS 
    PubMed 

    Google Scholar 

  • 148.

    Saha, K., Pollock, J. F., Schaffer, D. V. & Healy, K. E. Designing synthetic materials to control stem cell phenotype. Curr. Opin. Chem. Biol. 11, 381–387 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 149.

    Tibbitt, M. W. & Anseth, K. S. Dynamic microenvironments: the fourth dimension. Sci. Transl. Med. 4, 4 (2012).

    Google Scholar 

  • 150.

    Lutolf, M. P. & Hubbell, J. A. Synthesis and physicochemical characterization of end-linked poly(ethylene glycol)-co-peptide hydrogels formed by Michael-type addition. Biomacromolecules 4, 713–722 (2003).

    CAS 
    PubMed 

    Google Scholar 

  • 151.

    Lutolf, M. R. et al. Repair of bone defects using synthetic mimetics of collagenous extracellular matrices. Nat. Biotechnol. 21, 513–518 (2003).

    CAS 
    PubMed 

    Google Scholar 

  • 152.

    Wylie, R. G. et al. Spatially controlled simultaneous patterning of multiple growth factors in three-dimensional hydrogels. Nat. Mater. 10, 799–806 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • 153.

    DeForest, C. A. & Anseth, K. S. Photoreversible patterning of biomolecules within click-based hydrogels. Angew. Chem. Int. Ed. 51, 1816–1819 (2012).

    CAS 

    Google Scholar 

  • 154.

    Mosiewicz, K. A. et al. In situ cell manipulation through enzymatic hydrogel photopatterning. Nat. Mater. 12, 1071–1077 (2013).

    Google Scholar 

  • 155.

    DeForest, C. A. & Tirrell, D. A. A photoreversible protein-patterning approach for guiding stem cell fate in three-dimensional gels. Nat. Mater. 14, 523–531 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 156.

    Ranga, A. et al. 3D niche microarrays for systems-level analyses of cell fate. Nat. Commun. 5, 10 (2014).

    Google Scholar 

  • 157.

    Ranga, A. et al. Neural tube morphogenesis in synthetic 3D microenvironments. Proc. Natl Acad. Sci. USA 113, E6831–E6839 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 158.

    Ng, S. S. et al. Human iPS derived progenitors bioengineered into liver organoids using an inverted colloidal crystal poly (ethylene glycol) scaffold. Biomaterials 182, 299–311 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 159.

    Shirahama, H. et al. Fabrication of inverted colloidal crystal poly(ethylene glycol) scaffold: a three-dimensional cell culture platform for liver tissue engineering. J. Vis. Exp. https://doi.org/10.3791/54331 (2016).

  • 160.

    Ng, S. S. et al. Long-term culture of human liver tissue with advanced hepatic functions. JCI Insight 2, 11 (2017).

    Google Scholar 

  • 161.

    Ovadia, E. M., Colby, D. W. & Kloxin, A. M. Designing well-defined photopolymerized synthetic matrices for three-dimensional culture and differentiation of induced pluripotent stem cells. Biomater. Sci. 6, 1358–1370 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 162.

    Gjorevski, N. et al. Designer matrices for intestinal stem cell and organoid culture. Nature 539, 560–56 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 163.

    Cruz-Acuna, R. et al. Synthetic hydrogels for human intestinal organoid generation and colonic wound repair. Nat. Cell Biol. 19, 1326–132 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 164.

    Cruz-Acuna, R. et al. PEG-4MAL hydrogels for human organoid generation, culture, and in vivo delivery. Nat. Protoc. 13, 2102–2119 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 165.

    Di Lullo, E. & Kriegstein, A. R. The use of brain organoids to investigate neural development and disease. Nat. Rev. Neurosci. 18, 573 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 166.

    Block, M. L. & Hong, J. S. Microglia and inflammation-mediated neurodegeneration: multiple triggers with a common mechanism. Prog. Neurobiol. 76, 77–98 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • 167.

    de Groot, M. W. G. D. M., Westerink, R. H. S. & Dingemans, M. M. L. Don’t judge a neuron only by its cover: neuronal function in in vitro developmental neurotoxicity testing. Toxicol. Sci. 132, 1–7 (2012).

    PubMed 

    Google Scholar 

  • 168.

    Lidsky, T. I. & Schneider, J. S. Lead neurotoxicity in children: basic mechanisms and clinical correlates. Brain 126, 5–19 (2003).

    PubMed 

    Google Scholar 

  • 169.

    Schwartz, M. P. et al. Human pluripotent stem cell-derived neural constructs for predicting neural toxicity. Proc. Natl Acad. Sci. USA 112, 12516–12521 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 170.

    Olson, H. et al. Concordance of the toxicity of pharmaceuticals in humans and in animals. Regul. Toxicol. Pharmacol. 32, 56–67 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • 171.

    Patra, B. et al. A microfluidic device for uniform-sized cell spheroids formation, culture, harvesting and flow cytometry analysis. Biomicrofluidics 7, 054114 (2013).

    PubMed Central 

    Google Scholar 

  • 172.

    Lee, G. H. et al. Networked concave microwell arrays for constructing 3D cell spheroids. Biofabrication 10, 015001 (2017).

    PubMed 

    Google Scholar 

  • 173.

    Yoon, S.-J. et al. Reliability of human cortical organoid generation. Nat. Methods 16, 75–78 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 174.

    Chen, C., Rengarajan, V., Kjar, A. & Huang, Y. A matrigel-free method to generate matured human cerebral organoids using 3D-Printed microwell arrays. Bioact. Mater. 6, 1130–1139 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • 175.

    Candiello, J. et al. 3D heterogeneous islet organoid generation from human embryonic stem cells using a novel engineered hydrogel platform. Biomaterials 177, 27–39 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 176.

    Rorsman, P. & Braun, M. in Annual Review of Physiology Vol. 75 (ed. Julius, D) (Annual Reviews, 2013).

  • 177.

    Hilderink, J. et al. Controlled aggregation of primary human pancreatic islet cells leads to glucose-responsive pseudoislets comparable to native islets. J. Cell. Mol. Med. 19, 1836–1846 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 178.

    Li, C. Y. et al. Micropatterned cell-cell interactions enable functional encapsulation of primary hepatocytes in hydrogel microtissues. Tissue Eng. Part A 20, 2200–2212 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 179.

    Lee, H. J. et al. Elasticity-based development of functionally enhanced multicellular 3D liver encapsulated in hybrid hydrogel. Acta Biomater. 64, 67–79 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • 180.

    Nguyen, E. H. et al. Versatile synthetic alternatives to Matrigel for vascular toxicity screening and stem cell expansion. Nat. Biomed. Eng. 1, 14 (2017).

    Google Scholar 

  • 181.

    Hagbard, L. et al. Developing defined substrates for stem cell culture and differentiation. Philos. Trans. R. Soc. B-Biol. Sci. 373, 9 (2018).

    Google Scholar 

  • 182.

    Hof, K. S. & Bastings, M. M. C. Programmable control in extracellular matrix-mimicking polymer hydrogels. Chimia 71, 342–348 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • 183.

    Hosseini, Z. F. et al. FGF2-dependent mesenchyme and laminin-111 are niche factors in salivary gland organoids. J. Cell Sci. 131, jcs208728 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 184.

    Vihola, H., Laukkanen, A., Valtola, L., Tenhu, H. & Hirvonen, J. Cytotoxicity of thermosensitive polymers poly(N-isopropylacrylamide), poly(N-vinylcaprolactam) and amphiphilically modified poly(N-vinylcaprolactam). Biomaterials 26, 3055–3064 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • 185.

    Liu, V. A. & Bhatia, S. N. Three-dimensional photopatterning of hydrogels containing living Ccells. Biomed. Microdevices 4, 257–266 (2002).

    CAS 

    Google Scholar 

  • 186.

    Kharkar, P. M., Kiick, K. L. & Kloxin, A. M. Designing degradable hydrogels for orthogonal control of cell microenvironments. Chem. Soc. Rev. 42, 7335–7372 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 187.

    Lowe, A. B. Thiol-ene “click” reactions and recent applications in polymer and materials synthesis. Polym. Chem. 1, 17–36 (2010).

    CAS 

    Google Scholar 

  • 188.

    Anderson, J. M., Rodriguez, A. & Chang, D. T. Foreign body reaction to biomaterials. Semin. Immunol. 20, 86–100 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • 189.

    Chung, C., Lampe, K. J. & Heilshorn, S. C. Tetrakis(hydroxymethyl) phosphonium chloride as a covalent cross-linking agent for cell encapsulation within protein-based hydrogels. Biomacromolecules 13, 3912–3916 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 190.

    Chung, C., Pruitt, B. L. & Heilshorn, S. C. Spontaneous cardiomyocyte differentiation of mouse embryoid bodies regulated by hydrogel crosslink density. Biomater. Sci. 1, 1082–1090 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 191.

    DiMarco, R. L., Dewi, R. E., Bernal, G., Kuoc, C. & Heilshorn, S. C. Protein-engineered scaffolds for in vitro 3D culture of primary adult intestinal organoids. Biomater. Sci. 3, 1376–1385 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 192.

    Jin, L. et al. Colony-forming cells in the adult mouse pancreas are expandable in Matrigel and form endocrine/acinar colonies in laminin hydrogel. Proc. Natl Acad. Sci. USA 110, 3907–3912 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 193.

    Ghazalli, N. et al. Postnatal pancreas of mice contains tripotent progenitors capable of giving rise to duct, acinar, and endocrine cells in vitro. Stem Cells Dev. 24, 1995–2008 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 194.

    Jin, L. et al. Colony-forming progenitor cells in the postnatal mouse liver and pancreas give rise to morphologically distinct insulin-expressing colonies in 3D cultures. Rev. Diabet. Stud. 11, 35–50 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 195.

    Jin, L. et al. Cells with surface expression of CD133highCD71low are enriched for tripotent colony-forming progenitor cells in the adult murine pancreas. Stem Cell Res. 16, 40–53 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 196.

    Zhang, D. W. et al. A 3D Alzheimer’s disease culture model and the induction of P21-activated kinase mediated sensing in iPSC derived neurons. Biomaterials 35, 1420–1428 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • 197.

    Pugliese, R., Fontana, F., Marchini, A. & Gelain, F. Branched peptides integrate into self-assembled nanostructures and enhance biomechanics of peptidic hydrogels. Acta Biomater. 66, 258–271 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 198.

    Marchini, A. et al. Multifunctionalized hydrogels foster hNSC maturation in 3D cultures and neural regeneration in spinal cord injuries. Proc. Natl Acad. Sci. USA 116, 7483–7492 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 199.

    Edelbrock, A. N. et al. Supramolecular nanostructure activates TrkB receptor signaling of neuronal cells by mimicking brain-derived neurotrophic factor. Nano Lett. 18, 6237–6247 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 200.

    Stephanopoulos, N. et al. Bioactive DNA-peptide nanotubes enhance the differentiation of neural stem cells into neurons. Nano Lett. 15, 603–609 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 201.

    Lee, S. S. et al. Gel scaffolds of BMP-2-binding peptide amphiphile nanofibers for spinal arthrodesis. Adv. Health. Mater. 4, 131–141 (2015).

    CAS 

    Google Scholar 

  • 202.

    Berns, E. J. et al. Aligned neurite outgrowth and directed cell migration in self-assembled monodomain gels. Biomaterials 35, 185–195 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • 203.

    Madl, C. M., Katz, L. M. & Heilshorn, S. C. Bio-orthogonally crosslinked, engineered protein hydrogels with tunable mechanics and biochemistry for cell encapsulation. Adv. Funct. Mater. 26, 3612–3620 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 204.

    Liu, X. et al. Versatile engineered protein hydrogels enabling decoupled mechanical and biochemical tuning for cell adhesion and neurite growth. ACS Appl. Nano Mater. 1, 1579–1585 (2018).

    CAS 

    Google Scholar 

  • 205.

    Dooling, L. J. & Tirrell, D. A. Engineering the dynamic properties of protein networks through sequence variation. ACS Cent. Sci. 2, 812–819 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 206.

    Galler, K. M., Aulisa, L., Regan, K. R., D’Souza, R. N. & Hartgerink, J. D. Self-assembling multidomain peptide hydrogels: designed susceptibility to enzymatic cleavage allows enhanced cell migration and spreading. J. Am. Chem. Soc. 132, 3217–3223 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 207.

    Shen, W., Zhang, K. C., Kornfield, J. A. & Tirrell, D. A. Tuning the erosion rate of artificial protein hydrogels through control of network topology. Nat. Mater. 5, 153–158 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • 208.

    Link, A. J., Mock, M. L. & Tirrell, D. A. Non-canonical amino acids in protein engineering. Curr. Opin. Biotechnol. 14, 603–609 (2003).

    CAS 
    PubMed 

    Google Scholar 

  • 209.

    Connor, R. E. & Tirrell, D. A. Non‐canonical amino acids in protein polymer design. Polym. Rev. 47, 9–28 (2007).

    CAS 

    Google Scholar 

  • 210.

    Langer, R. & Tirrell, D. A. Designing materials for biology and medicine. Nature 428, 487–492 (2004).

    CAS 
    PubMed 

    Google Scholar 

  • 211.

    Fong, E. & Tirrell, D. A. Collective cell migration on artificial extracellular matrix proteins containing full-length fibronectin domains. Adv. Mater. 22, 5271–5275 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 212.

    Li, N. K., Quiroz, F. G., Hall, C. K., Chilkoti, A. & Yingling, Y. G. Molecular description of the LCST behavior of an elastin-like polypeptide. Biomacromolecules 15, 3522–3530 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • 213.

    MacEwan, S. R. & Chilkoti, A. Elastin-like polypeptides: biomedical applications of tunable biopolymers. Biopolymers 94, 60–77 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • 214.

    Vigneswaran, Y. et al. This paper is the winner of an SFB award in the hospital intern, residency category: peptide biomaterials raising adaptive immune responses in wound healing contexts. J. Biomed. Mater. Res. Part A 104, 1853–1862 (2016).

    CAS 

    Google Scholar 

  • 215.

    Collier, J. H., Rudra, J. S., Gasiorowski, J. Z. & Jung, J. P. Multi-component extracellular matrices based on peptide self-assembly. Chem. Soc. Rev. 39, 3413–3424 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 216.

    Rosenberg, A. S. Effects of protein aggregates: an immunologic perspective. AAPS J. 8, E501–E507 (2006).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 217.

    Rudra, J. S. et al. Modulating adaptive immune responses to peptide self-assemblies. ACS Nano 6, 1557–1564 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 218.

    Rudra, J. S., Tian, Y. F., Jung, J. P. & Collier, J. H. A self-assembling peptide acting as an immune adjuvant. Proc. Natl Acad. Sci. USA 107, 622–627 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • 219.

    Baker, M. P., Reynolds, H. M., Lumicisi, B. & Bryson, C. J. Immunogenicity of protein therapeutics: the key causes, consequences and challenges. Self/nonself 1, 314–322 (2010).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 220.

    Pagliuca, FeliciaW. et al. Generation of functional human pancreatic β cells in vitro. Cell 159, 428–439 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 221.

    Nair, G. G. et al. Recapitulating endocrine cell clustering in culture promotes maturation of human stem-cell-derived β cells. Nat. Cell Biol. 21, 263–274 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Source link