Myhrstad, M. C. W., Tunsjø, H., Charnock, C. & Telle-Hansen, V. H. Dietary fiber, gut microbiota, and metabolic regulation-current status in human randomized trials. Nutrients 12, 859 (2020).
Google Scholar
Wang, P. Y. T. et al. Upper intestinal lipids trigger a gut–brain–liver axis to regulate glucose production. Nature 452, 1012–1016 (2008).
Google Scholar
Cryan, J. F. & Dinan, T. G. Mind-altering microorganisms: The impact of the gut microbiota on brain and behaviour. Nat. Rev. Neurosci. 13, 701–712 (2012).
Google Scholar
Turnbaugh, P. J. et al. The human microbiome project. Nature 449, 804–810 (2007).
Google Scholar
The Integrative HMP (iHMP) Research Network Consortium. The integrative human microbiome project. Nature 569, 641–648 (2019).
Google Scholar
Hall, A. B., Tolonen, A. C. & Xavier, R. J. Human genetic variation and the gut microbiome in disease. Nat. Publ. Gr. 18, 690–699 (2017).
Google Scholar
Armour, C. R., Nayfach, S., Pollard, K. S. & Sharpton, T. J. A metagenomic meta-analysis reveals functional signatures of health and disease in the human gut microbiome. mSystems 4, e00332-18 (2019).
Google Scholar
Pedersen, H. K. et al. Human gut microbes impact host serum metabolome and insulin sensitivity. Nature 535, 376–381 (2016).
Google Scholar
Wang, J. & Jia, H. Metagenome-wide association studies: Fine-mining the microbiome. Nat. Rev. Microbiol. 14, 508–522 (2016).
Google Scholar
Gilbert, J. A. et al. Microbiome-wide association studies link dynamic microbial consortia to disease. Nature 535, 94–103 (2016).
Google Scholar
Martí, J. M. et al. Health and disease imprinted in the time variability of the human microbiome. mSystems 2, e00144-16 (2017).
Google Scholar
Bäckhed, F. et al. Defining a healthy human gut microbiome: Current concepts, future directions, and clinical applications. Cell Host Microb. 12, 611–622 (2012).
Google Scholar
Falony, G. et al. Population-level analysis of gut microbiome variation. Science 352, 560–564 (2016).
Google Scholar
De Filippo, C. et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc. Natl. Acad. Sci. U. S. A. 107, 14691–14696 (2010).
Google Scholar
Martínez, I. et al. The gut microbiota of rural papua new guineans: Composition, diversity patterns, and ecological processes. Cell Rep. 11, 527–538 (2015).
Google Scholar
Yatsunenko, T. et al. Human gut microbiome viewed across age and geography. Nature 486, 222–227 (2012).
Google Scholar
Rothschild, D. et al. An atlas of robust microbiome associations with phenotypic traits based on large-scale cohorts from two continents. bioRxiv https://doi.org/10.1101/2020.05.28.122325 (2020).
Google Scholar
Zhernakova, A. et al. Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science 352, 565–569 (2016).
Google Scholar
Rühlemann, M. C. et al. Genome-wide association study in 8,956 German individuals identifies influence of ABO histo-blood groups on gut microbiome. Nat. Genet. 53, 147–155 (2021).
Google Scholar
Oduaran, O. H. et al. Gut microbiome profiling of a rural and urban South African cohort reveals biomarkers of a population in lifestyle transition. bioRxiv https://doi.org/10.1101/2020.02.27.964023 (2020).
Google Scholar
Jackson, M. A. et al. Gut microbiota associations with common diseases and prescription medications in a population-based cohort. Nat. Commun. 9, 1–8 (2018).
Google Scholar
Trichopoulou, A. et al. Definitions and potential health benefits of the Mediterranean diet: Views from experts around the world. BMC Med. 12, 112 (2014).
Google Scholar
Tuttolomondo, A. et al. Metabolic and vascular effect of the Mediterranean diet. Int. J. Mol. Sci. 20, 4716 (2019).
Google Scholar
Nagpal, R. et al. Gut microbiome composition in non-human primates consuming a western or Mediterranean diet. Front. Nutr. 5, 28 (2018).
Google Scholar
Nagpal, R., Shively, C. A., Register, T. C., Craft, S. & Yadav, H. Gut microbiome-Mediterranean diet interactions in improving host health. F1000Research 8, 699 (2019).
Google Scholar
European Observatory on Health Systems and Policies. State of Health in the EU—Spain—Country Health Profile 2019. European Commission. https://ec.europa.eu/health/sites/health/files/state/docs/2019_chp_es_english.pdf (2019).
HSBC. HSBC Expat Explorer Survey. https://www.expatexplorer.hsbc.com/survey/ (2020).
Huttenhower, C. et al. Structure, function and diversity of the healthy human microbiome. Nature 486, 207–214 (2012).
Google Scholar
Faith, J. J. et al. The long-term stability of the human gut microbiota. Science (80-.) 341, 1237439 (2013).
Google Scholar
Lloyd-Price, J., Abu-Ali, G. & Huttenhower, C. The healthy human microbiome. Genome Med. 8, 1–11 (2016).
Google Scholar
Stojanov, S., Berlec, A. & Štrukelj, B. The influence of probiotics on the firmicutes/bacteroidetes ratio in the treatment of obesity and inflammatory bowel disease. Microorganisms 8, 1–16 (2020).
Google Scholar
Magne, F. et al. The firmicutes/bacteroidetes ratio: A relevant marker of gut dysbiosis in obese patients?. Nutrients 12, 1474 (2020).
Google Scholar
Rajilić-Stojanović, M. & de Vos, W. M. The first 1000 cultured species of the human gastrointestinal microbiota. FEMS Microbiol. Rev. 38, 996–1047 (2014).
Google Scholar
Parte, A. C., Carbasse, J. S., Meier-Kolthoff, J. P., Reimer, L. C. & Göker, M. List of prokaryotic names with standing in nomenclature (LPSN) moves to the DSMZ. Int. J. Syst. Evol. Microbiol. 70, 5607–5612 (2020).
Google Scholar
Candela, M. et al. Modulation of gut microbiota dysbioses in type 2 diabetic patients by macrobiotic Ma-Pi 2 diet. Br. J. Nutr. 116, 80–93 (2016).
Google Scholar
Gill, P. A., van Zelm, M. C., Muir, J. G. & Gibson, P. R. Review article: Short chain fatty acids as potential therapeutic agents in human gastrointestinal and inflammatory disorders. Aliment. Pharmacol. Ther. 48, 15–34 (2018).
Google Scholar
Elderman, M., de Vos, P. & Faas, M. Role of microbiota in sexually dimorphic immunity. Front. Immunol. 9, 1–6 (2018).
Google Scholar
Santos-Marcos, J. A. et al. Sex differences in the gut microbiota as potential determinants of gender predisposition to disease. Mol. Nutr. Food Res. 63, 1–11 (2019).
Google Scholar
Markle, J. G. M. et al. Sex differences in the gut microbiome drive hormone-dependent regulation of autoimmunity. Science (80-.) 339, 1084–1088 (2013).
Google Scholar
Yurkovetskiy, L. et al. Gender bias in autoimmunity is influenced by microbiota. Immunity 39, 400–412 (2013).
Google Scholar
Wallis, A., Butt, H., Ball, M., Lewis, D. P. & Bruck, D. Support for the microgenderome: Associations in a human clinical population. Sci. Rep. 6, 46–52 (2016).
Google Scholar
Salazar, N. et al. Age-associated changes in gut microbiota and dietary components related with the immune system in adulthood and old age: A cross-sectional study. Nutrients 11, 1–11 (2019).
Google Scholar
De Filippis, F., Pasolli, E. & Ercolini, D. Newly explored Faecalibacterium diversity is connected to age, lifestyle, geography, and disease. Curr. Biol. 30, 4932-4943.e4 (2020).
Google Scholar
Badal, V. D. et al. The gut microbiome, aging, and longevity: A systematic review. Nutrients 12, 1–25 (2020).
Google Scholar
Asnicar, F. et al. Microbiome connections with host metabolism and habitual diet from 1,098 deeply phenotyped individuals. Nat. Med. 27, 321–332 (2021).
Google Scholar
Rampelli, S. et al. Functional metagenomic profiling of intestinal microbiome in extreme ageing. Aging (Albany, N. Y.) 5, 902–912 (2013).
Google Scholar
Biagi, E. et al. Gut microbiota and extreme longevity. Curr. Biol. 26, 1480–1485 (2016).
Google Scholar
Drago, L., Toscano, M., Rodighiero, V., De Vecchi, E. & Mogna, G. Cultivable and pyrosequenced fecal microflora in centenarians and young subjects. J. Clin. Gastroenterol. 46, 81–84 (2012).
Google Scholar
Claesson, M. J. et al. Gut microbiota composition correlates with diet and health in the elderly. Nature 488, 178–184 (2012).
Google Scholar
Jeffery, I. B. & O’Toole, P. W. Diet-microbiota interactions and their implications for healthy living. Nutrients 5, 234–252 (2013).
Google Scholar
Wilkins, L. J., Monga, M. & Miller, A. W. Defining dysbiosis for a cluster of chronic diseases. Sci. Rep. 9, 1–10 (2019).
Google Scholar
Mosca, A., Leclerc, M. & Hugot, J. P. Gut microbiota diversity and human diseases: Should we reintroduce key predators in our ecosystem?. Front. Microbiol. 7, 1–12 (2016).
Google Scholar
de la Cuesta-Zuluaga, J. et al. Age and sex-dependent patterns of gut microbial diversity in human adults. mSystems 4, 1–12 (2019).
Odamaki, T. et al. Age-related changes in gut microbiota composition from newborn to centenarian: A cross-sectional study. BMC Microbiol. 16, 1–12 (2016).
Google Scholar
Zmora, N., Suez, J. & Elinav, E. You are what you eat: Diet, health and the gut microbiota. Nat. Rev. Gastroenterol. Hepatol. 16, 35–56 (2019).
Google Scholar
Kolodziejczyk, A. A., Zheng, D. & Elinav, E. Diet–microbiota interactions and personalized nutrition. Nat. Rev. Microbiol. 17, 742–753 (2019).
Google Scholar
Leeming, E. R., Johnson, A. J., Spector, T. D. & Roy, C. I. L. Effect of diet on the gut microbiota: Rethinking intervention duration. Nutrients 11, 1–28 (2019).
Google Scholar
Martínez-González, M. A., Gea, A. & Ruiz-Canela, M. The Mediterranean diet and cardiovascular health: A critical review. Circ. Res. 124, 779–798 (2019).
Google Scholar
Eleftheriou, D., Benetou, V., Trichopoulou, A., La Vecchia, C. & Bamia, C. Mediterranean diet and its components in relation to all-cause mortality: Meta-analysis. Br. J. Nutr. 120, 1081–1097 (2018).
Google Scholar
Kato, K. et al. Association between functional lactase variants and a high abundance of Bifidobacterium in the gut of healthy Japanese people. PLoS ONE 13, 1–10 (2018).
Goodrich, J. K., Davenport, E. R., Waters, J. L., Clark, A. G. & Ley, R. E. Cross-species comparisons of host genetic associations with the microbiome. Science (80-.) 352, 532–535 (2016).
Google Scholar
Creedon, A. C., Hung, E. S., Berry, S. E. & Whelan, K. Nuts and their effect on gut microbiota, gut function and symptoms in adults: A systematic review and meta-analysis of randomised controlled trials. Nutrients 12, 1–21 (2020).
Google Scholar
Kumar, A. S. et al. Beneficial effects of dietary polyphenols on gut microbiota and strategies to improve delivery efficiency. Nutrients 11, 2216 (2019).
Google Scholar
Sugizaki, C. S. A. & Naves, M. M. V. Potential prebiotic properties of nuts and edible seeds and their relationship to obesity. Nutrients 10, 1645 (2018).
Google Scholar
Lamuel-Raventos, R. M. & Onge, M. P. S. Prebiotic nut compounds and human microbiota. Crit. Rev. Food Sci. Nutr. 57, 3154–3163 (2017).
Google Scholar
Jiang, H. et al. Altered fecal microbiota composition in patients with major depressive disorder. Brain. Behav. Immun. 48, 186–194 (2015).
Google Scholar
Coello, K. et al. Gut microbiota composition in patients with newly diagnosed bipolar disorder and their unaffected first-degree relatives. Brain. Behav. Immun. 75, 112–118 (2019).
Google Scholar
Gupta, A. et al. Association of Flavonifractor plautii, a flavonoid-degrading bacterium, with the gut microbiome of colorectal cancer patients in India. mSystems 4, 1–20 (2019).
Google Scholar
Ghosh, T. S. et al. Mediterranean diet intervention alters the gut microbiome in older people reducing frailty and improving health status: The NU-AGE 1-year dietary intervention across five European countries. Gut 69, 1218–1228 (2020).
Google Scholar
Meslier, V. et al. Mediterranean diet intervention in overweight and obese subjects lowers plasma cholesterol and causes changes in the gut microbiome and metabolome independently of energy intake. Gut 69, 1258–1268 (2020).
Google Scholar
Nitisinprasert, S. et al. Microbial community of healthy Thai vegetarians and non-vegetarians, their core gut microbiota and pathogens risk. J. Microbiol. Biotechnol. 26, 1723–1735 (2016).
Google Scholar
Geerlings, S., Kostopoulos, I., de Vos, W. & Belzer, C. Akkermansia muciniphila in the human gastrointestinal tract: When, where, and how?. Microorganisms 6, 75 (2018).
Google Scholar
Do, M. H., Lee, E., Oh, M. J., Kim, Y. & Park, H. Y. High-glucose or-fructose diet cause changes of the gut microbiota and metabolic disorders in mice without body weight change. Nutrients 10, 761 (2018).
Google Scholar
Samuelson, D. R. et al. Alcohol consumption increases susceptibility to pneumococcal pneumonia in a humanized murine HIV model mediated by intestinal dysbiosis. Alcohol https://doi.org/10.1016/j.alcohol.2018.08.012.Alcohol (2020).
Google Scholar
Manor, O. et al. Health and disease markers correlate with gut microbiome composition across thousands of people. Nat. Commun. 11, 1–12 (2020).
Google Scholar
Dubinkina, V. B. et al. Links of gut microbiota composition with alcohol dependence syndrome and alcoholic liver disease. Microbiome 5, 141 (2017).
Google Scholar
Valles-Colomer, M. et al. The neuroactive potential of the human gut microbiota in quality of life and depression. Nat. Microbiol. 4, 623–632 (2019).
Google Scholar
Klindworth, A. et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucl. Acids Res. 41, 1–11 (2013).
Google Scholar
Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).
Google Scholar
Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).
Google Scholar
Bokulich, N. A. et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 6, 1–17 (2018).
Google Scholar
Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucl. Acids Res. 41, 590–596 (2013).
Google Scholar
McMurdie, P. J. & Holmes, S. Phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).
Google Scholar
Hsieh, T. C., Ma, K. H. & Chao, A. iNEXT: An R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol. Evol. 7, 1451–1456 (2016).
Google Scholar
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 1–21 (2014).
Google Scholar

