Preloader

The Spanish gut microbiome reveals links between microorganisms and Mediterranean diet

  • 1.

    Myhrstad, M. C. W., Tunsjø, H., Charnock, C. & Telle-Hansen, V. H. Dietary fiber, gut microbiota, and metabolic regulation-current status in human randomized trials. Nutrients 12, 859 (2020).

    CAS 
    PubMed Central 
    Article 

    Google Scholar 

  • 2.

    Wang, P. Y. T. et al. Upper intestinal lipids trigger a gut–brain–liver axis to regulate glucose production. Nature 452, 1012–1016 (2008).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 3.

    Cryan, J. F. & Dinan, T. G. Mind-altering microorganisms: The impact of the gut microbiota on brain and behaviour. Nat. Rev. Neurosci. 13, 701–712 (2012).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 4.

    Turnbaugh, P. J. et al. The human microbiome project. Nature 449, 804–810 (2007).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 5.

    The Integrative HMP (iHMP) Research Network Consortium. The integrative human microbiome project. Nature 569, 641–648 (2019).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • 6.

    Hall, A. B., Tolonen, A. C. & Xavier, R. J. Human genetic variation and the gut microbiome in disease. Nat. Publ. Gr. 18, 690–699 (2017).

    CAS 

    Google Scholar 

  • 7.

    Armour, C. R., Nayfach, S., Pollard, K. S. & Sharpton, T. J. A metagenomic meta-analysis reveals functional signatures of health and disease in the human gut microbiome. mSystems 4, e00332-18 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 8.

    Pedersen, H. K. et al. Human gut microbes impact host serum metabolome and insulin sensitivity. Nature 535, 376–381 (2016).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 9.

    Wang, J. & Jia, H. Metagenome-wide association studies: Fine-mining the microbiome. Nat. Rev. Microbiol. 14, 508–522 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 10.

    Gilbert, J. A. et al. Microbiome-wide association studies link dynamic microbial consortia to disease. Nature 535, 94–103 (2016).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 11.

    Martí, J. M. et al. Health and disease imprinted in the time variability of the human microbiome. mSystems 2, e00144-16 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 12.

    Bäckhed, F. et al. Defining a healthy human gut microbiome: Current concepts, future directions, and clinical applications. Cell Host Microb. 12, 611–622 (2012).

    Article 
    CAS 

    Google Scholar 

  • 13.

    Falony, G. et al. Population-level analysis of gut microbiome variation. Science 352, 560–564 (2016).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 14.

    De Filippo, C. et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc. Natl. Acad. Sci. U. S. A. 107, 14691–14696 (2010).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 15.

    Martínez, I. et al. The gut microbiota of rural papua new guineans: Composition, diversity patterns, and ecological processes. Cell Rep. 11, 527–538 (2015).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 16.

    Yatsunenko, T. et al. Human gut microbiome viewed across age and geography. Nature 486, 222–227 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 17.

    Rothschild, D. et al. An atlas of robust microbiome associations with phenotypic traits based on large-scale cohorts from two continents. bioRxiv https://doi.org/10.1101/2020.05.28.122325 (2020).

    Article 

    Google Scholar 

  • 18.

    Zhernakova, A. et al. Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science 352, 565–569 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 19.

    Rühlemann, M. C. et al. Genome-wide association study in 8,956 German individuals identifies influence of ABO histo-blood groups on gut microbiome. Nat. Genet. 53, 147–155 (2021).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 20.

    Oduaran, O. H. et al. Gut microbiome profiling of a rural and urban South African cohort reveals biomarkers of a population in lifestyle transition. bioRxiv https://doi.org/10.1101/2020.02.27.964023 (2020).

    Article 

    Google Scholar 

  • 21.

    Jackson, M. A. et al. Gut microbiota associations with common diseases and prescription medications in a population-based cohort. Nat. Commun. 9, 1–8 (2018).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • 22.

    Trichopoulou, A. et al. Definitions and potential health benefits of the Mediterranean diet: Views from experts around the world. BMC Med. 12, 112 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 23.

    Tuttolomondo, A. et al. Metabolic and vascular effect of the Mediterranean diet. Int. J. Mol. Sci. 20, 4716 (2019).

    CAS 
    PubMed Central 
    Article 

    Google Scholar 

  • 24.

    Nagpal, R. et al. Gut microbiome composition in non-human primates consuming a western or Mediterranean diet. Front. Nutr. 5, 28 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 25.

    Nagpal, R., Shively, C. A., Register, T. C., Craft, S. & Yadav, H. Gut microbiome-Mediterranean diet interactions in improving host health. F1000Research 8, 699 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 26.

    European Observatory on Health Systems and Policies. State of Health in the EU—Spain—Country Health Profile 2019. European Commission. https://ec.europa.eu/health/sites/health/files/state/docs/2019_chp_es_english.pdf (2019).

  • 27.

    HSBC. HSBC Expat Explorer Survey. https://www.expatexplorer.hsbc.com/survey/ (2020).

  • 28.

    Huttenhower, C. et al. Structure, function and diversity of the healthy human microbiome. Nature 486, 207–214 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 29.

    Faith, J. J. et al. The long-term stability of the human gut microbiota. Science (80-.) 341, 1237439 (2013).

    Article 
    CAS 

    Google Scholar 

  • 30.

    Lloyd-Price, J., Abu-Ali, G. & Huttenhower, C. The healthy human microbiome. Genome Med. 8, 1–11 (2016).

    Article 

    Google Scholar 

  • 31.

    Stojanov, S., Berlec, A. & Štrukelj, B. The influence of probiotics on the firmicutes/bacteroidetes ratio in the treatment of obesity and inflammatory bowel disease. Microorganisms 8, 1–16 (2020).

    Article 
    CAS 

    Google Scholar 

  • 32.

    Magne, F. et al. The firmicutes/bacteroidetes ratio: A relevant marker of gut dysbiosis in obese patients?. Nutrients 12, 1474 (2020).

    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 

  • 33.

    Rajilić-Stojanović, M. & de Vos, W. M. The first 1000 cultured species of the human gastrointestinal microbiota. FEMS Microbiol. Rev. 38, 996–1047 (2014).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 34.

    Parte, A. C., Carbasse, J. S., Meier-Kolthoff, J. P., Reimer, L. C. & Göker, M. List of prokaryotic names with standing in nomenclature (LPSN) moves to the DSMZ. Int. J. Syst. Evol. Microbiol. 70, 5607–5612 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 35.

    Candela, M. et al. Modulation of gut microbiota dysbioses in type 2 diabetic patients by macrobiotic Ma-Pi 2 diet. Br. J. Nutr. 116, 80–93 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 36.

    Gill, P. A., van Zelm, M. C., Muir, J. G. & Gibson, P. R. Review article: Short chain fatty acids as potential therapeutic agents in human gastrointestinal and inflammatory disorders. Aliment. Pharmacol. Ther. 48, 15–34 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 37.

    Elderman, M., de Vos, P. & Faas, M. Role of microbiota in sexually dimorphic immunity. Front. Immunol. 9, 1–6 (2018).

    Article 
    CAS 

    Google Scholar 

  • 38.

    Santos-Marcos, J. A. et al. Sex differences in the gut microbiota as potential determinants of gender predisposition to disease. Mol. Nutr. Food Res. 63, 1–11 (2019).

    Article 
    CAS 

    Google Scholar 

  • 39.

    Markle, J. G. M. et al. Sex differences in the gut microbiome drive hormone-dependent regulation of autoimmunity. Science (80-.) 339, 1084–1088 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 40.

    Yurkovetskiy, L. et al. Gender bias in autoimmunity is influenced by microbiota. Immunity 39, 400–412 (2013).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 41.

    Wallis, A., Butt, H., Ball, M., Lewis, D. P. & Bruck, D. Support for the microgenderome: Associations in a human clinical population. Sci. Rep. 6, 46–52 (2016).

    Article 
    CAS 

    Google Scholar 

  • 42.

    Salazar, N. et al. Age-associated changes in gut microbiota and dietary components related with the immune system in adulthood and old age: A cross-sectional study. Nutrients 11, 1–11 (2019).

    Article 
    CAS 

    Google Scholar 

  • 43.

    De Filippis, F., Pasolli, E. & Ercolini, D. Newly explored Faecalibacterium diversity is connected to age, lifestyle, geography, and disease. Curr. Biol. 30, 4932-4943.e4 (2020).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 44.

    Badal, V. D. et al. The gut microbiome, aging, and longevity: A systematic review. Nutrients 12, 1–25 (2020).

    Article 

    Google Scholar 

  • 45.

    Asnicar, F. et al. Microbiome connections with host metabolism and habitual diet from 1,098 deeply phenotyped individuals. Nat. Med. 27, 321–332 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 46.

    Rampelli, S. et al. Functional metagenomic profiling of intestinal microbiome in extreme ageing. Aging (Albany, N. Y.) 5, 902–912 (2013).

    CAS 

    Google Scholar 

  • 47.

    Biagi, E. et al. Gut microbiota and extreme longevity. Curr. Biol. 26, 1480–1485 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 48.

    Drago, L., Toscano, M., Rodighiero, V., De Vecchi, E. & Mogna, G. Cultivable and pyrosequenced fecal microflora in centenarians and young subjects. J. Clin. Gastroenterol. 46, 81–84 (2012).

    Article 

    Google Scholar 

  • 49.

    Claesson, M. J. et al. Gut microbiota composition correlates with diet and health in the elderly. Nature 488, 178–184 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 50.

    Jeffery, I. B. & O’Toole, P. W. Diet-microbiota interactions and their implications for healthy living. Nutrients 5, 234–252 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 51.

    Wilkins, L. J., Monga, M. & Miller, A. W. Defining dysbiosis for a cluster of chronic diseases. Sci. Rep. 9, 1–10 (2019).

    ADS 

    Google Scholar 

  • 52.

    Mosca, A., Leclerc, M. & Hugot, J. P. Gut microbiota diversity and human diseases: Should we reintroduce key predators in our ecosystem?. Front. Microbiol. 7, 1–12 (2016).

    Article 

    Google Scholar 

  • 53.

    de la Cuesta-Zuluaga, J. et al. Age and sex-dependent patterns of gut microbial diversity in human adults. mSystems 4, 1–12 (2019).

    Google Scholar 

  • 54.

    Odamaki, T. et al. Age-related changes in gut microbiota composition from newborn to centenarian: A cross-sectional study. BMC Microbiol. 16, 1–12 (2016).

    Article 
    CAS 

    Google Scholar 

  • 55.

    Zmora, N., Suez, J. & Elinav, E. You are what you eat: Diet, health and the gut microbiota. Nat. Rev. Gastroenterol. Hepatol. 16, 35–56 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 56.

    Kolodziejczyk, A. A., Zheng, D. & Elinav, E. Diet–microbiota interactions and personalized nutrition. Nat. Rev. Microbiol. 17, 742–753 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 57.

    Leeming, E. R., Johnson, A. J., Spector, T. D. & Roy, C. I. L. Effect of diet on the gut microbiota: Rethinking intervention duration. Nutrients 11, 1–28 (2019).

    Article 

    Google Scholar 

  • 58.

    Martínez-González, M. A., Gea, A. & Ruiz-Canela, M. The Mediterranean diet and cardiovascular health: A critical review. Circ. Res. 124, 779–798 (2019).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 59.

    Eleftheriou, D., Benetou, V., Trichopoulou, A., La Vecchia, C. & Bamia, C. Mediterranean diet and its components in relation to all-cause mortality: Meta-analysis. Br. J. Nutr. 120, 1081–1097 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 60.

    Kato, K. et al. Association between functional lactase variants and a high abundance of Bifidobacterium in the gut of healthy Japanese people. PLoS ONE 13, 1–10 (2018).

    Google Scholar 

  • 61.

    Goodrich, J. K., Davenport, E. R., Waters, J. L., Clark, A. G. & Ley, R. E. Cross-species comparisons of host genetic associations with the microbiome. Science (80-.) 352, 532–535 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 62.

    Creedon, A. C., Hung, E. S., Berry, S. E. & Whelan, K. Nuts and their effect on gut microbiota, gut function and symptoms in adults: A systematic review and meta-analysis of randomised controlled trials. Nutrients 12, 1–21 (2020).

    Article 
    CAS 

    Google Scholar 

  • 63.

    Kumar, A. S. et al. Beneficial effects of dietary polyphenols on gut microbiota and strategies to improve delivery efficiency. Nutrients 11, 2216 (2019).

    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 64.

    Sugizaki, C. S. A. & Naves, M. M. V. Potential prebiotic properties of nuts and edible seeds and their relationship to obesity. Nutrients 10, 1645 (2018).

    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 65.

    Lamuel-Raventos, R. M. & Onge, M. P. S. Prebiotic nut compounds and human microbiota. Crit. Rev. Food Sci. Nutr. 57, 3154–3163 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 66.

    Jiang, H. et al. Altered fecal microbiota composition in patients with major depressive disorder. Brain. Behav. Immun. 48, 186–194 (2015).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 67.

    Coello, K. et al. Gut microbiota composition in patients with newly diagnosed bipolar disorder and their unaffected first-degree relatives. Brain. Behav. Immun. 75, 112–118 (2019).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 68.

    Gupta, A. et al. Association of Flavonifractor plautii, a flavonoid-degrading bacterium, with the gut microbiome of colorectal cancer patients in India. mSystems 4, 1–20 (2019).

    Article 

    Google Scholar 

  • 69.

    Ghosh, T. S. et al. Mediterranean diet intervention alters the gut microbiome in older people reducing frailty and improving health status: The NU-AGE 1-year dietary intervention across five European countries. Gut 69, 1218–1228 (2020).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 70.

    Meslier, V. et al. Mediterranean diet intervention in overweight and obese subjects lowers plasma cholesterol and causes changes in the gut microbiome and metabolome independently of energy intake. Gut 69, 1258–1268 (2020).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 71.

    Nitisinprasert, S. et al. Microbial community of healthy Thai vegetarians and non-vegetarians, their core gut microbiota and pathogens risk. J. Microbiol. Biotechnol. 26, 1723–1735 (2016).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 72.

    Geerlings, S., Kostopoulos, I., de Vos, W. & Belzer, C. Akkermansia muciniphila in the human gastrointestinal tract: When, where, and how?. Microorganisms 6, 75 (2018).

    CAS 
    PubMed Central 
    Article 

    Google Scholar 

  • 73.

    Do, M. H., Lee, E., Oh, M. J., Kim, Y. & Park, H. Y. High-glucose or-fructose diet cause changes of the gut microbiota and metabolic disorders in mice without body weight change. Nutrients 10, 761 (2018).

    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 74.

    Samuelson, D. R. et al. Alcohol consumption increases susceptibility to pneumococcal pneumonia in a humanized murine HIV model mediated by intestinal dysbiosis. Alcohol https://doi.org/10.1016/j.alcohol.2018.08.012.Alcohol (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 75.

    Manor, O. et al. Health and disease markers correlate with gut microbiome composition across thousands of people. Nat. Commun. 11, 1–12 (2020).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • 76.

    Dubinkina, V. B. et al. Links of gut microbiota composition with alcohol dependence syndrome and alcoholic liver disease. Microbiome 5, 141 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 77.

    Valles-Colomer, M. et al. The neuroactive potential of the human gut microbiota in quality of life and depression. Nat. Microbiol. 4, 623–632 (2019).

    CAS 
    Article 

    Google Scholar 

  • 78.

    Klindworth, A. et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucl. Acids Res. 41, 1–11 (2013).

    Article 
    CAS 

    Google Scholar 

  • 79.

    Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 80.

    Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 81.

    Bokulich, N. A. et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 6, 1–17 (2018).

    Article 

    Google Scholar 

  • 82.

    Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucl. Acids Res. 41, 590–596 (2013).

    Article 
    CAS 

    Google Scholar 

  • 83.

    McMurdie, P. J. & Holmes, S. Phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 84.

    Hsieh, T. C., Ma, K. H. & Chao, A. iNEXT: An R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol. Evol. 7, 1451–1456 (2016).

    Article 

    Google Scholar 

  • 85.

    Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 1–21 (2014).

    Article 
    CAS 

    Google Scholar 

  • Source link