Cervino, G. et al. Sandblasted and acid etched titanium dental implant surfaces systematic review and confocal microscopy evaluation. Materials 12, 1763 (2019).
Google Scholar
Smeets, R. et al. Impact of dental implant surface modifications on osseointegration. Biomed. Res. Int. 2016, 6285620 (2016).
Google Scholar
Miron, R. J. & Bosshardt, D. D. OsteoMacs: Key players around bone biomaterials. Biomaterials 82, 1–19 (2016).
Google Scholar
Takagi, M. Bone-implant interface biology: Foreign body reaction and periprosthetic osteolysis in artificial hip joints. J. Clin. Exp. Hematopathol. 41, 81–87 (2001).
Google Scholar
Loi, F. et al. Inflammation, fracture and bone repair. Bone 86, 119–130 (2016).
Google Scholar
Bang, S. M. et al. Osteoblastic and osteoclastic differentiation on SLA and hydrophilic modified SLA titanium surfaces. Clin. Oral Implants Res. 25, 831–837 (2014).
Google Scholar
Coelho, P. G., Jimbo, R., Tovar, N. & Bonfante, E. A. Osseointegration: Hierarchical designing encompassing the macrometer, micrometer, and nanometer length scales. Dent. Mater. 31, 37–52 (2015).
Google Scholar
Mendonça, G., Mendonça, D. B. S., Aragão, F. J. L. & Cooper, L. F. Advancing dental implant surface technology from micron- to nanotopography. Biomaterials 29, 3822–3835 (2008).
Google Scholar
Webster, T. J. & Ejiofor, J. U. Increased osteoblast adhesion on nanophase metals: Ti, Ti6Al4V, and CoCrMo. Biomaterials 25, 4731–4739 (2004).
Google Scholar
Ren, B. et al. Morphologically modified surface with hierarchical micro-/nano-structures for enhanced bioactivity of titanium implants. J. Mater. Sci. 53, 1–13 (2018).
Google Scholar
Wang, T., Wan, Y. & Liu, Z. Fabrication of hierarchical micro/nanotopography on bio-titanium alloy surface for cytocompatibility improvement. J. Mater. Sci. 51, 1–11 (2016).
Google Scholar
Wang, W. et al. The role of the Wnt/β-catenin pathway in the effect of implant topography on MG63 differentiation. Biomaterials 33, 7993–8002 (2012).
Google Scholar
Yang, Y. et al. Effect of the immune responses induced by implants in a integrated three-dimensional micro-nano topography on osseointegration. J. Biomed. Mater. Res. A. 30, e37134. https://doi.org/10.1002/jbm.a.37134 (2020).
Google Scholar
Julier, Z., Park, A. J., Briquez, P. S. & Martino, M. M. Promoting tissue regeneration by modulating the immune system. Acta Biomater. 53, 13–28 (2017).
Google Scholar
Dong, L. & Wang, C. Harnessing the power of macrophages/monocytes for enhanced bone tissue engineering. Trends Biotechnol. 31, 342–346 (2013).
Google Scholar
Pieters, B. C. H. et al. Macrophage-derived extracellular vesicles as carriers of alarmins and their potential involvement in bone homeostasis. Front. Immunol. 10, 1901. https://doi.org/10.3389/fimmu.2019.01901 (2019).
Google Scholar
Xue, J. et al. Transcriptome-based network analysis reveals a spectrum model of human macrophage activation. Immunity 40, 274–288 (2014).
Google Scholar
Välimäki, E. et al. Calpain activity is essential for ATP-driven unconventional vesicle-mediated protein secretion and inflammasome activation in human macrophages. J. Immunol. 197, 3315–3325 (2016).
Google Scholar
Chen, S. et al. Characterization of topographical effects on macrophage behavior in a foreign body response model. Biomaterials 31, 3479–3491 (2010).
Google Scholar
Chen, Z. et al. Tuning chemistry and topography of nanoengineered surfaces to manipulate immune response for bone regeneration applications [published correction appears in ACS Nano. 2019 Mar 26;13(3):3739]. ACS Nano 11, 4494–4506 (2017).
Google Scholar
Chen, Z. et al. Osteogenic differentiation of bone marrow MSCs by β-tricalcium phosphate stimulating macrophages via BMP2 signalling pathway. Biomaterials 35, 1507–1518 (2014).
Google Scholar
Ballotta, V., Driessen-Mol, A., Bouten, C. V. & Baaijens, F. P. Strain-dependent modulation of macrophage polarization within scaffolds. Biomaterials 35, 4919–4928 (2014).
Google Scholar
Sussman, E. M., Halpin, M. C., Muster, J., Moon, R. T. & Ratner, B. D. Porous implants modulate healing and induce shifts in local macrophage polarization in the foreign body reaction. Ann. Biomed. Eng. 42, 1508–1516 (2014).
Google Scholar
Adlerz, K. M., Aranda-Espinoza, H. & Hayenga, H. N. Substrate elasticity regulates the behavior of human monocyte-derived macrophages. Eur. Biophys. J. 45, 301–309 (2016).
Google Scholar
He, X. T. et al. Macrophage involvement affects matrix stiffness-related influences on cell osteogenesis under three-dimensional culture conditions. Acta Biomater. 71, 132–147 (2018).
Google Scholar
Friedemann, M. et al. Instructing human macrophage polarization by stiffness and glycosaminoglycan functionalization in 3D collagen networks. Adv. Healthc. Mater. 6, 1600967. https://doi.org/10.1002/adhm.201600967 (2017).
Google Scholar
Luu, T. U., Gott, S. C., Woo, B. W., Rao, M. P. & Liu, W. F. Micro- and nanopatterned topographical cues for regulating macrophage cell shape and phenotype. ACS Appl. Mater. Interfaces 7, 28665–28672 (2015).
Google Scholar
Pan, H. et al. Immunomodulation effect of a hierarchical macropore/nanosurface on osteogenesis and angiogenesis. Biomed. Mater. 12, 045006. https://doi.org/10.1088/1748-605X/aa6b7c (2017).
Google Scholar
Lőrincz, P., Mauvezin, C. & Juhász, G. Exploring Autophagy in Drosophila. Cells 6, 22. https://doi.org/10.3390/cells6030022 (2017).
Google Scholar
Saraswat, K. & Rizvi, S. I. Novel strategies for anti-aging drug discovery. Expert. Opin. Drug Discov. 12, 955–966 (2017).
Google Scholar
Song, W., Shi, M., Dong, M. & Zhang, Y. Inducing temporal and reversible autophagy by nanotopography for potential control of cell differentiation. ACS Appl. Mater. Interfaces 8, 33475–33483 (2016).
Google Scholar
Kaluđerović, M. R. et al. A key role of autophagy in osteoblast differentiation on titanium-based dental implants. Cells Tissues Organs 200, 265–277 (2014).
Google Scholar
Li, H. et al. Defective autophagy in osteoblasts induces endoplasmic reticulum stress and causes remarkable bone loss. Autophagy 14, 1726–1741 (2018).
Google Scholar
Vidoni, C. et al. Autophagy drives osteogenic differ entiation of human gingival mesenchymal stem cells. Cell Commun. Signal. 17, 98 (2019).
Google Scholar
Cheng, Y. et al. Strontium promotes osteogenic differentiation by activating autophagy via the the AMPK/mTOR signaling pathway in MC3T3-E1 cells. Int. J. Mol. Med. 44, 652–660 (2019).
Google Scholar
Zhang, T., Jiang, M. Y., Yin, X. J., Yao, P. & Sun, H. Q. Mechanism of exosomes involved in osteoimmunity promoting osseointegration around titanium implants with small-scale topography. Front. Bioeng. Biotechnol. 15(9), 682384 (2021).
Google Scholar
Trindade, R., Albrektsson, T. & Wennerberg, A. Current concepts for the biological basis of dental implants: Foreign body equilibrium and osseointegration dynamics. Oral Maxillofac. Surg. Clin. N. Am. 27, 175–183 (2015).
Google Scholar
Gibon, E., Lu, L. Y., Nathan, K. & Goodman, S. B. Inflammation, ageing, and bone regeneration. J. Orthop. Transl. 10, 28–35 (2017).
Cho, S. W. et al. Osteal macrophages support physiologic skeletal remodeling and anabolic actions of parathyroid hormone in bone. Proc. Natl. Acad. Sci. USA 111, 1545–1550 (2014).
Google Scholar
Guihard, P. et al. Induction of osteogenesis in mesenchymal stem cells by activated monocytes/macrophages depends on oncostatin M signaling. Stem Cells. 30, 762–772 (2012).
Google Scholar
Mizushima, N. & Komatsu, M. Autophagy: Renovation of cells and tissues. Cell 147, 728–741 (2011).
Google Scholar
Qiu, S. et al. Overactive autophagy is a pathological mechanism underlying premature suture ossification in nonsyndromic craniosynostosis. Sci. Rep. 8, 6525. https://doi.org/10.1038/s41598-018-24885-z (2018).
Google Scholar
Xu, R. et al. Simvastatin improves oral implant osseointegration via enhanced autophagy and osteogenesis of BMSCs and inhibited osteoclast activity. J. Tissue Eng. Regen. Med. 12, 1209–1219 (2018).
Google Scholar
Liu, X. et al. Staphylococcal lipoteichoic acid promotes osteogenic differentiation of mouse mesenchymal stem cells by increasing autophagic activity. Biochem. Biophys. Res. Commun. 485, 421–426 (2017).
Google Scholar
Li, Y., Su, J., Sun, W., Cai, L. & Deng, Z. AMP-activated protein kinase stimulates osteoblast diferentiation and mineralization through autophagy induction. Int. J. Mol. Med. 41, 2535–2544 (2018).
Google Scholar
Tanida, I., Ueno, T. & Kominami, E. LC3 and autophagy. Methods Mol. Biol. 445, 77–88 (2008).
Google Scholar
Lu, J. et al. iRoot BP Plus promotes osteo/odontogenic differentiation of bone marrow mesenchymal stem cells via MAPK pathways and autophagy. Stem Cell Res. Ther. 10, 222. https://doi.org/10.1186/s13287-019-1345-3 (2019).
Google Scholar
Velasco-Ortega, E., Jos, A., Cameán, A. M., Pato-Mourelo, J. & Segura-Egea, J. J. In vitro evaluation of cytotoxicity and genotoxicity of a commercial titanium alloy for dental implantology. Mutat. Res. 702, 17–23 (2010).
Google Scholar
Saulacic, N., Bosshardt, D. D., Bornstein, M. M., Berner, S. & Buser, D. Bone apposition to a titanium–zirconium alloy implant, as compared to two other titanium-containing implants. Eur. Cell Mater. 23, 273–286 (2012).
Google Scholar
Man, N., Chen, Y., Zheng, F., Zhou, W. & Wen, L. P. Induction of genuine autophagy by cationic lipids in mammalian cells. Autophagy 6, 449–454 (2010).
Google Scholar

