Preloader

The role of autophagy in the process of osseointegration around titanium implants with micro-nano topography promoted by osteoimmunity

  • 1.

    Cervino, G. et al. Sandblasted and acid etched titanium dental implant surfaces systematic review and confocal microscopy evaluation. Materials 12, 1763 (2019).

    ADS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 

  • 2.

    Smeets, R. et al. Impact of dental implant surface modifications on osseointegration. Biomed. Res. Int. 2016, 6285620 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 3.

    Miron, R. J. & Bosshardt, D. D. OsteoMacs: Key players around bone biomaterials. Biomaterials 82, 1–19 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 4.

    Takagi, M. Bone-implant interface biology: Foreign body reaction and periprosthetic osteolysis in artificial hip joints. J. Clin. Exp. Hematopathol. 41, 81–87 (2001).

    Article 

    Google Scholar 

  • 5.

    Loi, F. et al. Inflammation, fracture and bone repair. Bone 86, 119–130 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 6.

    Bang, S. M. et al. Osteoblastic and osteoclastic differentiation on SLA and hydrophilic modified SLA titanium surfaces. Clin. Oral Implants Res. 25, 831–837 (2014).

    PubMed 
    Article 

    Google Scholar 

  • 7.

    Coelho, P. G., Jimbo, R., Tovar, N. & Bonfante, E. A. Osseointegration: Hierarchical designing encompassing the macrometer, micrometer, and nanometer length scales. Dent. Mater. 31, 37–52 (2015).

    PubMed 
    Article 

    Google Scholar 

  • 8.

    Mendonça, G., Mendonça, D. B. S., Aragão, F. J. L. & Cooper, L. F. Advancing dental implant surface technology from micron- to nanotopography. Biomaterials 29, 3822–3835 (2008).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 9.

    Webster, T. J. & Ejiofor, J. U. Increased osteoblast adhesion on nanophase metals: Ti, Ti6Al4V, and CoCrMo. Biomaterials 25, 4731–4739 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 10.

    Ren, B. et al. Morphologically modified surface with hierarchical micro-/nano-structures for enhanced bioactivity of titanium implants. J. Mater. Sci. 53, 1–13 (2018).

    Article 
    CAS 

    Google Scholar 

  • 11.

    Wang, T., Wan, Y. & Liu, Z. Fabrication of hierarchical micro/nanotopography on bio-titanium alloy surface for cytocompatibility improvement. J. Mater. Sci. 51, 1–11 (2016).

    Article 
    CAS 

    Google Scholar 

  • 12.

    Wang, W. et al. The role of the Wnt/β-catenin pathway in the effect of implant topography on MG63 differentiation. Biomaterials 33, 7993–8002 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 13.

    Yang, Y. et al. Effect of the immune responses induced by implants in a integrated three-dimensional micro-nano topography on osseointegration. J. Biomed. Mater. Res. A. 30, e37134. https://doi.org/10.1002/jbm.a.37134 (2020).

    CAS 
    Article 

    Google Scholar 

  • 14.

    Julier, Z., Park, A. J., Briquez, P. S. & Martino, M. M. Promoting tissue regeneration by modulating the immune system. Acta Biomater. 53, 13–28 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 15.

    Dong, L. & Wang, C. Harnessing the power of macrophages/monocytes for enhanced bone tissue engineering. Trends Biotechnol. 31, 342–346 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 16.

    Pieters, B. C. H. et al. Macrophage-derived extracellular vesicles as carriers of alarmins and their potential involvement in bone homeostasis. Front. Immunol. 10, 1901. https://doi.org/10.3389/fimmu.2019.01901 (2019).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 17.

    Xue, J. et al. Transcriptome-based network analysis reveals a spectrum model of human macrophage activation. Immunity 40, 274–288 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 18.

    Välimäki, E. et al. Calpain activity is essential for ATP-driven unconventional vesicle-mediated protein secretion and inflammasome activation in human macrophages. J. Immunol. 197, 3315–3325 (2016).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 19.

    Chen, S. et al. Characterization of topographical effects on macrophage behavior in a foreign body response model. Biomaterials 31, 3479–3491 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 20.

    Chen, Z. et al. Tuning chemistry and topography of nanoengineered surfaces to manipulate immune response for bone regeneration applications [published correction appears in ACS Nano. 2019 Mar 26;13(3):3739]. ACS Nano 11, 4494–4506 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 21.

    Chen, Z. et al. Osteogenic differentiation of bone marrow MSCs by β-tricalcium phosphate stimulating macrophages via BMP2 signalling pathway. Biomaterials 35, 1507–1518 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 22.

    Ballotta, V., Driessen-Mol, A., Bouten, C. V. & Baaijens, F. P. Strain-dependent modulation of macrophage polarization within scaffolds. Biomaterials 35, 4919–4928 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 23.

    Sussman, E. M., Halpin, M. C., Muster, J., Moon, R. T. & Ratner, B. D. Porous implants modulate healing and induce shifts in local macrophage polarization in the foreign body reaction. Ann. Biomed. Eng. 42, 1508–1516 (2014).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 24.

    Adlerz, K. M., Aranda-Espinoza, H. & Hayenga, H. N. Substrate elasticity regulates the behavior of human monocyte-derived macrophages. Eur. Biophys. J. 45, 301–309 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 25.

    He, X. T. et al. Macrophage involvement affects matrix stiffness-related influences on cell osteogenesis under three-dimensional culture conditions. Acta Biomater. 71, 132–147 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 26.

    Friedemann, M. et al. Instructing human macrophage polarization by stiffness and glycosaminoglycan functionalization in 3D collagen networks. Adv. Healthc. Mater. 6, 1600967. https://doi.org/10.1002/adhm.201600967 (2017).

    CAS 
    Article 

    Google Scholar 

  • 27.

    Luu, T. U., Gott, S. C., Woo, B. W., Rao, M. P. & Liu, W. F. Micro- and nanopatterned topographical cues for regulating macrophage cell shape and phenotype. ACS Appl. Mater. Interfaces 7, 28665–28672 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 28.

    Pan, H. et al. Immunomodulation effect of a hierarchical macropore/nanosurface on osteogenesis and angiogenesis. Biomed. Mater. 12, 045006. https://doi.org/10.1088/1748-605X/aa6b7c (2017).

    ADS 
    Article 
    PubMed 

    Google Scholar 

  • 29.

    Lőrincz, P., Mauvezin, C. & Juhász, G. Exploring Autophagy in Drosophila. Cells 6, 22. https://doi.org/10.3390/cells6030022 (2017).

    CAS 
    Article 
    PubMed Central 
    PubMed 

    Google Scholar 

  • 30.

    Saraswat, K. & Rizvi, S. I. Novel strategies for anti-aging drug discovery. Expert. Opin. Drug Discov. 12, 955–966 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 31.

    Song, W., Shi, M., Dong, M. & Zhang, Y. Inducing temporal and reversible autophagy by nanotopography for potential control of cell differentiation. ACS Appl. Mater. Interfaces 8, 33475–33483 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 32.

    Kaluđerović, M. R. et al. A key role of autophagy in osteoblast differentiation on titanium-based dental implants. Cells Tissues Organs 200, 265–277 (2014).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 33.

    Li, H. et al. Defective autophagy in osteoblasts induces endoplasmic reticulum stress and causes remarkable bone loss. Autophagy 14, 1726–1741 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 34.

    Vidoni, C. et al. Autophagy drives osteogenic differ entiation of human gingival mesenchymal stem cells. Cell Commun. Signal. 17, 98 (2019).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 35.

    Cheng, Y. et al. Strontium promotes osteogenic differentiation by activating autophagy via the the AMPK/mTOR signaling pathway in MC3T3-E1 cells. Int. J. Mol. Med. 44, 652–660 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 36.

    Zhang, T., Jiang, M. Y., Yin, X. J., Yao, P. & Sun, H. Q. Mechanism of exosomes involved in osteoimmunity promoting osseointegration around titanium implants with small-scale topography. Front. Bioeng. Biotechnol. 15(9), 682384 (2021).

    Article 

    Google Scholar 

  • 37.

    Trindade, R., Albrektsson, T. & Wennerberg, A. Current concepts for the biological basis of dental implants: Foreign body equilibrium and osseointegration dynamics. Oral Maxillofac. Surg. Clin. N. Am. 27, 175–183 (2015).

    Article 

    Google Scholar 

  • 38.

    Gibon, E., Lu, L. Y., Nathan, K. & Goodman, S. B. Inflammation, ageing, and bone regeneration. J. Orthop. Transl. 10, 28–35 (2017).

    Google Scholar 

  • 39.

    Cho, S. W. et al. Osteal macrophages support physiologic skeletal remodeling and anabolic actions of parathyroid hormone in bone. Proc. Natl. Acad. Sci. USA 111, 1545–1550 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 40.

    Guihard, P. et al. Induction of osteogenesis in mesenchymal stem cells by activated monocytes/macrophages depends on oncostatin M signaling. Stem Cells. 30, 762–772 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 41.

    Mizushima, N. & Komatsu, M. Autophagy: Renovation of cells and tissues. Cell 147, 728–741 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 42.

    Qiu, S. et al. Overactive autophagy is a pathological mechanism underlying premature suture ossification in nonsyndromic craniosynostosis. Sci. Rep. 8, 6525. https://doi.org/10.1038/s41598-018-24885-z (2018).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 43.

    Xu, R. et al. Simvastatin improves oral implant osseointegration via enhanced autophagy and osteogenesis of BMSCs and inhibited osteoclast activity. J. Tissue Eng. Regen. Med. 12, 1209–1219 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 44.

    Liu, X. et al. Staphylococcal lipoteichoic acid promotes osteogenic differentiation of mouse mesenchymal stem cells by increasing autophagic activity. Biochem. Biophys. Res. Commun. 485, 421–426 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 45.

    Li, Y., Su, J., Sun, W., Cai, L. & Deng, Z. AMP-activated protein kinase stimulates osteoblast diferentiation and mineralization through autophagy induction. Int. J. Mol. Med. 41, 2535–2544 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 46.

    Tanida, I., Ueno, T. & Kominami, E. LC3 and autophagy. Methods Mol. Biol. 445, 77–88 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 47.

    Lu, J. et al. iRoot BP Plus promotes osteo/odontogenic differentiation of bone marrow mesenchymal stem cells via MAPK pathways and autophagy. Stem Cell Res. Ther. 10, 222. https://doi.org/10.1186/s13287-019-1345-3 (2019).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 48.

    Velasco-Ortega, E., Jos, A., Cameán, A. M., Pato-Mourelo, J. & Segura-Egea, J. J. In vitro evaluation of cytotoxicity and genotoxicity of a commercial titanium alloy for dental implantology. Mutat. Res. 702, 17–23 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 49.

    Saulacic, N., Bosshardt, D. D., Bornstein, M. M., Berner, S. & Buser, D. Bone apposition to a titanium–zirconium alloy implant, as compared to two other titanium-containing implants. Eur. Cell Mater. 23, 273–286 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 50.

    Man, N., Chen, Y., Zheng, F., Zhou, W. & Wen, L. P. Induction of genuine autophagy by cationic lipids in mammalian cells. Autophagy 6, 449–454 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Source link