Preloader

The N-terminal tail of the hydrophobin SC16 is not required for rodlet formation

  • 1.

    Schuren, F. H. J. & Wessels, J. G. H. Two genes specifically expressed in fruiting dikaryons of Schizophyllum commune: homologies with a gene not regulated by mating-type genes. Gene 90, 199–205 (1990).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 2.

    Bayry, J., Aimanianda, V., Guijarro, J. I., Sunde, M. & Latgé, J. P. Hydrophobins-unique fungal proteins. PLoS Pathog. 8, 6–9 (2012).

    Article 

    Google Scholar 

  • 3.

    Wösten, H. A. B. & De Vocht, M. L. Hydrophobins, the fungal coat unravelled. Biochim. Biophys. Acta Rev. Biomembr. 1469, 79–86 (2000).

    Article 

    Google Scholar 

  • 4.

    Grünbacher, A. et al. Six hydrophobins are involved in hydrophobin rodlet formation in Aspergillus nidulans and contribute to hydrophobicity of the spore surface. PLoS ONE 9, 1–10 (2014).

    Article 

    Google Scholar 

  • 5.

    Hektor, H. J. & Scholtmeijer, K. Hydrophobins: Proteins with potential. Curr. Opin. Biotechnol. 16, 434–439 (2005).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 6.

    Linder, M. B., Szilvay, G. R., Nakari-Setälä, T. & Penttilä, M. E. Hydrophobins: The protein-amphiphiles of filamentous fungi. FEMS Microbiol. Rev. 29, 877–896 (2005).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 7.

    Wösten, H. A. B. & Scholtmeijer, K. Applications of hydrophobins: current state and perspectives. Appl. Microbiol. Biotechnol. 99, 1587–1597 (2015).

    Article 
    PubMed 

    Google Scholar 

  • 8.

    Quarantin, A. et al. Different hydrophobins of fusarium graminearum are involved in hyphal growth, attachment, water-air interface penetration and plant infection. Front. Microbiol. 10, 751 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 9.

    Wessels, J., De Vries, O., Asgeirsdottir, S. A. & Schuren, F. Hydrophobin genes involved in formation of aerial hyphae and fruit bodies in schizophyllum. Plant Cell 3, 793–799 (1991).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 10.

    Beever, R. E. & Dempsey, G. P. Function of rodlets on the surface of fungal spores. Nature 272, 608–610 (1978).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 11.

    Talbot, N. J. et al. MPG1 encodes a fungal hydrophobin involved in surface interactions during infection-related development of Magnaporthe grisea. Plant Cell 8, 985–999 (1996).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 12.

    Talbot, N. J., Ebbole, D. J. & Hamer, J. E. Identification and characterization of MPG1, a gene involved in pathogenicity from the rice blast fungus Magnaporthe grisea. Plant Cell 5, 1575–1590 (1993).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 13.

    Haas Jimoh Akanbi, M. et al. Use of hydrophobins in formulation of water insoluble drugs for oral administration. Colloids Surf. B Biointerfaces 75, 526–531 (2010).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 14.

    Aimanianda, V. et al. Surface hydrophobin prevents immune recognition of airborne fungal spores. Nature 460, 1117–1121 (2009).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 15.

    Scholtmeijer, K., Wessels, J. G. H. & Wösten, H. A. B. Fungal hydrophobins in medical and technical applications. Appl. Microbiol. Biotechnol. 56, 1–8 (2001).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 16.

    Wosten, H., De Vries, O. & Wessels, J. Interfacial self-assembly of a fungal hydrophobin into a hydrophobic rodlet layer. Plant Cell 5, 1567–1574 (1993).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 17.

    Patravale, V. B., Date, A. A. & Kulkarni, R. M. Nanosuspensions: A promising drug delivery strategy. J. Pharm. Pharmacol. 56, 827–840 (2004).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 18.

    Kwan, A. H. Y. et al. Structural basis for rodlet assembly in fungal hydrophobins. Proc. Natl. Acad. Sci. USA. 103, 3621–3626 (2006).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 19.

    Wessels, J. G. H. Developmental regulation of fungal cell wall formation. Annu. Rev. Phytopathol. 32, 413–437 (1994).

    CAS 
    Article 

    Google Scholar 

  • 20.

    Gandier, J.-A. et al. Characterization of a Basidiomycota hydrophobin reveals the structural basis for a high-similarity class I subdivision. Sci. Rep. 7, 45863 (2017).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 21.

    Macindoe, I. et al. Self-assembly of functional, amphipathic amyloid monolayers by the fungal hydrophobin EAS. Proc. Natl. Acad. Sci. USA. 109, E804–E811 (2012).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 22.

    Tsuchiya, Y., Nakamura, H. & Kinoshita, K. Discrimination between biological interfaces and crystal-packing contacts. Adv. Appl. Bioinform. Chem. 1, 99–113 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 23.

    Bliven, S., Lafita, A., Parker, A., Capitani, G. & Duarte, J. M. Automated evaluation of quaternary structures from protein crystals. PLoS Comput. Biol. 14, e1006104 (2018).

    ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 24.

    Chakrabarti, P. & Janin, J. Dissecting protein-protein recognition sites. Proteins 47, 334–343 (2002).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 25.

    GadeMalmos, K. et al. ThT 101: A primer on the use of thioflavin T to investigate amyloid formation. Amyloid 24, 1–16 (2017).

    CAS 
    Article 

    Google Scholar 

  • 26.

    Morris, V. K., Kwan, A. H. & Sunde, M. Analysis of the structure and conformational states of DewA gives insight into the assembly of the fungal hydrophobins. J. Mol. Biol. 425, 244–256 (2013).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 27.

    Kwan, A. H. et al. The Cys3-Cys4 loop of the hydrophobin EAS is not required for rodlet formation and surface activity. J. Mol. Biol. 382, 708–720 (2008).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 28.

    Kenward, C., Vergunst, K. L. & Langelaan, D. N. Expression, purification, and refolding of diverse class IB hydrophobins. Protein Expr. Purif. 176, 105732 (2020).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 29.

    Studier, F. W. Protein production by auto-induction in high-density shaking cultures. Protein Expr. Purif. 41, 207–234 (2005).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 30.

    Fodje, M. et al. MxDC and MxLIVE: Software for data acquisition, information management and remote access to macromolecular crystallography beamlines. J. Synch. Radiat. 19, 274–280 (2012).

    CAS 
    Article 

    Google Scholar 

  • 31.

    Fodje, M. et al. 08B1-1: An automated beamline for macromolecular crystallography experiments at the Canadian Light Source. J. Synch. Radiat. 21, 633–637 (2014).

    CAS 
    Article 

    Google Scholar 

  • 32.

    Adams, P. D. et al. PHENIX: A comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D. 66, 213–221 (2010).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 33.

    Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D. 66, 486–501 (2010).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 34.

    Berman, H. M. The protein data bank. Nucleic Acids Res. 28, 235–242 (2000).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 35.

    Cavanagh, J. Protein NMR Spectroscopy: Principles and Practice (Academic Press, 2007).

    Google Scholar 

  • 36.

    Vranken, W. F. et al. The CCPN data model for NMR spectroscopy: development of a software pipeline. Proteins 59, 687–696 (2005).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Source link