Schuren, F. H. J. & Wessels, J. G. H. Two genes specifically expressed in fruiting dikaryons of Schizophyllum commune: homologies with a gene not regulated by mating-type genes. Gene 90, 199–205 (1990).
Google Scholar
Bayry, J., Aimanianda, V., Guijarro, J. I., Sunde, M. & Latgé, J. P. Hydrophobins-unique fungal proteins. PLoS Pathog. 8, 6–9 (2012).
Google Scholar
Wösten, H. A. B. & De Vocht, M. L. Hydrophobins, the fungal coat unravelled. Biochim. Biophys. Acta Rev. Biomembr. 1469, 79–86 (2000).
Google Scholar
Grünbacher, A. et al. Six hydrophobins are involved in hydrophobin rodlet formation in Aspergillus nidulans and contribute to hydrophobicity of the spore surface. PLoS ONE 9, 1–10 (2014).
Google Scholar
Hektor, H. J. & Scholtmeijer, K. Hydrophobins: Proteins with potential. Curr. Opin. Biotechnol. 16, 434–439 (2005).
Google Scholar
Linder, M. B., Szilvay, G. R., Nakari-Setälä, T. & Penttilä, M. E. Hydrophobins: The protein-amphiphiles of filamentous fungi. FEMS Microbiol. Rev. 29, 877–896 (2005).
Google Scholar
Wösten, H. A. B. & Scholtmeijer, K. Applications of hydrophobins: current state and perspectives. Appl. Microbiol. Biotechnol. 99, 1587–1597 (2015).
Google Scholar
Quarantin, A. et al. Different hydrophobins of fusarium graminearum are involved in hyphal growth, attachment, water-air interface penetration and plant infection. Front. Microbiol. 10, 751 (2019).
Google Scholar
Wessels, J., De Vries, O., Asgeirsdottir, S. A. & Schuren, F. Hydrophobin genes involved in formation of aerial hyphae and fruit bodies in schizophyllum. Plant Cell 3, 793–799 (1991).
Google Scholar
Beever, R. E. & Dempsey, G. P. Function of rodlets on the surface of fungal spores. Nature 272, 608–610 (1978).
Google Scholar
Talbot, N. J. et al. MPG1 encodes a fungal hydrophobin involved in surface interactions during infection-related development of Magnaporthe grisea. Plant Cell 8, 985–999 (1996).
Google Scholar
Talbot, N. J., Ebbole, D. J. & Hamer, J. E. Identification and characterization of MPG1, a gene involved in pathogenicity from the rice blast fungus Magnaporthe grisea. Plant Cell 5, 1575–1590 (1993).
Google Scholar
Haas Jimoh Akanbi, M. et al. Use of hydrophobins in formulation of water insoluble drugs for oral administration. Colloids Surf. B Biointerfaces 75, 526–531 (2010).
Google Scholar
Aimanianda, V. et al. Surface hydrophobin prevents immune recognition of airborne fungal spores. Nature 460, 1117–1121 (2009).
Google Scholar
Scholtmeijer, K., Wessels, J. G. H. & Wösten, H. A. B. Fungal hydrophobins in medical and technical applications. Appl. Microbiol. Biotechnol. 56, 1–8 (2001).
Google Scholar
Wosten, H., De Vries, O. & Wessels, J. Interfacial self-assembly of a fungal hydrophobin into a hydrophobic rodlet layer. Plant Cell 5, 1567–1574 (1993).
Google Scholar
Patravale, V. B., Date, A. A. & Kulkarni, R. M. Nanosuspensions: A promising drug delivery strategy. J. Pharm. Pharmacol. 56, 827–840 (2004).
Google Scholar
Kwan, A. H. Y. et al. Structural basis for rodlet assembly in fungal hydrophobins. Proc. Natl. Acad. Sci. USA. 103, 3621–3626 (2006).
Google Scholar
Wessels, J. G. H. Developmental regulation of fungal cell wall formation. Annu. Rev. Phytopathol. 32, 413–437 (1994).
Google Scholar
Gandier, J.-A. et al. Characterization of a Basidiomycota hydrophobin reveals the structural basis for a high-similarity class I subdivision. Sci. Rep. 7, 45863 (2017).
Google Scholar
Macindoe, I. et al. Self-assembly of functional, amphipathic amyloid monolayers by the fungal hydrophobin EAS. Proc. Natl. Acad. Sci. USA. 109, E804–E811 (2012).
Google Scholar
Tsuchiya, Y., Nakamura, H. & Kinoshita, K. Discrimination between biological interfaces and crystal-packing contacts. Adv. Appl. Bioinform. Chem. 1, 99–113 (2008).
Google Scholar
Bliven, S., Lafita, A., Parker, A., Capitani, G. & Duarte, J. M. Automated evaluation of quaternary structures from protein crystals. PLoS Comput. Biol. 14, e1006104 (2018).
Google Scholar
Chakrabarti, P. & Janin, J. Dissecting protein-protein recognition sites. Proteins 47, 334–343 (2002).
Google Scholar
GadeMalmos, K. et al. ThT 101: A primer on the use of thioflavin T to investigate amyloid formation. Amyloid 24, 1–16 (2017).
Google Scholar
Morris, V. K., Kwan, A. H. & Sunde, M. Analysis of the structure and conformational states of DewA gives insight into the assembly of the fungal hydrophobins. J. Mol. Biol. 425, 244–256 (2013).
Google Scholar
Kwan, A. H. et al. The Cys3-Cys4 loop of the hydrophobin EAS is not required for rodlet formation and surface activity. J. Mol. Biol. 382, 708–720 (2008).
Google Scholar
Kenward, C., Vergunst, K. L. & Langelaan, D. N. Expression, purification, and refolding of diverse class IB hydrophobins. Protein Expr. Purif. 176, 105732 (2020).
Google Scholar
Studier, F. W. Protein production by auto-induction in high-density shaking cultures. Protein Expr. Purif. 41, 207–234 (2005).
Google Scholar
Fodje, M. et al. MxDC and MxLIVE: Software for data acquisition, information management and remote access to macromolecular crystallography beamlines. J. Synch. Radiat. 19, 274–280 (2012).
Google Scholar
Fodje, M. et al. 08B1-1: An automated beamline for macromolecular crystallography experiments at the Canadian Light Source. J. Synch. Radiat. 21, 633–637 (2014).
Google Scholar
Adams, P. D. et al. PHENIX: A comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D. 66, 213–221 (2010).
Google Scholar
Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D. 66, 486–501 (2010).
Google Scholar
Berman, H. M. The protein data bank. Nucleic Acids Res. 28, 235–242 (2000).
Google Scholar
Cavanagh, J. Protein NMR Spectroscopy: Principles and Practice (Academic Press, 2007).
Vranken, W. F. et al. The CCPN data model for NMR spectroscopy: development of a software pipeline. Proteins 59, 687–696 (2005).
Google Scholar

