Preloader

The metabolism of cells regulates their sensitivity to NK cells depending on p53 status

  • Warburg, O. On respiratory impairment in cancer cells. Science 124, 269–270 (1956).

    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • Villalba, M. et al. From tumor cell metabolism to tumor immune escape. Int. J. Biochem. Cell Biol. 45, 106–113 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Liu, H. et al. Role of NKG2D and its ligands in cancer immunotherapy. Am. J. Cancer Res. 9, 2064–2078 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Catalán, E. et al. MHC-I modulation due to metabolic changes regulates tumor sensitivity to CTL and NK cells. Oncoimmunology 4, e985924 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Siska, P. J., Singer, K., Evert, K., Renner, K. & Kreutz, M. The immunological Warburg effect: Can a metabolic-tumor-stroma score (MeTS) guide cancer immunotherapy? Immunol. Rev. 295, 187–202 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Villalba, M. et al. Chemical metabolic inhibitors for the treatment of blood-borne cancers. Anticancer Agents Med. Chem. 14, 223–232 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Allende-Vega, N. et al. Metformin sensitizes leukemic cells to cytotoxic lymphocytes by increasing expression of intercellular adhesion molecule-1 (ICAM-1). Sci. Rep. 12(1), 1–12. https://doi.org/10.20944/preprints202107.0484.v1 (2022).

    Article 

    Google Scholar 

  • LaMoia, T. E. & Shulman, G. I. Cellular and molecular mechanisms of metformin action. Endocr. Rev. https://doi.org/10.1210/endrev/bnaa023 (2020).

    Article 
    PubMed Central 

    Google Scholar 

  • Stacpoole, P. W. et al. Evaluation of long-term treatment of children with congenital lactic acidosis with dichloroacetate. Pediatrics 121, e1223–e1228 (2008).

    PubMed 

    Google Scholar 

  • Khan, A. U. H. et al. Mitochondrial complex I activity signals antioxidant response through ERK5. Sci. Rep. 8, 7420 (2018).

    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • Ohashi, T. et al. Dichloroacetate improves immune dysfunction caused by tumor-secreted lactic acid and increases antitumor immunoreactivity. Int. J. Cancer 133, 1107–1118 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Allende-Vega, N. & Villalba, M. Metabolic stress controls mutant p53 R248Q stability in acute myeloid leukemia cells. Sci. Rep. 9, 5637 (2019).

    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • Agnoletto, C. et al. The anti-leukemic activity of sodium dichloroacetate in p53mutated/null cells is mediated by a p53-independent ILF3/p21 pathway. Oncotarget 6, 2385 (2014).

    PubMed Central 

    Google Scholar 

  • Agnoletto, C. et al. Sodium dichloroacetate exhibits anti-leukemic activity in B-chronic lymphocytic leukemia (B-CLL) and synergizes with the p53 activator Nutlin-3. Oncotarget 5, 4347–4360 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Belkahla, S. et al. Changes in metabolism affect expression of ABC transporters through ERK5 and depending on p53 status. Oncotarget 9, 1114–1129 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Allende-Vega, N. et al. The presence of wild type p53 in hematological cancers improves the efficacy of combinational therapy targeting metabolism. Oncotarget 6, 19228–19245 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Gottlieb, E. & Vousden, K. H. p53 regulation of metabolic pathways. Cold Spring Harbor Persp. Biol. 2, a001040 (2010).

    Google Scholar 

  • Puzio-Kuter, A. M. The role of p53 in metabolic regulation. Genes Cancer 2, 385–391 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hollstein, M., Sidransky, D., Vogelstein, B. & Harris, C. C. p53 mutations in human cancers. Science 253, 49–53 (1991).

    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • Saha, M. N., Qiu, L. & Chang, H. Targeting p53 by small molecules in hematological malignancies. J. Hematol. Oncol. 6, 23 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Raulet, D. H., Gasser, S., Gowen, B. G., Deng, W. & Jung, H. Regulation of ligands for the NKG2D activating receptor. Annu. Rev. Immunol. 31, 413–441 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Huergo-Zapico, L. et al. Molecular bases for the regulation of NKG2D ligands in cancer. Front. Immunol. 5, 106 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Veneziani, I. et al. Nutlin-3a enhances natural killer cell-mediated killing of neuroblastoma by restoring p53-dependent expression of ligands for NKG2D and DNAM-1 receptors. Cancer Immunol. Res. 9, 170–183 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Høgh, R. I. et al. Metabolism of short-chain fatty acid propionate induces surface expression of NKG2D ligands on cancer cells. FASEB J. 34, 15531–15546 (2020).

    PubMed 

    Google Scholar 

  • Andresen, L. et al. Propionic acid secreted from propionibacteria induces NKG2D ligand expression on human-activated T lymphocytes and cancer cells. J. Immunol. 183, 897–906 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • McCarthy, M. T. et al. Purine nucleotide metabolism regulates expression of the human immune ligand MICA. J. Biol. Chem. 293, 3913–3924 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Xia, C., Liu, C., He, Z., Cai, Y. & Chen, J. Metformin inhibits cervical cancer cell proliferation by modulating PI3K/Akt-induced major histocompatibility complex class I-related chain A gene expression. J. Exp. Clin. Cancer Res. 39, 127 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kruger, S. et al. Advances in cancer immunotherapy 2019—Latest trends. J. Exp. Clin. Cancer Res. 38, 268 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, E. et al. Use of CAR-transduced natural killer cells in CD19-positive lymphoid tumors. N. Engl. J. Med. 382, 545–553 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Michelakis, E. D. et al. Metabolic modulation of glioblastoma with dichloroacetate. Sci. Transl. Med. 2, 31–34 (2010).

    Google Scholar 

  • Sanchez-Martinez, D. et al. Expansion of allogeneic NK cells with efficient antibody-dependent cell cytotoxicity against multiple tumor cells. Theranostic 8, 3856–3869 (2018).

    CAS 

    Google Scholar 

  • Reina-Ortiz, C. et al. Expanded NK cells from umbilical cord blood and adult peripheral blood combined with daratumumab are effective against tumor cells from multiple myeloma patients. Oncoimmunology 10, 1853314 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Calvo, T. et al. Expanded and activated allogeneic NK cells are cytotoxic against B-chronic lymphocytic leukemia (B-CLL) cells with sporadic cases of resistance. Sci. Rep. 10, 19398 (2020).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • Hu, J., Batth, I. S., Xia, X. & Li, S. Regulation of NKG2D(+)CD8(+) T-cell-mediated antitumor immune surveillance: Identification of a novel CD28 activation-mediated, STAT3 phosphorylation-dependent mechanism. Oncoimmunology 5, e1252012 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Lanier, L. L. NKG2D receptor and its ligands in host defense. Cancer Immunol. Res. 3, 575–582 (2015).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • Urlaub, D., Höfer, K., Müller, M.-L. & Watzl, C. LFA-1 activation in NK cells and their subsets: Influence of receptors, maturation, and cytokine stimulation. J. Immunol. 198, 1944–1951 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Nunez, D. et al. A functional analysis on the interspecies interaction between mouse LFA-1 and human intercellular adhesion molecule-1 at the cell level. Front. Immunol. 8, 1817 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Martínez-Lostao, L., Anel, A. & Pardo, J. How do cytotoxic lymphocytes kill cancer cells? Clin. Cancer Res. 21, 5047–5056 (2015).

    PubMed 

    Google Scholar 

  • Stacpoole, P. W., Kurtz, T. L., Han, Z. & Langaee, T. Role of dichloroacetate in the treatment of genetic mitochondrial diseases. Adv. Drug Deliv. Rev. 60, 1478–1487 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Prajapati, K., Perez, C., Rojas, L. B. P., Burke, B. & Guevara-Patino, J. A. Functions of NKG2D in CD8 + T cells: An opportunity for immunotherapy. Cell. Mol. Immunol. 15, 470–479 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jose, C. & Rossignol, R. Rationale for mitochondria-targeting strategies in cancer bioenergetic therapies. Int. J. Biochem. Cell Biol. 45, 123–129 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Al-Zoughbi, W. et al. Tumor macroenvironment and metabolism. Semin. Oncol. 41, 281–295 (2014).

    PubMed 

    Google Scholar 

  • Li, Z. & Kang, Y. Lipid metabolism fuels cancer’s spread. Cell Metab. 25, 228–230 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Chockley, P. J. et al. Epithelial-mesenchymal transition leads to NK cell-mediated metastasis-specific immunosurveillance in lung cancer. J. Clin. Investig. 128, 1384–1396 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Schaller, J. & Agudo, J. Metastatic colonization: Escaping immune surveillance. Cancers (Basel) 12, 3385 (2020).

    CAS 

    Google Scholar 

  • Lo, H. C. et al. Resistance to natural killer cell immunosurveillance confers a selective advantage to polyclonal metastasis. Nat. Cancer 1, 709–722 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Matsuhashi, T. et al. Activation of pyruvate dehydrogenase by dichloroacetate has the potential to induce epigenetic remodeling in the heart. J. Mol. Cell Cardiol. 82, 116–124 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Diamond, M. P., Williams, P. E., Lacy, W. W. & Cherrington, A. D. Effect of dichloroacetate on gluconeogenesis in vivo in the presence of a fixed gluconeogenic substrate supply to the liver. Metabolism 30, 880–885 (1981).

    CAS 
    PubMed 

    Google Scholar 

  • Khan, A. U. H. et al. The PDK1 inhibitor dichloroacetate controls cholesterol homeostasis through the ERK5/MEF2 pathway. Sci. Rep. 7, 10654 (2017).

    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • Gnanapradeepan, K. et al. The p53 tumor suppressor in the control of metabolism and ferroptosis. Front. Endocrinol. https://doi.org/10.3389/fendo.2018.00124 (2018).

    Article 

    Google Scholar 

  • Parrales, A. & Iwakuma, T. p53 as a regulator of lipid metabolism in cancer. Int. J. Mol. Sci. 17, 2074 (2016).

    PubMed Central 

    Google Scholar 

  • Cho, R.-L. et al. Lipopolysaccharide induces ICAM-1 expression via a c-Src/NADPH oxidase/ROS-dependent NF-κB pathway in human pulmonary alveolar epithelial cells. Am. J. Physiol. Lung Cell Mol. Physiol. 310, 639–657 (2016).

    Google Scholar 

  • Shimizu, H. & Niwa, T. Indoxyl sulfate upregulates renal expression of icam-1 via production of ros and activation of nf-κb and p53 in proximal tubular cells. Kidney Res. Clin. Pract. 31, A61 (2012).

    Google Scholar 

  • Gorgoulis, V. G. et al. p53 activates ICAM-1 (CD54) expression in an NF-κB-independent manner. EMBO J. 22, 1567–1578 (2003).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Long, E. O. Intercellular adhesion molecule 1 (ICAM-1): Getting a grip on leukocyte adhesion. J. Immunol. 186, 5021 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • Takimoto, R. & El-Deiry, W. S. Wild-type p53 transactivates the KILLER/DR5 gene through an intronic sequence-specific DNA-binding site. Oncogene 19, 1735–1743 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • Pfeifer, C. et al. Natural killer cell education is associated with a distinct glycolytic profile. Front. Immunol. 9, 3020 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sheppard, S. et al. Lactate dehydrogenase A-dependent aerobic glycolysis promotes natural killer cell anti-viral and anti-tumor function. Cell Rep. 35, 109210 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Singh, D., Dheer, D., Samykutty, A. & Shankar, R. Antibody drug conjugates in gastrointestinal cancer: From lab to clinical development. J. Control Release 340, 1–34 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Flavin, D. Medullary thyroid carcinoma relapse reversed with dichloroacetate: A case report. Oncol. Lett. 1, 889–891 (2010).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Flavin, D. F. Non-Hodgkin’s lymphoma reversal with dichloroacetate. J. Oncol. 2010, 1–4 (2010).

    Google Scholar 

  • Krzywinska, E. et al. CD45 isoform profile identifies natural killer (NK) subsets with differential activity. PLoS ONE 11, e0150434 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Lopez-Royuela, N. et al. Extracellular-signal-regulated kinase 5 modulates the antioxidant response by transcriptionally controlling Sirtuin 1 expression in leukemic cells. Int. J. Biochem. Cell Biol. 53, 253–261 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Khan, A. U. et al. Human leukemic cells performing oxidative phosphorylation (OXPHOS) generate an antioxidant response independently of reactive oxygen species (ROS) production. EBioMedicine 3, 43–53 (2016).

    PubMed 

    Google Scholar 

  • Source link