Warburg, O. On respiratory impairment in cancer cells. Science 124, 269–270 (1956).
Google Scholar
Villalba, M. et al. From tumor cell metabolism to tumor immune escape. Int. J. Biochem. Cell Biol. 45, 106–113 (2013).
Google Scholar
Liu, H. et al. Role of NKG2D and its ligands in cancer immunotherapy. Am. J. Cancer Res. 9, 2064–2078 (2019).
Google Scholar
Catalán, E. et al. MHC-I modulation due to metabolic changes regulates tumor sensitivity to CTL and NK cells. Oncoimmunology 4, e985924 (2015).
Google Scholar
Siska, P. J., Singer, K., Evert, K., Renner, K. & Kreutz, M. The immunological Warburg effect: Can a metabolic-tumor-stroma score (MeTS) guide cancer immunotherapy? Immunol. Rev. 295, 187–202 (2020).
Google Scholar
Villalba, M. et al. Chemical metabolic inhibitors for the treatment of blood-borne cancers. Anticancer Agents Med. Chem. 14, 223–232 (2014).
Google Scholar
Allende-Vega, N. et al. Metformin sensitizes leukemic cells to cytotoxic lymphocytes by increasing expression of intercellular adhesion molecule-1 (ICAM-1). Sci. Rep. 12(1), 1–12. https://doi.org/10.20944/preprints202107.0484.v1 (2022).
Google Scholar
LaMoia, T. E. & Shulman, G. I. Cellular and molecular mechanisms of metformin action. Endocr. Rev. https://doi.org/10.1210/endrev/bnaa023 (2020).
Google Scholar
Stacpoole, P. W. et al. Evaluation of long-term treatment of children with congenital lactic acidosis with dichloroacetate. Pediatrics 121, e1223–e1228 (2008).
Google Scholar
Khan, A. U. H. et al. Mitochondrial complex I activity signals antioxidant response through ERK5. Sci. Rep. 8, 7420 (2018).
Google Scholar
Ohashi, T. et al. Dichloroacetate improves immune dysfunction caused by tumor-secreted lactic acid and increases antitumor immunoreactivity. Int. J. Cancer 133, 1107–1118 (2013).
Google Scholar
Allende-Vega, N. & Villalba, M. Metabolic stress controls mutant p53 R248Q stability in acute myeloid leukemia cells. Sci. Rep. 9, 5637 (2019).
Google Scholar
Agnoletto, C. et al. The anti-leukemic activity of sodium dichloroacetate in p53mutated/null cells is mediated by a p53-independent ILF3/p21 pathway. Oncotarget 6, 2385 (2014).
Google Scholar
Agnoletto, C. et al. Sodium dichloroacetate exhibits anti-leukemic activity in B-chronic lymphocytic leukemia (B-CLL) and synergizes with the p53 activator Nutlin-3. Oncotarget 5, 4347–4360 (2014).
Google Scholar
Belkahla, S. et al. Changes in metabolism affect expression of ABC transporters through ERK5 and depending on p53 status. Oncotarget 9, 1114–1129 (2017).
Google Scholar
Allende-Vega, N. et al. The presence of wild type p53 in hematological cancers improves the efficacy of combinational therapy targeting metabolism. Oncotarget 6, 19228–19245 (2015).
Google Scholar
Gottlieb, E. & Vousden, K. H. p53 regulation of metabolic pathways. Cold Spring Harbor Persp. Biol. 2, a001040 (2010).
Puzio-Kuter, A. M. The role of p53 in metabolic regulation. Genes Cancer 2, 385–391 (2011).
Google Scholar
Hollstein, M., Sidransky, D., Vogelstein, B. & Harris, C. C. p53 mutations in human cancers. Science 253, 49–53 (1991).
Google Scholar
Saha, M. N., Qiu, L. & Chang, H. Targeting p53 by small molecules in hematological malignancies. J. Hematol. Oncol. 6, 23 (2013).
Google Scholar
Raulet, D. H., Gasser, S., Gowen, B. G., Deng, W. & Jung, H. Regulation of ligands for the NKG2D activating receptor. Annu. Rev. Immunol. 31, 413–441 (2013).
Google Scholar
Huergo-Zapico, L. et al. Molecular bases for the regulation of NKG2D ligands in cancer. Front. Immunol. 5, 106 (2014).
Google Scholar
Veneziani, I. et al. Nutlin-3a enhances natural killer cell-mediated killing of neuroblastoma by restoring p53-dependent expression of ligands for NKG2D and DNAM-1 receptors. Cancer Immunol. Res. 9, 170–183 (2021).
Google Scholar
Høgh, R. I. et al. Metabolism of short-chain fatty acid propionate induces surface expression of NKG2D ligands on cancer cells. FASEB J. 34, 15531–15546 (2020).
Google Scholar
Andresen, L. et al. Propionic acid secreted from propionibacteria induces NKG2D ligand expression on human-activated T lymphocytes and cancer cells. J. Immunol. 183, 897–906 (2009).
Google Scholar
McCarthy, M. T. et al. Purine nucleotide metabolism regulates expression of the human immune ligand MICA. J. Biol. Chem. 293, 3913–3924 (2018).
Google Scholar
Xia, C., Liu, C., He, Z., Cai, Y. & Chen, J. Metformin inhibits cervical cancer cell proliferation by modulating PI3K/Akt-induced major histocompatibility complex class I-related chain A gene expression. J. Exp. Clin. Cancer Res. 39, 127 (2020).
Google Scholar
Kruger, S. et al. Advances in cancer immunotherapy 2019—Latest trends. J. Exp. Clin. Cancer Res. 38, 268 (2019).
Google Scholar
Liu, E. et al. Use of CAR-transduced natural killer cells in CD19-positive lymphoid tumors. N. Engl. J. Med. 382, 545–553 (2020).
Google Scholar
Michelakis, E. D. et al. Metabolic modulation of glioblastoma with dichloroacetate. Sci. Transl. Med. 2, 31–34 (2010).
Sanchez-Martinez, D. et al. Expansion of allogeneic NK cells with efficient antibody-dependent cell cytotoxicity against multiple tumor cells. Theranostic 8, 3856–3869 (2018).
Google Scholar
Reina-Ortiz, C. et al. Expanded NK cells from umbilical cord blood and adult peripheral blood combined with daratumumab are effective against tumor cells from multiple myeloma patients. Oncoimmunology 10, 1853314 (2020).
Google Scholar
Calvo, T. et al. Expanded and activated allogeneic NK cells are cytotoxic against B-chronic lymphocytic leukemia (B-CLL) cells with sporadic cases of resistance. Sci. Rep. 10, 19398 (2020).
Google Scholar
Hu, J., Batth, I. S., Xia, X. & Li, S. Regulation of NKG2D(+)CD8(+) T-cell-mediated antitumor immune surveillance: Identification of a novel CD28 activation-mediated, STAT3 phosphorylation-dependent mechanism. Oncoimmunology 5, e1252012 (2016).
Google Scholar
Lanier, L. L. NKG2D receptor and its ligands in host defense. Cancer Immunol. Res. 3, 575–582 (2015).
Google Scholar
Urlaub, D., Höfer, K., Müller, M.-L. & Watzl, C. LFA-1 activation in NK cells and their subsets: Influence of receptors, maturation, and cytokine stimulation. J. Immunol. 198, 1944–1951 (2017).
Google Scholar
Nunez, D. et al. A functional analysis on the interspecies interaction between mouse LFA-1 and human intercellular adhesion molecule-1 at the cell level. Front. Immunol. 8, 1817 (2017).
Google Scholar
Martínez-Lostao, L., Anel, A. & Pardo, J. How do cytotoxic lymphocytes kill cancer cells? Clin. Cancer Res. 21, 5047–5056 (2015).
Google Scholar
Stacpoole, P. W., Kurtz, T. L., Han, Z. & Langaee, T. Role of dichloroacetate in the treatment of genetic mitochondrial diseases. Adv. Drug Deliv. Rev. 60, 1478–1487 (2008).
Google Scholar
Prajapati, K., Perez, C., Rojas, L. B. P., Burke, B. & Guevara-Patino, J. A. Functions of NKG2D in CD8 + T cells: An opportunity for immunotherapy. Cell. Mol. Immunol. 15, 470–479 (2018).
Google Scholar
Jose, C. & Rossignol, R. Rationale for mitochondria-targeting strategies in cancer bioenergetic therapies. Int. J. Biochem. Cell Biol. 45, 123–129 (2013).
Google Scholar
Al-Zoughbi, W. et al. Tumor macroenvironment and metabolism. Semin. Oncol. 41, 281–295 (2014).
Google Scholar
Li, Z. & Kang, Y. Lipid metabolism fuels cancer’s spread. Cell Metab. 25, 228–230 (2017).
Google Scholar
Chockley, P. J. et al. Epithelial-mesenchymal transition leads to NK cell-mediated metastasis-specific immunosurveillance in lung cancer. J. Clin. Investig. 128, 1384–1396 (2018).
Google Scholar
Schaller, J. & Agudo, J. Metastatic colonization: Escaping immune surveillance. Cancers (Basel) 12, 3385 (2020).
Google Scholar
Lo, H. C. et al. Resistance to natural killer cell immunosurveillance confers a selective advantage to polyclonal metastasis. Nat. Cancer 1, 709–722 (2020).
Google Scholar
Matsuhashi, T. et al. Activation of pyruvate dehydrogenase by dichloroacetate has the potential to induce epigenetic remodeling in the heart. J. Mol. Cell Cardiol. 82, 116–124 (2015).
Google Scholar
Diamond, M. P., Williams, P. E., Lacy, W. W. & Cherrington, A. D. Effect of dichloroacetate on gluconeogenesis in vivo in the presence of a fixed gluconeogenic substrate supply to the liver. Metabolism 30, 880–885 (1981).
Google Scholar
Khan, A. U. H. et al. The PDK1 inhibitor dichloroacetate controls cholesterol homeostasis through the ERK5/MEF2 pathway. Sci. Rep. 7, 10654 (2017).
Google Scholar
Gnanapradeepan, K. et al. The p53 tumor suppressor in the control of metabolism and ferroptosis. Front. Endocrinol. https://doi.org/10.3389/fendo.2018.00124 (2018).
Google Scholar
Parrales, A. & Iwakuma, T. p53 as a regulator of lipid metabolism in cancer. Int. J. Mol. Sci. 17, 2074 (2016).
Google Scholar
Cho, R.-L. et al. Lipopolysaccharide induces ICAM-1 expression via a c-Src/NADPH oxidase/ROS-dependent NF-κB pathway in human pulmonary alveolar epithelial cells. Am. J. Physiol. Lung Cell Mol. Physiol. 310, 639–657 (2016).
Shimizu, H. & Niwa, T. Indoxyl sulfate upregulates renal expression of icam-1 via production of ros and activation of nf-κb and p53 in proximal tubular cells. Kidney Res. Clin. Pract. 31, A61 (2012).
Gorgoulis, V. G. et al. p53 activates ICAM-1 (CD54) expression in an NF-κB-independent manner. EMBO J. 22, 1567–1578 (2003).
Google Scholar
Long, E. O. Intercellular adhesion molecule 1 (ICAM-1): Getting a grip on leukocyte adhesion. J. Immunol. 186, 5021 (2011).
Google Scholar
Takimoto, R. & El-Deiry, W. S. Wild-type p53 transactivates the KILLER/DR5 gene through an intronic sequence-specific DNA-binding site. Oncogene 19, 1735–1743 (2000).
Google Scholar
Pfeifer, C. et al. Natural killer cell education is associated with a distinct glycolytic profile. Front. Immunol. 9, 3020 (2018).
Google Scholar
Sheppard, S. et al. Lactate dehydrogenase A-dependent aerobic glycolysis promotes natural killer cell anti-viral and anti-tumor function. Cell Rep. 35, 109210 (2021).
Google Scholar
Singh, D., Dheer, D., Samykutty, A. & Shankar, R. Antibody drug conjugates in gastrointestinal cancer: From lab to clinical development. J. Control Release 340, 1–34 (2021).
Google Scholar
Flavin, D. Medullary thyroid carcinoma relapse reversed with dichloroacetate: A case report. Oncol. Lett. 1, 889–891 (2010).
Google Scholar
Flavin, D. F. Non-Hodgkin’s lymphoma reversal with dichloroacetate. J. Oncol. 2010, 1–4 (2010).
Krzywinska, E. et al. CD45 isoform profile identifies natural killer (NK) subsets with differential activity. PLoS ONE 11, e0150434 (2016).
Google Scholar
Lopez-Royuela, N. et al. Extracellular-signal-regulated kinase 5 modulates the antioxidant response by transcriptionally controlling Sirtuin 1 expression in leukemic cells. Int. J. Biochem. Cell Biol. 53, 253–261 (2014).
Google Scholar
Khan, A. U. et al. Human leukemic cells performing oxidative phosphorylation (OXPHOS) generate an antioxidant response independently of reactive oxygen species (ROS) production. EBioMedicine 3, 43–53 (2016).
Google Scholar

