Preloader

The living interface between synthetic biology and biomaterial design

  • Meng, F. & Ellis, T. The second decade of synthetic biology: 2010–2020. Nat. Commun. 11, 5174 (2020).

    CAS 

    Google Scholar 

  • Sedlmayer, F., Aubel, D. & Fussenegger, M. Synthetic gene circuits for the detection, elimination and prevention of disease. Nat. Biomed. Eng. 2, 399–415 (2018).

    CAS 

    Google Scholar 

  • Kolar, K., Knobloch, C., Stork, H., Žnidarič, M. & Weber, W. OptoBase: a web platform for molecular optogenetics. ACS Synth. Biol. 7, 1825–1828 (2018).

    CAS 

    Google Scholar 

  • Moon, T. S., Lou, C., Tamsir, A., Stanton, B. C. & Voigt, C. A. Genetic programs constructed from layered logic gates in single cells. Nature 491, 249–253 (2012).

    CAS 

    Google Scholar 

  • Gao, X. J., Chong, L. S., Kim, M. S. & Elowitz, M. B. Programmable protein circuits in living cells. Science 361, 1252–1258 (2018).

    CAS 

    Google Scholar 

  • Tang, W. & Liu, D. R. Rewritable multi-event analog recording in bacterial and mammalian cells. Science 360, eaap8992 (2018).

    Google Scholar 

  • Aoki, S. K. et al. A universal biomolecular integral feedback controller for robust perfect adaptation. Nature 570, 533–537 (2019).

    CAS 

    Google Scholar 

  • Toda, S., Blauch, L. R., Tang, S. K. Y., Morsut, L. & Lim, W. A. Programming self-organizing multicellular structures with synthetic cell-cell signaling. Science 361, 156–162 (2018).

  • Smanski, M. J. et al. Synthetic biology to access and expand nature’s chemical diversity. Nat. Rev. Microbiol. 14, 135–149 (2016).

    CAS 

    Google Scholar 

  • Noireaux, V. & Liu, A. P. The new age of cell-free biology. Annu. Rev. Biomed. Eng. 22, 51–77 (2020).

    CAS 

    Google Scholar 

  • Godino, E. et al. Cell-free biogenesis of bacterial division proto-rings that can constrict liposomes. Commun. Biol. 3, 539 (2020).

    CAS 

    Google Scholar 

  • Garenne, D., Libchaber, A. & Noireaux, V. Membrane molecular crowding enhances MreB polymerization to shape synthetic cells from spheres to rods. Proc. Natl Acad. Sci. USA 117, 1902–1909 (2020).

    CAS 

    Google Scholar 

  • Saleh, O. A., Jeon, B. J. & Liedl, T. Enzymatic degradation of liquid droplets of DNA is modulated near the phase boundary. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.2001654117 (2020).

  • Sokolova, E. et al. Enhanced transcription rates in membrane-free protocells formed by coacervation of cell lysate. Proc. Natl Acad. Sci. USA 110, 11692–11697 (2013).

    CAS 

    Google Scholar 

  • Green, L. N. et al. Autonomous dynamic control of DNA nanostructure self-assembly. Nat. Chem. 11, 510–520 (2019).

    CAS 

    Google Scholar 

  • Efrat, Y., Tayar, A. M., Daube, S. S., Levy, M. & Bar-Ziv, R. H. Electric-field manipulation of a compartmentalized cell-free gene expression reaction. ACS Synth. Biol. 7, 1829–1833 (2018).

    CAS 

    Google Scholar 

  • Dupin, A. & Simmel, F. C. Signalling and differentiation in emulsion-based multi-compartmentalized in vitro gene circuits. Nat. Chem. 11, 32–39 (2019).

  • Santorelli, M., Lam, C. & Morsut, L. Synthetic development: building mammalian multicellular structures with artificial genetic programs. Curr. Opin. Biotechnol. 59, 130–140 (2019).

    CAS 

    Google Scholar 

  • Scheller, L., Strittmatter, T., Fuchs, D., Bojar, D. & Fussenegger, M. Generalized extracellular molecule sensor platform for programming cellular behavior article. Nat. Chem. Biol. 14, 723–729 (2018).

    CAS 

    Google Scholar 

  • Rivière, I. & Sadelain, M. Chimeric antigen receptors: a cell and gene therapy perspective. Mol. Ther. 25, 1117–1124 (2017).

    Google Scholar 

  • Stapornwongkul, K. S., de Gennes, M., Cocconi, L., Salbreux, G. & Vincent, J. P. Patterning and growth control in vivo by an engineered GFP gradient. Science 370, 321–327 (2020).

    CAS 

    Google Scholar 

  • Huang, X. et al. DNA scaffolds enable efficient and tunable functionalization of biomaterials for immune cell modulation. Nat. Nanotecnol. 16, 214–223 (2021).

  • Nielsen, A. A. K. et al. Genetic circuit design automation. Science 352, aac7341 (2016).

    Google Scholar 

  • Burger, B. et al. A mobile robotic chemist. Nature 583, 237–241 (2020).

    CAS 

    Google Scholar 

  • Sanka, R., Lippai, J., Samarasekera, D., Nemsick, S. & Densmore, D. 3DμF—interactive design environment for continuous flow microfluidic devices. Sci. Rep. 9, 9166 (2019).

    Google Scholar 

  • Zhang, J. et al. Combining mechanistic and machine learning models for predictive engineering and optimization of tryptophan metabolism. Nat. Commun. 11, 4880 (2020).

    Google Scholar 

  • Waltemath, D. et al. The first 10 years of the international coordination network for standards in systems and synthetic biology (COMBINE). J. Integr. Bioinform. 17, 20200005 (2020).

    Google Scholar 

  • Huebsch, N. & Mooney, D. J. Inspiration and application in the evolution of biomaterials. Nature 462, 426–432 (2009).

    CAS 

    Google Scholar 

  • Dimarco, R. L. & Heilshorn, S. C. Multifunctional materials through modular protein engineering. Adv. Mater. 24, 3923–3940 (2012).

    CAS 

    Google Scholar 

  • Chaudhuri, O., Cooper-White, J., Janmey, P. A., Mooney, D. J. & Shenoy, V. B. Effects of extracellular matrix viscoelasticity on cellular behaviour. Nature 584, 535–546 (2020).

    CAS 

    Google Scholar 

  • Rodell, C. B. et al. Shear-thinning supramolecular hydrogels with secondary autonomous covalent crosslinking to modulate viscoelastic properties in vivo. Adv. Funct. Mater. 25, 636–644 (2015).

    CAS 

    Google Scholar 

  • Baker, B. M. et al. Cell-mediated fibre recruitment drives extracellular matrix mechanosensing in engineered fibrillar microenvironments. Nat. Mater. 14, 1262–1268 (2015).

    CAS 

    Google Scholar 

  • Griffin, D. R., Weaver, W. M., Scumpia, P. O., Di Carlo, D. & Segura, T. Accelerated wound healing by injectable microporous gel scaffolds assembled from annealed building blocks. Nat. Mater. 14, 737–744 (2015).

    CAS 

    Google Scholar 

  • Skylar-Scott, M. A., Mueller, J., Visser, C. W. & Lewis, J. A. Voxelated soft matter via multimaterial multinozzle 3D printing. Nature 575, 330–335 (2019).

    CAS 

    Google Scholar 

  • Guo, Z., Liu, H., Dai, W. & Lei, Y. Responsive principles and applications of smart materials in biosensing. Smart Mater. Med. 1, 54–65 (2020).

    Google Scholar 

  • Hörner, M. et al. Phytochrome-based extracellular matrix with reversibly tunable mechanical properties. Adv. Mater. 31, e1806727 (2019).

    Google Scholar 

  • de Almeida, P. et al. Cytoskeletal stiffening in synthetic hydrogels. Nat. Commun. 10, 609 (2019).

    Google Scholar 

  • Rosales, A. M., Vega, S. L., DelRio, F. W., Burdick, J. A. & Anseth, K. S. Hydrogels with reversible mechanics to probe dynamic cell microenvironments. Angew. Chem. Int. Ed. 56, 12132–12136 (2017).

    CAS 

    Google Scholar 

  • Badeau, B. A. & Deforest, C. A. Programming stimuli-responsive behavior into biomaterials. Annu. Rev. Biomed. Eng. 21, 241–265 (2019).

    CAS 

    Google Scholar 

  • Chao, Y. & Shum, H. C. Emerging aqueous two-phase systems: from fundamentals of interfaces to biomedical applications. Chem. Soc. Rev. 49, 114–142 (2020).

    CAS 

    Google Scholar 

  • Schuster, B. S. et al. Identifying sequence perturbations to an intrinsically disordered protein that determine its phase-separation behavior. Proc. Natl Acad. Sci. USA 117, 11421–11431 (2020).

    CAS 

    Google Scholar 

  • Klein, I. A. et al. Partitioning of cancer therapeutics in nuclear condensates. Science 368, 1386–1392 (2020).

    CAS 

    Google Scholar 

  • Champeau, M. et al. 4D printing of hydrogels: a review. Adv. Funct. Mater. 30, 1910606 (2020).

    CAS 

    Google Scholar 

  • Cangialosi, A. et al. DNA sequence–directed shape change of photopatterned hydrogels via high-degree swelling. Science 357, 1126–1130 (2017).

    CAS 

    Google Scholar 

  • Praetorius, F. et al. Biotechnological mass production of DNA origami. Nature 552, 84–87 (2017).

    CAS 

    Google Scholar 

  • Barbee, M. H. et al. Protein-mimetic self-assembly with synthetic macromolecules. Macromolecules 54, 3585–3612 (2021).

    CAS 

    Google Scholar 

  • Chan, D. et al. Combinatorial polyacrylamide hydrogels for preventing biofouling on implantable biosensors. Preprint at bioRxiv https://doi.org/10.1101/2020.05.25.115675 (2021).

  • Upadhya, R. et al. Automation and data-driven design of polymer therapeutics. Adv. Drug Deliv. Rev. 171, 1–28 (2021).

    CAS 

    Google Scholar 

  • Wu, D. et al. Polymers with controlled assembly and rigidity made with click-functional peptide bundles. Nature 574, 658–662 (2019).

    CAS 

    Google Scholar 

  • Seeman, N. C. & Sleiman, H. F. DNA nanotechnology. Nat. Rev. Mater. 3, 17068 (2017).

    Google Scholar 

  • Buchberger, A., Simmons, C. R., Fahmi, N. E., Freeman, R. & Stephanopoulos, N. Hierarchical assembly of nucleic acid/coiled-coil peptide nanostructures. J. Am. Chem. Soc. 142, 1406–1416 (2020).

    CAS 

    Google Scholar 

  • An, B. et al. Programming living glue systems to perform autonomous mechanical repairs. Matter 3, 2080–2092 (2020).

    Google Scholar 

  • Keeble, A. H. & Howarth, M. Power to the protein: enhancing and combining activities using the Spy toolbox. Chem. Sci. 11, 7281–7291 (2020).

    CAS 

    Google Scholar 

  • Nguyen, P. Q., Botyanszki, Z., Tay, P. K. R. & Joshi, N. S. Programmable biofilm-based materials from engineered curli nanofibres. Nat. Commun. 5, 4945 (2014).

    CAS 

    Google Scholar 

  • Charrier, M. et al. Engineering the S-layer of Caulobacter crescentus as a foundation for stable, high-density, 2D living materials. ACS Synth. Biol. 8, 181–190 (2019).

    CAS 

    Google Scholar 

  • Zhang, G., Johnston, T., Quin, M. B. & Schmidt-Dannert, C. Developing a protein scaffolding system for rapid enzyme immobilization and optimization of enzyme functions for biocatalysis. ACS Synth. Biol. 8, 1867–1876 (2019).

    CAS 

    Google Scholar 

  • Shadish, J. A., Strange, A. C. & Deforest, C. A. Genetically encoded photocleavable linkers for patterned protein release from biomaterials. J. Am. Chem. Soc. 141, 15619–15625 (2019).

    CAS 

    Google Scholar 

  • Heveran, C. M. et al. Engineered ureolytic microorganisms can tailor the morphology and nanomechanical properties of microbial-precipitated calcium carbonate. Sci. Rep. 9, 14721 (2019).

    Google Scholar 

  • Heveran, C. M. et al. Biomineralization and successive regeneration of engineered living building materials. Matter 2, 481–494 (2020).

    CAS 

    Google Scholar 

  • Nielsen, J. & Keasling, J. D. Engineering cellular metabolism. Cell 164, 1185–1197 (2016).

    CAS 

    Google Scholar 

  • Gilbert, C. et al. Living materials with programmable functionalities grown from engineered microbial co-cultures. Nat. Mater. 20, 691–700 (2021).

  • Duro-Royo, J., Van Zak, J., Tai, Y. J., Ling, A. S. & Oxman, N. in Challenges for Technology Innovation: An Agenda for the Future (eds da Silva, F. M. et al.) Ch. 39 (CRC, 2017).

  • Sachdeva, G., Garg, A., Godding, D., Way, J. C. & Silver, P. A. In vivo co-localization of enzymes on RNA scaffolds increases metabolic production in a geometrically dependent manner. Nucleic Acids Res. 42, 9493–9503 (2014).

    CAS 

    Google Scholar 

  • Park, S. J. et al. Phototactic guidance of a tissue-engineered soft-robotic ray. Science 353, 158–162 (2016).

    CAS 

    Google Scholar 

  • Morsut, L. et al. Engineering customized cell sensing and response behaviors using synthetic Notch receptors. Cell 164, 780–791 (2016).

    CAS 

    Google Scholar 

  • Schwarz, K. A., Daringer, N. M., Dolberg, T. B. & Leonard, J. N. Rewiring human cellular input–output using modular extracellular sensors. Nat. Chem. Biol. 13, 202–209 (2017).

    CAS 

    Google Scholar 

  • Loebel, C., Mauck, R. L. & Burdick, J. A. Local nascent protein deposition and remodelling guide mesenchymal stromal cell mechanosensing and fate in three-dimensional hydrogels. Nat. Mater. 18, 883–891 (2019).

    CAS 

    Google Scholar 

  • Ferreira, S. A. et al. Bi-directional cell–pericellular matrix interactions direct stem cell fate. Nat. Commun. 9, 4049 (2018).

    Google Scholar 

  • Liu, H. et al. Bioenergetic-active materials enhance tissue regeneration by modulating cellular metabolic state. Sci. Adv. 6, 32232154 (2020).

    Google Scholar 

  • Li, Y. C., Zhang, Y. S., Akpek, A., Shin, S. R. & Khademhosseini, A. 4D bioprinting: the next-generation technology for biofabrication enabled by stimuli-responsive materials. Biofabrication 9, 012001 (2017).

    Google Scholar 

  • Nam, K. T. et al. Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes. Science 312, 885–888 (2006).

    CAS 

    Google Scholar 

  • Kan, A. & Joshi, N. S. Towards the directed evolution of protein materials. MRS Commun. 9, 441–455 (2019).

    CAS 

    Google Scholar 

  • Green, M. L. et al. Fulfilling the promise of the materials genome initiative with high-throughput experimental methodologies. Appl. Phys. Rev. 4, 011105 (2017).

    Google Scholar 

  • Algahtani, M. S. et al. High throughput screening for biomaterials discovery. J. Control. Release 190, 115–126 (2014).

    CAS 

    Google Scholar 

  • Agresti, J. J. et al. Ultrahigh-throughput screening in drop-based microfluidics for directed evolution. Proc. Natl Acad. Sci. USA 107, 4004–4009 (2010).

    CAS 

    Google Scholar 

  • Ma, F. et al. Efficient molecular evolution to generate enantioselective enzymes using a dual-channel microfluidic droplet screening platform. Nat. Commun. 9, 1030 (2018).

    Google Scholar 

  • Liu, Y. et al. Machine learning in materials genome initiative: a review. J. Mater. Sci. Technol. 57, 113–122 (2020).

    Google Scholar 

  • Voigt, C. A. Synthetic biology 2020–2030: six commercially-available products that are changing our world. Nat. Commun. 11, 6379 (2020).

    CAS 

    Google Scholar 

  • Beal, J. & Rogers, M. Levels of autonomy in synthetic biology engineering. Mol. Syst. Biol. 16, e10019 (2020).

    Google Scholar 

  • Stowers, R. S. et al. Matrix stiffness induces a tumorigenic phenotype in mammary epithelium through changes in chromatin accessibility. Nat. Biomed. Eng. 3, 1009–1019 (2019).

    Google Scholar 

  • Source link