Preloader

The genetic variation and relationship among the natural hybrids of Mangifera casturi Kosterm

  • 1.

    Rhodes, L., Maxted, N. Mangifera, C. The IUCN red list of threatened species. 2016.

  • 2.

    Kostermans, A. J. G. H. & Bompard, J. M. The Mangoes: Their Botany, Nomenclature, Horticulture, and Utilization (Academic Press, 1993).

    Google Scholar 

  • 3.

    Fitmawati, F., Hayati, I., Mahatma, R. & Suzanti, F. Phylogenetic Study of Mangifera from Sumatra, Indonesia using Nuclear and Chloroplast DNA Sequences. Sabrao J. Breed Genet. 50, 295–312 (2018).

    Google Scholar 

  • 4.

    Warschefsky, E. The evolution and domestication genetics of the mango genus, mangifera (Anacardiaceae). Doctoral dissertation. Florida International University; 2018.

  • 5.

    Iyer, C. P. A. & Schnell, R. J. Breeding and genetics. In Botany, Production and Uses 2nd edn (ed. Mango, T.) 67–96 (CABI, 2009).

    Chapter 

    Google Scholar 

  • 6.

    Suhartono, E. et al. Total flavonoid and antioxidant activity of some selected medicinal plants in South Kalimantan of Indonesian. APCBEE Proc. 4, 235–239 (2012).

    CAS 
    Article 

    Google Scholar 

  • 7.

    Ekblom, R. & Galindo, J. Applications of next generation sequencing in molecular ecology of non-model organisms. Heredity (Edinb). 107, 1–15. https://doi.org/10.1038/hdy.2010.152 (2011).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 8.

    Eiadthong, W. et al. Amplified fragment length polymorphism analysis for studying genetic relationships among Mangifera species in Thailand. J. Am. Soc. Hortic. Sci. 125, 2 (2000).

    Google Scholar 

  • 9.

    Teo, L. L., Kiew, R., Set, O., Lee, S. K. & Gan, Y. Y. Hybrid status of kuwini, Mangifera odorata Griff (Anacardiaceae) verified by amplified fragment length polymorphism. Mol. Ecol. 11, 1465–1469. https://doi.org/10.1046/j.1365-294X.2002.01550.x (2002).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 10.

    Zane, L., Bargelloni, L. & Patarnello, T. Strategies for microsatellite isolation: A review. Mol. Ecol. 11, 1–16. https://doi.org/10.1046/j.0962-1083.2001.01418.x (2002).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 11.

    Viruel, M. A., Escribano, P., Barbieri, M., Ferri, M. & Hormaza, J. I. Fingerprinting, embryo type and geographic differentiation in mango (Mangifera indica L, Anacardiaceae) with microsatellites. Mol. Breed. 15, 383–393. https://doi.org/10.1007/s11032-004-7982-x (2005).

    CAS 
    Article 

    Google Scholar 

  • 12.

    Hollingsworth, P. M. et al. A DNA barcode for land plants. Proc. Natl. Acad. Sci. 106, 12794–12797. https://doi.org/10.1073/pnas.0905845106 (2009).

    ADS 
    Article 
    PubMed Central 

    Google Scholar 

  • 13.

    Pang, X. et al. Utility of the trnH–psbA intergenic spacer region and its combinations as plant DNA barcodes: A meta-analysis. PLoS ONE 7, e48833. https://doi.org/10.1371/journal.pone.0048833 (2012).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 14.

    Li, D.-Z. et al. Comparative analysis of a large dataset indicates that internal transcribed spacer (ITS) should be incorporated into the core barcode for seed plants. Proc. Natl. Acad. Sci. https://doi.org/10.1073/pnas.1104551108 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 15.

    Andrews S. FastQC a quality-control tool for high-throughput sequence data. 2010. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/.

  • 16.

    Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884–i890. https://doi.org/10.1093/bioinformatics/bty560 (2018).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 17.

    Boisvert, S., Laviolette, F. & Corbeil, J. Ray: Simultaneous assembly of reads from a mix of high-throughput sequencing technologies. J. Comput. Biol. 17, 1519–1533. https://doi.org/10.1089/cmb.2009.0238 (2010).

    MathSciNet 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 18.

    Kinjo, S. et al. Maser: One-stop platform for NGS big data from analysis to visualization. Database https://doi.org/10.1093/database/bay027 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 19.

    Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: Assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212. https://doi.org/10.1093/bioinformatics/btv351 (2015).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 20.

    Thiel, T., Michalek, W., Varshney, R. & Graner, A. Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theor. Appl. Genet. 106, 411–422. https://doi.org/10.1007/s00122-002-1031-0 (2003).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 21.

    Untergasser, A. et al. Primer3—new capabilities and interfaces. Nucleic Acids Res. 40, e115–e115. https://doi.org/10.1093/nar/gks596 (2012).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 22.

    Matra, D. D. et al. Analysis of allelic diversity and genetic relationships among cultivated mangosteen (Garcinia mangostana L.) in Java, Indonesia using microsatellite markers and morphological characters. Trop. Plant Biol. 9, 29–41. https://doi.org/10.1007/s12042-016-9161-8 (2016).

    Article 

    Google Scholar 

  • 23.

    Stecher, G., Tamura, K. & Kumar, S. Molecular evolutionary genetics analysis (MEGA) for macOS. Mol. Biol. Evol. 37, 1237–1239. https://doi.org/10.1093/molbev/msz312 (2020).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 24.

    Cuénoud, P. et al. Molecular phylogenetics of Caryophyllales based on nuclear 18S rDNA and plastid rbcL, atpB, and matK DNA sequences. Am. J. Bot. 89, 132–144. https://doi.org/10.3732/ajb.89.1.132 (2002).

    Article 
    PubMed 

    Google Scholar 

  • 25.

    Kress, W. J., Wurdack, K. J., Zimmer, E. A., Weigt, L. A. & Janzen, D. H. Use of DNA barcodes to identify flowering plants. Proc. Natl. Acad. Sci. U.S.A. 102, 8369–8374. https://doi.org/10.1073/pnas.0503123102 (2005).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 26.

    Sang, T. et al. Chloroplast DNA phylogeny, reticulate evolution, and biogeography of Paeonia (Paeoniaceae). Am. J. Bot. 84, 1120 (1997).

    CAS 
    Article 

    Google Scholar 

  • 27.

    Cheng, T. et al. Barcoding the kingdom Plantae: new PCR primers for ITS regions of plants with improved universality and specificity. Mol. Ecol. Resour. 16, 138–149. https://doi.org/10.1111/1755-0998.12438 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 28.

    Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549 (2018).

    CAS 
    Article 

    Google Scholar 

  • 29.

    Jukes, T. H. & Cantor, C. R. Evolution of protein molecules. In Mammalian Protein Metabolism (ed. Munro, H. N.) 21–132 (Academic Press, New York, 1969).

    Chapter 

    Google Scholar 

  • 30.

    Tamura, K. Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G+C-content biases. Mol. Biol. Evol. 9, 678–687 (1992).

    CAS 
    PubMed 

    Google Scholar 

  • 31.

    Felsenstein, J. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39, 783–791 (1985).

    Article 

    Google Scholar 

  • 32.

    Ledesma, N., Campbell, R. J., Poor, H. W., Figueroa, J. J. & Zona, S. Floral morphology of seven Mangifera species. Acta Hortic. 1183, 1–10 (2017).

    Article 

    Google Scholar 

  • 33.

    Dutta, S. K. et al. Pollen–pistil interaction studies in mango (Mangifera indica L.) cultivars. Sci. Hortic. 160, 213–221. https://doi.org/10.1016/j.scienta.2013.05.012 (2013).

    Article 

    Google Scholar 

  • 34.

    Mukherjee, S. K. & Litz, R. E. Introduction: Botany and Importance. In The Mango: Botany, production and uses (ed. Litz, R. E.) 1–18 (CAB International, 2009).

    Google Scholar 

  • 35.

    Dirlewanger, E. et al. Development of microsatellite markers in peach Prunus persica (L.) Batsch and their use in genetic diversity analysis in peach and sweet cherry (Prunus avium L.). Theor. Appl. Genet. 105, 127–138. https://doi.org/10.1007/s00122-002-0867-7 (2002).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 36.

    Emanuelli, F. et al. Genetic diversity and population structure assessed by SSR and SNP markers in a large germplasm collection of grape. BMC Plant Biol. 13, 39. https://doi.org/10.1186/1471-2229-13-39 (2013).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 37.

    Schnell, R. J., Olano, C. T., Quintanilla, W. E. & Meerow, A. W. Isolation and characterization of 15 microsatellite loci from mango (Mangifera indica L.) and cross-species amplification in closely related taxa. Mol. Ecol. Notes. 5, 625–627 (2005).

    CAS 
    Article 

    Google Scholar 

  • 38.

    Ravishankar, K. V., Mani, B. H., Anand, L. & Dinesh, M. R. Development of new microsatellite markers from Mango (Mangifera indica) and cross-species amplification. Am. J. Bot. 98(4), e96–e99. https://doi.org/10.3732/ajb.1000263 (2011).

    Article 
    PubMed 

    Google Scholar 

  • 39.

    Turchetto, C., Segatto, A. L., Beduschi, J., Bonatto, S. L. & Freitas, L. B. Genetic differentiation and hybrid identification using microsatellite markers in closely related wild species. AoB Plants. 7, 084. https://doi.org/10.1093/aobpla/plv084 (2015).

    CAS 
    Article 

    Google Scholar 

  • 40.

    Shu, Z., Zhang, X., Yu, D., Xue, S. & Wang, H. Natural hybridization between Persian Walnut and Chinese Walnut revealed by simple sequence repeat markers. J. Am. Soc. Hort. Sci. 141(2), 146–150 (2016).

    CAS 
    Article 

    Google Scholar 

  • 41.

    Muir, G. & Schlötterer, C. Evidence for shared ancestral polymorphism rather than recurrent gene flow at microsatellite loci differentiating two hybridizing oaks (Quercus spp.). Mol. Ecol. 14(2), 549–561. https://doi.org/10.1111/j.1365-294X.2004.02418.x (2005).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 42.

    Pang, X. et al. Utility of the trnH–psbA intergenic spacer region and its combinations as plant DNA barcodes: a meta-analysis. PLoS ONE 7(11), e48833 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 43.

    Kress, W. J., Wurdack, K. J., Zimmer, E. A., Weigt, L. A. & Janzen, D. H. Use of DNA barcodes to identify flowering plants. Proc. Natl. Acad. Sci. USA 102, 8369–8374 (2005).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 44.

    Siripun, K. C. & Schilling, E. E. Molecular confirmation of the hybrid origin of Eupatorium godfreyanum (Asteraceae). Am. J. Bot. 93, 319–325 (2006).

    CAS 
    Article 

    Google Scholar 

  • 45.

    Álvarez, I. & Wendel, J. F. Ribosomal ITS sequences and plant phylogenetic inference. Mol. Phylogenet. Evol. 29, 417–434 (2003).

    Article 

    Google Scholar 

  • 46.

    Sang, T., Crawford, D. J. & Stuessy, T. F. Documentation of reticulate evolution in peonies (paeonia) using internal transcribed spacer sequences of nuclear ribosomal DNA: Implications for biogeography and concerted evolution. Proc. Natl. Acad. Sci. USA 92, 6813–6817 (1995).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 47.

    Baldwin, B. G. Phylogenetic utility of the internal transcribed spacers of nuclear ribosomal DNA in plants: An example from the compositae. Mol. Phylogenet. Evol. 1, 3–16 (1992).

    CAS 
    Article 

    Google Scholar 

  • Source link