Rhodes, L., Maxted, N. Mangifera, C. The IUCN red list of threatened species. 2016.
Kostermans, A. J. G. H. & Bompard, J. M. The Mangoes: Their Botany, Nomenclature, Horticulture, and Utilization (Academic Press, 1993).
Fitmawati, F., Hayati, I., Mahatma, R. & Suzanti, F. Phylogenetic Study of Mangifera from Sumatra, Indonesia using Nuclear and Chloroplast DNA Sequences. Sabrao J. Breed Genet. 50, 295–312 (2018).
Warschefsky, E. The evolution and domestication genetics of the mango genus, mangifera (Anacardiaceae). Doctoral dissertation. Florida International University; 2018.
Iyer, C. P. A. & Schnell, R. J. Breeding and genetics. In Botany, Production and Uses 2nd edn (ed. Mango, T.) 67–96 (CABI, 2009).
Google Scholar
Suhartono, E. et al. Total flavonoid and antioxidant activity of some selected medicinal plants in South Kalimantan of Indonesian. APCBEE Proc. 4, 235–239 (2012).
Google Scholar
Ekblom, R. & Galindo, J. Applications of next generation sequencing in molecular ecology of non-model organisms. Heredity (Edinb). 107, 1–15. https://doi.org/10.1038/hdy.2010.152 (2011).
Google Scholar
Eiadthong, W. et al. Amplified fragment length polymorphism analysis for studying genetic relationships among Mangifera species in Thailand. J. Am. Soc. Hortic. Sci. 125, 2 (2000).
Teo, L. L., Kiew, R., Set, O., Lee, S. K. & Gan, Y. Y. Hybrid status of kuwini, Mangifera odorata Griff (Anacardiaceae) verified by amplified fragment length polymorphism. Mol. Ecol. 11, 1465–1469. https://doi.org/10.1046/j.1365-294X.2002.01550.x (2002).
Google Scholar
Zane, L., Bargelloni, L. & Patarnello, T. Strategies for microsatellite isolation: A review. Mol. Ecol. 11, 1–16. https://doi.org/10.1046/j.0962-1083.2001.01418.x (2002).
Google Scholar
Viruel, M. A., Escribano, P., Barbieri, M., Ferri, M. & Hormaza, J. I. Fingerprinting, embryo type and geographic differentiation in mango (Mangifera indica L, Anacardiaceae) with microsatellites. Mol. Breed. 15, 383–393. https://doi.org/10.1007/s11032-004-7982-x (2005).
Google Scholar
Hollingsworth, P. M. et al. A DNA barcode for land plants. Proc. Natl. Acad. Sci. 106, 12794–12797. https://doi.org/10.1073/pnas.0905845106 (2009).
Google Scholar
Pang, X. et al. Utility of the trnH–psbA intergenic spacer region and its combinations as plant DNA barcodes: A meta-analysis. PLoS ONE 7, e48833. https://doi.org/10.1371/journal.pone.0048833 (2012).
Google Scholar
Li, D.-Z. et al. Comparative analysis of a large dataset indicates that internal transcribed spacer (ITS) should be incorporated into the core barcode for seed plants. Proc. Natl. Acad. Sci. https://doi.org/10.1073/pnas.1104551108 (2011).
Google Scholar
Andrews S. FastQC a quality-control tool for high-throughput sequence data. 2010. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/.
Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884–i890. https://doi.org/10.1093/bioinformatics/bty560 (2018).
Google Scholar
Boisvert, S., Laviolette, F. & Corbeil, J. Ray: Simultaneous assembly of reads from a mix of high-throughput sequencing technologies. J. Comput. Biol. 17, 1519–1533. https://doi.org/10.1089/cmb.2009.0238 (2010).
Google Scholar
Kinjo, S. et al. Maser: One-stop platform for NGS big data from analysis to visualization. Database https://doi.org/10.1093/database/bay027 (2018).
Google Scholar
Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: Assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212. https://doi.org/10.1093/bioinformatics/btv351 (2015).
Google Scholar
Thiel, T., Michalek, W., Varshney, R. & Graner, A. Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theor. Appl. Genet. 106, 411–422. https://doi.org/10.1007/s00122-002-1031-0 (2003).
Google Scholar
Untergasser, A. et al. Primer3—new capabilities and interfaces. Nucleic Acids Res. 40, e115–e115. https://doi.org/10.1093/nar/gks596 (2012).
Google Scholar
Matra, D. D. et al. Analysis of allelic diversity and genetic relationships among cultivated mangosteen (Garcinia mangostana L.) in Java, Indonesia using microsatellite markers and morphological characters. Trop. Plant Biol. 9, 29–41. https://doi.org/10.1007/s12042-016-9161-8 (2016).
Google Scholar
Stecher, G., Tamura, K. & Kumar, S. Molecular evolutionary genetics analysis (MEGA) for macOS. Mol. Biol. Evol. 37, 1237–1239. https://doi.org/10.1093/molbev/msz312 (2020).
Google Scholar
Cuénoud, P. et al. Molecular phylogenetics of Caryophyllales based on nuclear 18S rDNA and plastid rbcL, atpB, and matK DNA sequences. Am. J. Bot. 89, 132–144. https://doi.org/10.3732/ajb.89.1.132 (2002).
Google Scholar
Kress, W. J., Wurdack, K. J., Zimmer, E. A., Weigt, L. A. & Janzen, D. H. Use of DNA barcodes to identify flowering plants. Proc. Natl. Acad. Sci. U.S.A. 102, 8369–8374. https://doi.org/10.1073/pnas.0503123102 (2005).
Google Scholar
Sang, T. et al. Chloroplast DNA phylogeny, reticulate evolution, and biogeography of Paeonia (Paeoniaceae). Am. J. Bot. 84, 1120 (1997).
Google Scholar
Cheng, T. et al. Barcoding the kingdom Plantae: new PCR primers for ITS regions of plants with improved universality and specificity. Mol. Ecol. Resour. 16, 138–149. https://doi.org/10.1111/1755-0998.12438 (2016).
Google Scholar
Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549 (2018).
Google Scholar
Jukes, T. H. & Cantor, C. R. Evolution of protein molecules. In Mammalian Protein Metabolism (ed. Munro, H. N.) 21–132 (Academic Press, New York, 1969).
Google Scholar
Tamura, K. Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G+C-content biases. Mol. Biol. Evol. 9, 678–687 (1992).
Google Scholar
Felsenstein, J. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39, 783–791 (1985).
Google Scholar
Ledesma, N., Campbell, R. J., Poor, H. W., Figueroa, J. J. & Zona, S. Floral morphology of seven Mangifera species. Acta Hortic. 1183, 1–10 (2017).
Google Scholar
Dutta, S. K. et al. Pollen–pistil interaction studies in mango (Mangifera indica L.) cultivars. Sci. Hortic. 160, 213–221. https://doi.org/10.1016/j.scienta.2013.05.012 (2013).
Google Scholar
Mukherjee, S. K. & Litz, R. E. Introduction: Botany and Importance. In The Mango: Botany, production and uses (ed. Litz, R. E.) 1–18 (CAB International, 2009).
Dirlewanger, E. et al. Development of microsatellite markers in peach Prunus persica (L.) Batsch and their use in genetic diversity analysis in peach and sweet cherry (Prunus avium L.). Theor. Appl. Genet. 105, 127–138. https://doi.org/10.1007/s00122-002-0867-7 (2002).
Google Scholar
Emanuelli, F. et al. Genetic diversity and population structure assessed by SSR and SNP markers in a large germplasm collection of grape. BMC Plant Biol. 13, 39. https://doi.org/10.1186/1471-2229-13-39 (2013).
Google Scholar
Schnell, R. J., Olano, C. T., Quintanilla, W. E. & Meerow, A. W. Isolation and characterization of 15 microsatellite loci from mango (Mangifera indica L.) and cross-species amplification in closely related taxa. Mol. Ecol. Notes. 5, 625–627 (2005).
Google Scholar
Ravishankar, K. V., Mani, B. H., Anand, L. & Dinesh, M. R. Development of new microsatellite markers from Mango (Mangifera indica) and cross-species amplification. Am. J. Bot. 98(4), e96–e99. https://doi.org/10.3732/ajb.1000263 (2011).
Google Scholar
Turchetto, C., Segatto, A. L., Beduschi, J., Bonatto, S. L. & Freitas, L. B. Genetic differentiation and hybrid identification using microsatellite markers in closely related wild species. AoB Plants. 7, 084. https://doi.org/10.1093/aobpla/plv084 (2015).
Google Scholar
Shu, Z., Zhang, X., Yu, D., Xue, S. & Wang, H. Natural hybridization between Persian Walnut and Chinese Walnut revealed by simple sequence repeat markers. J. Am. Soc. Hort. Sci. 141(2), 146–150 (2016).
Google Scholar
Muir, G. & Schlötterer, C. Evidence for shared ancestral polymorphism rather than recurrent gene flow at microsatellite loci differentiating two hybridizing oaks (Quercus spp.). Mol. Ecol. 14(2), 549–561. https://doi.org/10.1111/j.1365-294X.2004.02418.x (2005).
Google Scholar
Pang, X. et al. Utility of the trnH–psbA intergenic spacer region and its combinations as plant DNA barcodes: a meta-analysis. PLoS ONE 7(11), e48833 (2012).
Google Scholar
Kress, W. J., Wurdack, K. J., Zimmer, E. A., Weigt, L. A. & Janzen, D. H. Use of DNA barcodes to identify flowering plants. Proc. Natl. Acad. Sci. USA 102, 8369–8374 (2005).
Google Scholar
Siripun, K. C. & Schilling, E. E. Molecular confirmation of the hybrid origin of Eupatorium godfreyanum (Asteraceae). Am. J. Bot. 93, 319–325 (2006).
Google Scholar
Álvarez, I. & Wendel, J. F. Ribosomal ITS sequences and plant phylogenetic inference. Mol. Phylogenet. Evol. 29, 417–434 (2003).
Google Scholar
Sang, T., Crawford, D. J. & Stuessy, T. F. Documentation of reticulate evolution in peonies (paeonia) using internal transcribed spacer sequences of nuclear ribosomal DNA: Implications for biogeography and concerted evolution. Proc. Natl. Acad. Sci. USA 92, 6813–6817 (1995).
Google Scholar
Baldwin, B. G. Phylogenetic utility of the internal transcribed spacers of nuclear ribosomal DNA in plants: An example from the compositae. Mol. Phylogenet. Evol. 1, 3–16 (1992).
Google Scholar

