Preloader

The effects of temperature variation treatments on embryonic development: a mouse study

  • Revel, A. Defective endometrial receptivity. Fertil. Steril.. 97(5), 1028–1032 (2012).

    PubMed 

    Google Scholar 

  • Teh, W. T., McBain, J. & Rogers, P. What is the contribution of embryo-endometrial asynchrony to implantation failure?. J. Assist. Reprod. Genet. 33(11), 1419–1430 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Coughlan, C. et al. Recurrent implantation failure: Definition and management. Reprod. Biomed.. Online 28(1), 14–38 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Gardner, D.K., & Kelley, R.L. Impact of the IVF laboratory environment on human preimplantation embryo phenotype. 8(4), 418-435 (2017).

  • Wale, P. L. & Gardner, D. K. The effects of chemical and physical factors on mammalian embryo culture and their importance for the practice of assisted human reproduction. Hum. Reprod. Update 22(1), 2–22 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Simopoulou, M. et al. Considerations regarding embryo culture conditions: from media to epigenetics. In Vivo 32(3), 451–460 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Grinsted, J. et al. Temperature measurements of rabbit antral follicles. J. Reprod. Fertil. 60(1), 149–155 (1980).

    CAS 
    PubMed 

    Google Scholar 

  • Hunter, R. H. et al. Pre-ovulatory graafian follicles are cooler than neighbouring stroma in pig ovaries. Hum. Reprod. 15(2), 273–283 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • Bahat, A. et al. Thermotaxis of mammalian sperm cells: a potential navigation mechanism in the female genital tract, in Nat Med. United States. pp. 149–50 (2003).

  • Bahat, A., Eisenbach, M., & Tur-Kaspa, I. Periovulatory increase in temperature difference within the rabbit oviduct, in Hum Reprod. England. pp. 2118–2121 (2005).

  • Leese, H.J., et al. Metabolism of the viable mammalian embryo: quietness revisited, in Mol Hum Reprod., England. pp. 667–672 (2008).

  • Hunter, R.H. Temperature gradients in female reproductive tissues, in Reprod Biomed Online. 2012 Reproductive Healthcare Ltd. Published by Elsevier Ltd: Netherlands. pp. 377-380 (2012).

  • Ng, K. et al. In vivo oxygen, temperature and pH dynamics in the female reproductive tract and their importance in human conception: A systematic review. Hum. Reprod. Update 24(1), 15–34 (2018).

    PubMed 

    Google Scholar 

  • Grinsted, J. et al. Is low temperature of the follicular fluid prior to ovulation necessary for normal oocyte development?. Fertil. Steril. 43(1), 34–39 (1985).

    CAS 
    PubMed 

    Google Scholar 

  • Bauman, J. E. Basal body temperature: Unreliable method of ovulation detection. Fertil. Steril. 36(6), 729–733 (1981).

    CAS 
    PubMed 

    Google Scholar 

  • Bull, J. R. et al. Real-world menstrual cycle characteristics of more than 600,000 menstrual cycles. NPJ Digit Med. 2, 83 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Cagnacci, A. et al. Regulation of the 24h body temperature rhythm of women in luteal phase: Role of gonadal steroids and prostaglandins. Chronobiol. Int. 19(4), 721–730 (2002).

    CAS 
    PubMed 

    Google Scholar 

  • Coyne, M. D. et al. Circadian rhythm changes in core temperature over the menstrual cycle: Method for noninvasive monitoring. Am. J. Physiol. Regul. Integr. Comparat. Physiol. 279(4), R1316 (2000).

    CAS 

    Google Scholar 

  • Edwards, R. G. et al. Factors influencing the success of in vitro fertilization for alleviating human infertility. J. In Vitro Fert. Embryo Transf. 1(1), 3–23 (1984).

    CAS 
    PubMed 

    Google Scholar 

  • Cummins, J. M. et al. A formula for scoring human embryo growth rates in in vitro fertilization: Its value in predicting pregnancy and in comparison with visual estimates of embryo quality. J. In Vitro Fert. Embryo Transf. 3(5), 284–295 (1986).

    CAS 
    PubMed 

    Google Scholar 

  • Gardner, D. K. & Balaban, B. Assessment of human embryo development using morphological criteria in an era of time-lapse, algorithms and “OMICS”: is looking good still important?. Mol. Hum. Reprod. 22(10), 704–718 (2016).

    PubMed 

    Google Scholar 

  • Pribenszky, C. et al. Prediction of in-vitro developmental competence of early cleavage-stage mouse embryos with compact time-lapse equipment. Reprod. Biomed. Online 20(3), 371–379 (2010).

    PubMed 

    Google Scholar 

  • Pribenszky, C., Nilselid, A. M. & Montag, M. Time-lapse culture with morphokinetic embryo selection improves pregnancy and live birth chances and reduces early pregnancy loss: A meta-analysis. Reprod. Biomed. Online 35(5), 511–520 (2017).

    PubMed 

    Google Scholar 

  • Meseguer, M. et al. The use of morphokinetics as a predictor of embryo implantation. Hum. Reprod. 26(10), 2658–2671 (2011).

    PubMed 

    Google Scholar 

  • Chao, W. & D’amore, P. A. IGF2: Epigenetic regulation and role in development and disease. Cytokine Growth Factor Rev. 19(2), 111–120 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Constância, M. et al. Placental-specific IGF-II is a major modulator of placental and fetal growth. Nature 417(6892), 945–948 (2002).

    ADS 
    PubMed 

    Google Scholar 

  • Kadakia, R. & Josefson, J. The relationship of insulin-like growth factor 2 to fetal growth and adiposity. Horm. Res. Paediatr. 85(2), 75–82 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Le, F. et al. In vitro fertilization alters growth and expression of Igf2/H19 and their epigenetic mechanisms in the liver and skeletal muscle of newborn and elder mice. Biol. Reprod. 88(3), 75 (2013).

    PubMed 

    Google Scholar 

  • Nelissen, E. C. M. et al. Placentas from pregnancies conceived by IVF/ICSI have a reduced DNA methylation level at the and differentially methylated regions. Hum. Reprod. 28(4), 1117–1126 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Joza, N., Kroemer, G. & Penninger, J. M. Genetic analysis of the mammalian cell death machinery. Trends Genet. 18(3), 142–149 (2002).

    CAS 
    PubMed 

    Google Scholar 

  • Majidi Gharenaz, N. et al. Alternation of apoptotic and implanting genes expression of mouse embryos after re-vitrification. Int. J. Reprod. Biomed. (Yazd) 14(8), 511–518 (2016).

    Google Scholar 

  • Majidi Gharenaz, N., Movahedin, M. & Mazaheri, Z. Effects of re-vitrification of mouse morula and early blastocyst stages on apoptotic gene expression and developmental potential. Cell. J. 19(4), 614–619 (2018).

    PubMed 

    Google Scholar 

  • Honarpour, N. et al. Adult Apaf-1-deficient mice exhibit male infertility. Dev. Biol. 218(2), 248–258 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • Rivera, R. M. & Hansen, P. J. Development of cultured bovine embryos after exposure to high temperatures in the physiological range. Reproduction 121(1), 107–115 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • Hansen, P.J. et al. Adverse impact of heat stress on embryo production: causes and strategies for mitigation, in Theriogenology. United States. pp. 91–103 (2001).

  • Sun, X. F., Wang, W. H. & Keefe, D. L. Overheating is detrimental to meiotic spindles within in vitro matured human oocytes. Zygote 12(1), 65–70 (2004).

    PubMed 

    Google Scholar 

  • Danadova, J. et al. Increased frequency of chromosome congression defects and aneuploidy in mouse oocytes cultured at lower temperature. Reprod. Fertil. Dev. 29(5), 968–974 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Sun, X. F. et al. Spindle dynamics in living mouse oocytes during meiotic maturation, ageing, cooling and overheating: a study by polarized light microscopy. Zygote 12(3), 241–249 (2004).

    PubMed 

    Google Scholar 

  • Ciray, H. N. et al. Proposed guidelines on the nomenclature and annotation of dynamic human embryo monitoring by a time-lapse user group. Hum. Reprod. 29(12), 2650–2660 (2014).

    PubMed 

    Google Scholar 

  • Santiquet, N. W. et al. A pre- in vitro maturation medium containing cumulus oocyte complex ligand-receptor signaling molecules maintains meiotic arrest, supports the cumulus oocyte complex and improves oocyte developmental competence. MHR Basic. Sci. Reprod. Med. 23(9), 594–606 (2017).

    CAS 

    Google Scholar 

  • Yang, S. H. et al. Effect of morphokinetics and morphological dynamics of cleavage stage on embryo developmental potential: A time-lapse study. Taiwan J. Obstet. Gynecol. 57(1), 76–82 (2018).

    PubMed 

    Google Scholar 

  • Cetinkaya, M. et al. Relative kinetic expressions defining cleavage synchronicity are better predictors of blastocyst formation and quality than absolute time points. J. Assist. Reprod. Genet. 32(1), 27–35 (2015).

    PubMed 

    Google Scholar 

  • Gardner, D. K. et al. Blastocyst score affects implantation and pregnancy outcome: towards a single blastocyst transfer. Fertil. Steril. 73(6), 1155–1158 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • Heitmann, R. J. et al. The simplified SART embryo scoring system is highly correlated to implantation and live birth in single blastocyst transfers. J. Assist. Reprod. Genet. 30(4), 563–567 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Schmittgen, T. D. & Livak, K. J. Analyzing real-time PCR data by the comparative C(T) method. Nat. Protoc. 3(6), 1101 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • Hong, K. H. et al. Examining the temperature of embryo culture in in vitro fertilization: a randomized controlled trial comparing traditional core temperature (37 degrees C) to a more physiologic, cooler temperature (36 degrees C). Fertil. Steril. 102(3), 767–773 (2014).

    PubMed 

    Google Scholar 

  • Fawzy, M. et al. Comparing 36.5°C with 37°C for human embryo culture: A prospective randomized controlled trial. Reprod. BioMed. Online 36(6), 620–626 (2018).

    PubMed 

    Google Scholar 

  • Baak, N. A. et al. Temperature of embryo culture for assisted reproduction. Cochrane Database Syst. Rev. 9(9), Cd012192 (2019).

    PubMed 

    Google Scholar 

  • Neelke, M. et al. The effect of different temperature conditions on human embryosin vitro: Two sibling studies. Reprod. Biomed. Online 38(4), 508–515 (2019).

    PubMed 

    Google Scholar 

  • Wolff, H. S. et al. Advances in quality control: mouse embryo morphokinetics are sensitive markers of in vitro stress. Hum. Reprod. 28(7), 1776–1782 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fawzy, M. et al. Humid versus dry incubator: a prospective, randomized, controlled trial. Fertil. Steril. 108(2), 277–283 (2017).

    PubMed 

    Google Scholar 

  • Armstrong, S. et al. Time-lapse systems for embryo incubation and assessment in assisted reproduction. Cochrane Database Syst. Rev. 5, Cd011320 (2018).

    PubMed 

    Google Scholar 

  • Armstrong, S. et al. Time-lapse systems for embryo incubation and assessment in assisted reproduction. Cochrane Database Syst. Rev. 5, Cd011320 (2019).

    PubMed 

    Google Scholar 

  • Alhelou, Y., Mat Adenan, N. A. & Ali, J. Embryo culture conditions are significantly improved during uninterrupted incubation: A randomized controlled trial. Reprod. Biol. 18(1), 40–45 (2018).

    PubMed 

    Google Scholar 

  • Ramsing, N. & Callesen, H. Detecting teming and duration of cell divisions by automatic image analysis may improve selection of viable embryos. Fertil. Steril. 86(s2), S189–S189 (2006).

    Google Scholar 

  • Lee, M. J. et al. Cleavage speed and implantation potential of early-cleavage embryos in IVF or ICSI cycles. J. Assist Reprod. Genet. 29(8), 745–750 (2012).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Weinerman, R. et al. Morphokinetic evaluation of embryo development in a mouse model: Functional and molecular correlates. Biol. Reprod. 94(4), 84 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Zaninovic, N. et al. A comparison of morphokinetic markers predicting blastocyst formation and implantation potential from two large clinical data sets. J. Assist Reprod. Genet. 36(4), 637–646 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Milewski, R. et al. A predictive model for blastocyst formation based on morphokinetic parameters in time-lapse monitoring of embryo development. J. Assist. Reprod. Genet. 32(4), 571–579 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Wale, P. L. & Gardner, D. K. Time-lapse analysis of mouse embryo development in oxygen gradients. Reprod. Biomed. Online 21(3), 402–410 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • Kirkegaard, K., Hindkjaer, J. J. & Ingerslev, H. J. Effect of oxygen concentration on human embryo development evaluated by time-lapse monitoring. Fertil. Steril. 99(3), 738-744.e4 (2013).

    PubMed 

    Google Scholar 

  • Ciray, H. N. et al. Time-lapse evaluation of human embryo development in single versus sequential culture media–a sibling oocyte study. J. Assist. Reprod. Genet. 29(9), 891–900 (2012).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Walters, E. A. et al. Impact of a controlled culture temperature gradient on mouse embryo development and morphokinetics. Reprod. Biomed.. Online 40(4), 494–499 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Ahlstrom, A. et al. Trophectoderm morphology: an important parameter for predicting live birth after single blastocyst transfer. Hum. Reprod. 26(12), 3289–3296 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • Goto, S. et al. Prediction of pregnancy rate by blastocyst morphological score and age, based on 1488 single frozen-thawed blastocyst transfer cycles. Fertil. Steril. 95(3), 948–952 (2011).

    PubMed 

    Google Scholar 

  • Van den Abbeel, E. et al. Association between blastocyst morphology and outcome of single-blastocyst transfer. Reprod. Biomed. Online 27(4), 353–361 (2013).

    PubMed 

    Google Scholar 

  • Bouillon, C. et al. Obstetric and perinatal outcomes of singletons after single blastocyst transfer: Is there any difference according to blastocyst morphology?. Reprod. Biomed. Online 35(2), 197–207 (2017).

    PubMed 

    Google Scholar 

  • Irani, M. et al. Blastocyst development rate influences implantation and live birth rates of similarly graded euploid blastocysts. Fertil. Steril. 110(1), 95-102.e1 (2018).

    PubMed 

    Google Scholar 

  • Nazem, T. G. et al. The correlation between morphology and implantation of euploid human blastocysts. Reprod. Biomed. Online 38(2), 169–176 (2019).

    PubMed 

    Google Scholar 

  • Schoolcraft, W. B. et al. Blastocyst culture and transfer: analysis of results and parameters affecting outcome in two in vitro fertilization programs. Fertil. Steril. 72(4), 604–609 (1999).

    CAS 
    PubMed 

    Google Scholar 

  • Minasi, M. G. et al. Correlation between aneuploidy, standard morphology evaluation and morphokinetic development in 1730 biopsied blastocysts: A consecutive case series study. Hum. Reprod. 31(10), 2245–2254 (2016).

    PubMed 

    Google Scholar 

  • Wirleitner, B. et al. Pregnancy and birth outcomes following fresh or vitrified embryo transfer according to blastocyst morphology and expansion stage, and culturing strategy for delayed development. Hum. Reprod. 31(8), 1685–1695 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • van den Bergh, M. et al. Quality control in IVF with mouse bioassays: A four years’ experience. J. Assist. Reprod. Genet. 13(9), 733–738 (1996).

    PubMed 

    Google Scholar 

  • Zarmakoupis-Zavos, P. N. & Zavos, P. M. Factors that may influence the mouse embryo bioassay. Tohoku J. Exp. Med. 179(3), 141–149 (1996).

    CAS 
    PubMed 

    Google Scholar 

  • Gilbert, R. S. et al. Genetic mouse embryo assay: improving performance and quality testing for assisted reproductive technology (ART) with a functional bioassay. Reprod. Biol. Endocrinol. RB&E 14, 13–13 (2016).

    Google Scholar 

  • Ainsworth, A. J., Fredrickson, J. R. & Morbeck, D. E. Improved detection of mineral oil toxicity using an extended mouse embryo assay. J. Assist. Reprod. Genet. 34(3), 391–397 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Reignier, A. et al. Can time-lapse parameters predict embryo ploidy? A systematic review. Reprod. BioMed. Online 36(4), 380–387 (2018).

    PubMed 

    Google Scholar 

  • Gardner, D. K. et al. Diagnosis of human preimplantation embryo viability. Hum. Reprod. Update 21(6), 727–747 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Zakeri, Z. et al. What cell death does in development. Int. J. Dev. Biol. 59(1–3), 11–22 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Byrne, A. T. et al. Analysis of apoptosis in the preimplantation bovine embryo using TUNEL. J. Reprod. Fertil. 117(1), 97–105 (1999).

    CAS 
    PubMed 

    Google Scholar 

  • Leidenfrost, S., et al., Cell arrest and cell death in mammalian preimplantation development: lessons from the bovine model. PLoS One, 2011. 6(7): p. e22121.

  • Zakeri, Z. et al. A generalized caspase inhibitor disrupts early mammalian development. Int. J. Dev. Biol. 49(1), 43–47 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • Hardy, K. Cell death in the mammalian blastocyst. Mol. Hum. Reprod. 3(10), 919 (1997).

    CAS 
    PubMed 

    Google Scholar 

  • Bakri, N. M. et al. Embryo apoptosis identification: Oocyte grade or cleavage stage?. Saudi J. Biol. Sci. 23(1), S50–S55 (2016).

    PubMed 

    Google Scholar 

  • Gardner, D. K. & Kelley, R. L. Impact of the IVF laboratory environment on human preimplantation embryo phenotype. J Dev Orig Health Dis 8(4), 418–435 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • De Zio, D., Maiani, E. & Cecconi, F. Apaf1 in embryonic development – shaping life by death, and more. Int. J. Dev. Biol. 59(1–3), 33–39 (2015).

    PubMed 

    Google Scholar 

  • Bratton, S. B. & Salvesen, G. S. Regulation of the Apaf-1-caspase-9 apoptosome. J. Cell Sci. 123(19), 3209 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jurisicova, A. et al. Expression of apoptosisrelated genes during human preimplantation embryo development: potential roles for the Harakiri gene product and Caspase3 in blastomere fragmentation. Mol. Hum. Reprod. 9(3), 133–141 (2003).

    CAS 
    PubMed 

    Google Scholar 

  • Nagasaka, A. et al. Apaf-1-independent programmed cell death in mouse development. Cell Death Differ. 17(6), 931–941 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • Lamb, V. K. & Leese, H. J. Uptake of a mixture of amino acids by mouse blastocysts. J. Reprod. Fertil. 102(1), 169–175 (1994).

    CAS 
    PubMed 

    Google Scholar 

  • Devreker, F. & Englert, Y. In vitro development and metabolism of the human embryo up to the blastocyst stage. Eur. J. Obstet. Gynecol. Reprod. Biol. 92(1), 51–56 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • Wale, P. L. & Gardner, D. K. Oxygen regulates amino acid turnover and carbohydrate uptake during the preimplantation period of mouse embryo development. Biol. Reprod. 87(1), 24 (2012).

    PubMed 

    Google Scholar 

  • Gardner, D. K. & Harvey, A. J. Blastocyst metabolism. Reprod. Fertil. Dev. 27(4), 638–654 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Lane, M. & Gardner, D. K. Amino acids and vitamins prevent culture-induced metabolic perturbations and associated loss of viability of mouse blastocysts. Hum. Reprod. 13(4), 991–997 (1998).

    CAS 
    PubMed 

    Google Scholar 

  • Lane, M. & Gardner, D. K. Mitochondrial malate-aspartate shuttle regulates mouse embryo nutrient consumption. J. Biol. Chem. 280(18), 18361–18367 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • Wu, G. & Morris, S. M. Jr. Arginine metabolism: Nitric oxide and beyond. Biochem. J. 336(Pt 1), 1–17 (1998).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, Z. & Foote, R. H. Development of bovine embryos in KSOM with added superoxide dismutase and taurine and with five and twenty percent O2. Biol. Reprod. 53(4), 786–790 (1995).

    CAS 
    PubMed 

    Google Scholar 

  • Van Winkle, L. J., Haghighat, N. & Campione, A. L. Glycine protects preimplantation mouse conceptuses from a detrimental effect on development of the inorganic ions in oviductal fluid. J. Exp. Zool. 253(2), 215–219 (1990).

    PubMed 

    Google Scholar 

  • Lindenbaum, A. A survey of naturally occurring chelating ligands. Adv. Exp. Med. Biol. 40, 67–77 (1973).

    CAS 
    PubMed 

    Google Scholar 

  • Brison, D. R. et al. Identification of viable embryos in IVF by non-invasive measurement of amino acid turnover. Hum. Reprod. 19(10), 2319–2324 (2004).

    CAS 
    PubMed 

    Google Scholar 

  • Houghton, F. D. et al. Non-invasive amino acid turnover predicts human embryo developmental capacity. Hum. Reprod. 17(4), 999–1005 (2002).

    CAS 
    PubMed 

    Google Scholar 

  • Gardner, D. K. et al. Quality control in human in vitro fertilization. Semin. Reprod. Med. 23(4), 319–324 (2005).

    PubMed 

    Google Scholar 

  • Lane, M. & Gardner, D. K. Differential regulation of mouse embryo development and viability by amino acids. J. Reprod. Fertil 109(1), 153–164 (1997).

    CAS 
    PubMed 

    Google Scholar 

  • Martin, P. M. & Sutherland, A. E. Exogenous amino acids regulate trophectoderm differentiation in the mouse blastocyst through an mTOR-dependent pathway. Dev. Biol. 240(1), 182–193 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • Gardner, D. K. & Wale, P. L. Analysis of metabolism to select viable human embryos for transfer. Fertil Steril 99(4), 1062–1072 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Sturmey, R. G., Brison, D. R. & Leese, H. J. Symposium: Innovative techniques in human embryo viability assessment. Assessing embryo viability by measurement of amino acid turnover. Reprod. Biomed. Online 17(4), 486–496 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • Krisher, R. L. et al. Applying metabolomic analyses to the practice of embryology: physiology, development and assisted reproductive technology. Reprod. Fertil. Dev. 27(4), 602–620 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Booth, P. J. et al. Amino acid depletion and appearance during porcine preimplantation embryo development in vitro. Reproduction 130(5), 655–668 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • Eckert, J. J. et al. Human embryos developing in vitro are susceptible to impaired epithelial junction biogenesis correlating with abnormal metabolic activity. Hum. Reprod. 22(8), 2214–2224 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • Johnson, D. C. & Dey, S. K. Role of histamine in implantation: dexamethasone inhibits estradiol-induced implantation in the rat. Biol. Reprod. 22(5), 1136–1141 (1980).

    CAS 
    PubMed 

    Google Scholar 

  • Zhao, X. et al. Blastocyst H(2) receptor is the target for uterine histamine in implantation in the mouse. Development 127(12), 2643–2651 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • Bavister, B. D. Culture of preimplantation embryos: facts and artifacts. Hum Reprod Update 1(2), 91–148 (1995).

    CAS 
    PubMed 

    Google Scholar 

  • Harris, S. E. et al. Nutrient concentrations in murine follicular fluid and the female reproductive tract. Theriogenology 64(4), 992–1006 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • Hugentobler, S. A. et al. Amino acids in oviduct and uterine fluid and blood plasma during the estrous cycle in the bovine. Mol. Reprod. Dev. 74(4), 445–454 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • Martin, P. M., Sutherland, A. E. & Van Winkle, L. J. Amino acid transport regulates blastocyst implantation. Biol. Reprod.. 69(4), 1101–1108 (2003).

    CAS 
    PubMed 

    Google Scholar 

  • Phang, J. M., Liu, W. & Zabirnyk, O. Proline metabolism and microenvironmental stress. Annu. Rev. Nutr. 30, 441–463 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Phang, J. M., Liu, W. & Hancock, C. Bridging epigenetics and metabolism: role of non-essential amino acids. Epigenetics 8(3), 231–236 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • González, I. M. et al. Leucine and arginine regulate trophoblast motility through mTOR-dependent and independent pathways in the preimplantation mouse embryo. Dev Biol 361(2), 286–300 (2012).

    PubMed 

    Google Scholar 

  • Lenis, Y. Y. et al. Physiological importance of polyamines. Zygote 25(3), 244–255 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Hussain, T. et al. Exploring polyamines: Functions in embryo/fetal development. Anim Nutr 3(1), 7–10 (2017).

    PubMed 

    Google Scholar 

  • Pegg, A. E. Mammalian polyamine metabolism and function. IUBMB Life 61, 880–894 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wu, F. et al. Uptake of 14C- and 11C-labeled glutamate, glutamine and aspartate in vitro and in vivo. Anticancer Res. 20(1a), 251–256 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • Chatot, C. L. et al. An improved culture medium supports development of random-bred 1-cell mouse embryos in vitro. J. Reprod. Fertil. 86(2), 679–688 (1989).

    CAS 
    PubMed 

    Google Scholar 

  • Zielke, H. R. et al. Growth of human diploid fibroblasts in the absence of glucose utilization. Proc Natl Acad Sci U S A 73(11), 4110–4114 (1976).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Suzuki, C. et al. Glutamine and hypotaurine improves intracellular oxidative status and in vitro development of porcine preimplantation embryos. Zygote 15(4), 317–324 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • Lawitts, J. A. & Biggers, J. D. Joint effects of sodium chloride, glutamine, and glucose in mouse preimplantation embryo culture media. Mol Reprod Dev 31(3), 189–194 (1992).

    CAS 
    PubMed 

    Google Scholar 

  • Manser, R. C., Leese, H. J. & Houghton, F. D. Effect of inhibiting nitric oxide production on mouse preimplantation embryo development and metabolism. Biol. Reprod. 71(2), 528–533 (2004).

    CAS 
    PubMed 

    Google Scholar 

  • Rosselli, M. Nitric oxide and reproduction. Mol. Hum. Reprod. 3(8), 639–641 (1997).

    CAS 
    PubMed 

    Google Scholar 

  • Rosselli, M., Keller, P. J. & Dubey, R. K. Role of nitric oxide in the biology, physiology and pathophysiology of reproduction. Hum Reprod Update 4(1), 3–24 (1998).

    CAS 
    PubMed 

    Google Scholar 

  • Jablonka-Shariff, A. & Olson, L. M. The role of nitric oxide in oocyte meiotic maturation and ovulation: Meiotic abnormalities of endothelial nitric oxide synthase knock-out mouse oocytes. Endocrinology 139(6), 2944–2954 (1998).

    CAS 
    PubMed 

    Google Scholar 

  • Lightfoot, T. J. et al. Risk of non-Hodgkin lymphoma associated with polymorphisms in folate-metabolizing genes. Cancer Epidemiol. Biomarkers Prev. 14(12), 2999–3003 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • Gilbody, S., Lewis, S. & Lightfoot, T. Methylenetetrahydrofolate reductase (MTHFR) genetic polymorphisms and psychiatric disorders: A HuGE review. Am. J.. Epidemiol. 165(1), 1–13 (2007).

    PubMed 

    Google Scholar 

  • Levine, R. L., Moskovitz, J. & Stadtman, E. R. Oxidation of methionine in proteins: Roles in antioxidant defense and cellular regulation. IUBMB Life 50(4–5), 301–307 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • Moskovitz, J. Roles of methionine suldfoxide reductases in antioxidant defense, protein regulation and survival. Curr. Pharm. Des. 11(11), 1451–1457 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • Source link