Revel, A. Defective endometrial receptivity. Fertil. Steril.. 97(5), 1028–1032 (2012).
Google Scholar
Teh, W. T., McBain, J. & Rogers, P. What is the contribution of embryo-endometrial asynchrony to implantation failure?. J. Assist. Reprod. Genet. 33(11), 1419–1430 (2016).
Google Scholar
Coughlan, C. et al. Recurrent implantation failure: Definition and management. Reprod. Biomed.. Online 28(1), 14–38 (2014).
Google Scholar
Gardner, D.K., & Kelley, R.L. Impact of the IVF laboratory environment on human preimplantation embryo phenotype. 8(4), 418-435 (2017).
Wale, P. L. & Gardner, D. K. The effects of chemical and physical factors on mammalian embryo culture and their importance for the practice of assisted human reproduction. Hum. Reprod. Update 22(1), 2–22 (2016).
Google Scholar
Simopoulou, M. et al. Considerations regarding embryo culture conditions: from media to epigenetics. In Vivo 32(3), 451–460 (2018).
Google Scholar
Grinsted, J. et al. Temperature measurements of rabbit antral follicles. J. Reprod. Fertil. 60(1), 149–155 (1980).
Google Scholar
Hunter, R. H. et al. Pre-ovulatory graafian follicles are cooler than neighbouring stroma in pig ovaries. Hum. Reprod. 15(2), 273–283 (2000).
Google Scholar
Bahat, A. et al. Thermotaxis of mammalian sperm cells: a potential navigation mechanism in the female genital tract, in Nat Med. United States. pp. 149–50 (2003).
Bahat, A., Eisenbach, M., & Tur-Kaspa, I. Periovulatory increase in temperature difference within the rabbit oviduct, in Hum Reprod. England. pp. 2118–2121 (2005).
Leese, H.J., et al. Metabolism of the viable mammalian embryo: quietness revisited, in Mol Hum Reprod., England. pp. 667–672 (2008).
Hunter, R.H. Temperature gradients in female reproductive tissues, in Reprod Biomed Online. 2012 Reproductive Healthcare Ltd. Published by Elsevier Ltd: Netherlands. pp. 377-380 (2012).
Ng, K. et al. In vivo oxygen, temperature and pH dynamics in the female reproductive tract and their importance in human conception: A systematic review. Hum. Reprod. Update 24(1), 15–34 (2018).
Google Scholar
Grinsted, J. et al. Is low temperature of the follicular fluid prior to ovulation necessary for normal oocyte development?. Fertil. Steril. 43(1), 34–39 (1985).
Google Scholar
Bauman, J. E. Basal body temperature: Unreliable method of ovulation detection. Fertil. Steril. 36(6), 729–733 (1981).
Google Scholar
Bull, J. R. et al. Real-world menstrual cycle characteristics of more than 600,000 menstrual cycles. NPJ Digit Med. 2, 83 (2019).
Google Scholar
Cagnacci, A. et al. Regulation of the 24h body temperature rhythm of women in luteal phase: Role of gonadal steroids and prostaglandins. Chronobiol. Int. 19(4), 721–730 (2002).
Google Scholar
Coyne, M. D. et al. Circadian rhythm changes in core temperature over the menstrual cycle: Method for noninvasive monitoring. Am. J. Physiol. Regul. Integr. Comparat. Physiol. 279(4), R1316 (2000).
Google Scholar
Edwards, R. G. et al. Factors influencing the success of in vitro fertilization for alleviating human infertility. J. In Vitro Fert. Embryo Transf. 1(1), 3–23 (1984).
Google Scholar
Cummins, J. M. et al. A formula for scoring human embryo growth rates in in vitro fertilization: Its value in predicting pregnancy and in comparison with visual estimates of embryo quality. J. In Vitro Fert. Embryo Transf. 3(5), 284–295 (1986).
Google Scholar
Gardner, D. K. & Balaban, B. Assessment of human embryo development using morphological criteria in an era of time-lapse, algorithms and “OMICS”: is looking good still important?. Mol. Hum. Reprod. 22(10), 704–718 (2016).
Google Scholar
Pribenszky, C. et al. Prediction of in-vitro developmental competence of early cleavage-stage mouse embryos with compact time-lapse equipment. Reprod. Biomed. Online 20(3), 371–379 (2010).
Google Scholar
Pribenszky, C., Nilselid, A. M. & Montag, M. Time-lapse culture with morphokinetic embryo selection improves pregnancy and live birth chances and reduces early pregnancy loss: A meta-analysis. Reprod. Biomed. Online 35(5), 511–520 (2017).
Google Scholar
Meseguer, M. et al. The use of morphokinetics as a predictor of embryo implantation. Hum. Reprod. 26(10), 2658–2671 (2011).
Google Scholar
Chao, W. & D’amore, P. A. IGF2: Epigenetic regulation and role in development and disease. Cytokine Growth Factor Rev. 19(2), 111–120 (2008).
Google Scholar
Constância, M. et al. Placental-specific IGF-II is a major modulator of placental and fetal growth. Nature 417(6892), 945–948 (2002).
Google Scholar
Kadakia, R. & Josefson, J. The relationship of insulin-like growth factor 2 to fetal growth and adiposity. Horm. Res. Paediatr. 85(2), 75–82 (2016).
Google Scholar
Le, F. et al. In vitro fertilization alters growth and expression of Igf2/H19 and their epigenetic mechanisms in the liver and skeletal muscle of newborn and elder mice. Biol. Reprod. 88(3), 75 (2013).
Google Scholar
Nelissen, E. C. M. et al. Placentas from pregnancies conceived by IVF/ICSI have a reduced DNA methylation level at the and differentially methylated regions. Hum. Reprod. 28(4), 1117–1126 (2013).
Google Scholar
Joza, N., Kroemer, G. & Penninger, J. M. Genetic analysis of the mammalian cell death machinery. Trends Genet. 18(3), 142–149 (2002).
Google Scholar
Majidi Gharenaz, N. et al. Alternation of apoptotic and implanting genes expression of mouse embryos after re-vitrification. Int. J. Reprod. Biomed. (Yazd) 14(8), 511–518 (2016).
Majidi Gharenaz, N., Movahedin, M. & Mazaheri, Z. Effects of re-vitrification of mouse morula and early blastocyst stages on apoptotic gene expression and developmental potential. Cell. J. 19(4), 614–619 (2018).
Google Scholar
Honarpour, N. et al. Adult Apaf-1-deficient mice exhibit male infertility. Dev. Biol. 218(2), 248–258 (2000).
Google Scholar
Rivera, R. M. & Hansen, P. J. Development of cultured bovine embryos after exposure to high temperatures in the physiological range. Reproduction 121(1), 107–115 (2001).
Google Scholar
Hansen, P.J. et al. Adverse impact of heat stress on embryo production: causes and strategies for mitigation, in Theriogenology. United States. pp. 91–103 (2001).
Sun, X. F., Wang, W. H. & Keefe, D. L. Overheating is detrimental to meiotic spindles within in vitro matured human oocytes. Zygote 12(1), 65–70 (2004).
Google Scholar
Danadova, J. et al. Increased frequency of chromosome congression defects and aneuploidy in mouse oocytes cultured at lower temperature. Reprod. Fertil. Dev. 29(5), 968–974 (2017).
Google Scholar
Sun, X. F. et al. Spindle dynamics in living mouse oocytes during meiotic maturation, ageing, cooling and overheating: a study by polarized light microscopy. Zygote 12(3), 241–249 (2004).
Google Scholar
Ciray, H. N. et al. Proposed guidelines on the nomenclature and annotation of dynamic human embryo monitoring by a time-lapse user group. Hum. Reprod. 29(12), 2650–2660 (2014).
Google Scholar
Santiquet, N. W. et al. A pre- in vitro maturation medium containing cumulus oocyte complex ligand-receptor signaling molecules maintains meiotic arrest, supports the cumulus oocyte complex and improves oocyte developmental competence. MHR Basic. Sci. Reprod. Med. 23(9), 594–606 (2017).
Google Scholar
Yang, S. H. et al. Effect of morphokinetics and morphological dynamics of cleavage stage on embryo developmental potential: A time-lapse study. Taiwan J. Obstet. Gynecol. 57(1), 76–82 (2018).
Google Scholar
Cetinkaya, M. et al. Relative kinetic expressions defining cleavage synchronicity are better predictors of blastocyst formation and quality than absolute time points. J. Assist. Reprod. Genet. 32(1), 27–35 (2015).
Google Scholar
Gardner, D. K. et al. Blastocyst score affects implantation and pregnancy outcome: towards a single blastocyst transfer. Fertil. Steril. 73(6), 1155–1158 (2000).
Google Scholar
Heitmann, R. J. et al. The simplified SART embryo scoring system is highly correlated to implantation and live birth in single blastocyst transfers. J. Assist. Reprod. Genet. 30(4), 563–567 (2013).
Google Scholar
Schmittgen, T. D. & Livak, K. J. Analyzing real-time PCR data by the comparative C(T) method. Nat. Protoc. 3(6), 1101 (2008).
Google Scholar
Hong, K. H. et al. Examining the temperature of embryo culture in in vitro fertilization: a randomized controlled trial comparing traditional core temperature (37 degrees C) to a more physiologic, cooler temperature (36 degrees C). Fertil. Steril. 102(3), 767–773 (2014).
Google Scholar
Fawzy, M. et al. Comparing 36.5°C with 37°C for human embryo culture: A prospective randomized controlled trial. Reprod. BioMed. Online 36(6), 620–626 (2018).
Google Scholar
Baak, N. A. et al. Temperature of embryo culture for assisted reproduction. Cochrane Database Syst. Rev. 9(9), Cd012192 (2019).
Google Scholar
Neelke, M. et al. The effect of different temperature conditions on human embryosin vitro: Two sibling studies. Reprod. Biomed. Online 38(4), 508–515 (2019).
Google Scholar
Wolff, H. S. et al. Advances in quality control: mouse embryo morphokinetics are sensitive markers of in vitro stress. Hum. Reprod. 28(7), 1776–1782 (2013).
Google Scholar
Fawzy, M. et al. Humid versus dry incubator: a prospective, randomized, controlled trial. Fertil. Steril. 108(2), 277–283 (2017).
Google Scholar
Armstrong, S. et al. Time-lapse systems for embryo incubation and assessment in assisted reproduction. Cochrane Database Syst. Rev. 5, Cd011320 (2018).
Google Scholar
Armstrong, S. et al. Time-lapse systems for embryo incubation and assessment in assisted reproduction. Cochrane Database Syst. Rev. 5, Cd011320 (2019).
Google Scholar
Alhelou, Y., Mat Adenan, N. A. & Ali, J. Embryo culture conditions are significantly improved during uninterrupted incubation: A randomized controlled trial. Reprod. Biol. 18(1), 40–45 (2018).
Google Scholar
Ramsing, N. & Callesen, H. Detecting teming and duration of cell divisions by automatic image analysis may improve selection of viable embryos. Fertil. Steril. 86(s2), S189–S189 (2006).
Lee, M. J. et al. Cleavage speed and implantation potential of early-cleavage embryos in IVF or ICSI cycles. J. Assist Reprod. Genet. 29(8), 745–750 (2012).
Google Scholar
Weinerman, R. et al. Morphokinetic evaluation of embryo development in a mouse model: Functional and molecular correlates. Biol. Reprod. 94(4), 84 (2016).
Google Scholar
Zaninovic, N. et al. A comparison of morphokinetic markers predicting blastocyst formation and implantation potential from two large clinical data sets. J. Assist Reprod. Genet. 36(4), 637–646 (2019).
Google Scholar
Milewski, R. et al. A predictive model for blastocyst formation based on morphokinetic parameters in time-lapse monitoring of embryo development. J. Assist. Reprod. Genet. 32(4), 571–579 (2015).
Google Scholar
Wale, P. L. & Gardner, D. K. Time-lapse analysis of mouse embryo development in oxygen gradients. Reprod. Biomed. Online 21(3), 402–410 (2010).
Google Scholar
Kirkegaard, K., Hindkjaer, J. J. & Ingerslev, H. J. Effect of oxygen concentration on human embryo development evaluated by time-lapse monitoring. Fertil. Steril. 99(3), 738-744.e4 (2013).
Google Scholar
Ciray, H. N. et al. Time-lapse evaluation of human embryo development in single versus sequential culture media–a sibling oocyte study. J. Assist. Reprod. Genet. 29(9), 891–900 (2012).
Google Scholar
Walters, E. A. et al. Impact of a controlled culture temperature gradient on mouse embryo development and morphokinetics. Reprod. Biomed.. Online 40(4), 494–499 (2020).
Google Scholar
Ahlstrom, A. et al. Trophectoderm morphology: an important parameter for predicting live birth after single blastocyst transfer. Hum. Reprod. 26(12), 3289–3296 (2011).
Google Scholar
Goto, S. et al. Prediction of pregnancy rate by blastocyst morphological score and age, based on 1488 single frozen-thawed blastocyst transfer cycles. Fertil. Steril. 95(3), 948–952 (2011).
Google Scholar
Van den Abbeel, E. et al. Association between blastocyst morphology and outcome of single-blastocyst transfer. Reprod. Biomed. Online 27(4), 353–361 (2013).
Google Scholar
Bouillon, C. et al. Obstetric and perinatal outcomes of singletons after single blastocyst transfer: Is there any difference according to blastocyst morphology?. Reprod. Biomed. Online 35(2), 197–207 (2017).
Google Scholar
Irani, M. et al. Blastocyst development rate influences implantation and live birth rates of similarly graded euploid blastocysts. Fertil. Steril. 110(1), 95-102.e1 (2018).
Google Scholar
Nazem, T. G. et al. The correlation between morphology and implantation of euploid human blastocysts. Reprod. Biomed. Online 38(2), 169–176 (2019).
Google Scholar
Schoolcraft, W. B. et al. Blastocyst culture and transfer: analysis of results and parameters affecting outcome in two in vitro fertilization programs. Fertil. Steril. 72(4), 604–609 (1999).
Google Scholar
Minasi, M. G. et al. Correlation between aneuploidy, standard morphology evaluation and morphokinetic development in 1730 biopsied blastocysts: A consecutive case series study. Hum. Reprod. 31(10), 2245–2254 (2016).
Google Scholar
Wirleitner, B. et al. Pregnancy and birth outcomes following fresh or vitrified embryo transfer according to blastocyst morphology and expansion stage, and culturing strategy for delayed development. Hum. Reprod. 31(8), 1685–1695 (2016).
Google Scholar
van den Bergh, M. et al. Quality control in IVF with mouse bioassays: A four years’ experience. J. Assist. Reprod. Genet. 13(9), 733–738 (1996).
Google Scholar
Zarmakoupis-Zavos, P. N. & Zavos, P. M. Factors that may influence the mouse embryo bioassay. Tohoku J. Exp. Med. 179(3), 141–149 (1996).
Google Scholar
Gilbert, R. S. et al. Genetic mouse embryo assay: improving performance and quality testing for assisted reproductive technology (ART) with a functional bioassay. Reprod. Biol. Endocrinol. RB&E 14, 13–13 (2016).
Ainsworth, A. J., Fredrickson, J. R. & Morbeck, D. E. Improved detection of mineral oil toxicity using an extended mouse embryo assay. J. Assist. Reprod. Genet. 34(3), 391–397 (2017).
Google Scholar
Reignier, A. et al. Can time-lapse parameters predict embryo ploidy? A systematic review. Reprod. BioMed. Online 36(4), 380–387 (2018).
Google Scholar
Gardner, D. K. et al. Diagnosis of human preimplantation embryo viability. Hum. Reprod. Update 21(6), 727–747 (2015).
Google Scholar
Zakeri, Z. et al. What cell death does in development. Int. J. Dev. Biol. 59(1–3), 11–22 (2015).
Google Scholar
Byrne, A. T. et al. Analysis of apoptosis in the preimplantation bovine embryo using TUNEL. J. Reprod. Fertil. 117(1), 97–105 (1999).
Google Scholar
Leidenfrost, S., et al., Cell arrest and cell death in mammalian preimplantation development: lessons from the bovine model. PLoS One, 2011. 6(7): p. e22121.
Zakeri, Z. et al. A generalized caspase inhibitor disrupts early mammalian development. Int. J. Dev. Biol. 49(1), 43–47 (2005).
Google Scholar
Hardy, K. Cell death in the mammalian blastocyst. Mol. Hum. Reprod. 3(10), 919 (1997).
Google Scholar
Bakri, N. M. et al. Embryo apoptosis identification: Oocyte grade or cleavage stage?. Saudi J. Biol. Sci. 23(1), S50–S55 (2016).
Google Scholar
Gardner, D. K. & Kelley, R. L. Impact of the IVF laboratory environment on human preimplantation embryo phenotype. J Dev Orig Health Dis 8(4), 418–435 (2017).
Google Scholar
De Zio, D., Maiani, E. & Cecconi, F. Apaf1 in embryonic development – shaping life by death, and more. Int. J. Dev. Biol. 59(1–3), 33–39 (2015).
Google Scholar
Bratton, S. B. & Salvesen, G. S. Regulation of the Apaf-1-caspase-9 apoptosome. J. Cell Sci. 123(19), 3209 (2010).
Google Scholar
Jurisicova, A. et al. Expression of apoptosisrelated genes during human preimplantation embryo development: potential roles for the Harakiri gene product and Caspase3 in blastomere fragmentation. Mol. Hum. Reprod. 9(3), 133–141 (2003).
Google Scholar
Nagasaka, A. et al. Apaf-1-independent programmed cell death in mouse development. Cell Death Differ. 17(6), 931–941 (2010).
Google Scholar
Lamb, V. K. & Leese, H. J. Uptake of a mixture of amino acids by mouse blastocysts. J. Reprod. Fertil. 102(1), 169–175 (1994).
Google Scholar
Devreker, F. & Englert, Y. In vitro development and metabolism of the human embryo up to the blastocyst stage. Eur. J. Obstet. Gynecol. Reprod. Biol. 92(1), 51–56 (2000).
Google Scholar
Wale, P. L. & Gardner, D. K. Oxygen regulates amino acid turnover and carbohydrate uptake during the preimplantation period of mouse embryo development. Biol. Reprod. 87(1), 24 (2012).
Google Scholar
Gardner, D. K. & Harvey, A. J. Blastocyst metabolism. Reprod. Fertil. Dev. 27(4), 638–654 (2015).
Google Scholar
Lane, M. & Gardner, D. K. Amino acids and vitamins prevent culture-induced metabolic perturbations and associated loss of viability of mouse blastocysts. Hum. Reprod. 13(4), 991–997 (1998).
Google Scholar
Lane, M. & Gardner, D. K. Mitochondrial malate-aspartate shuttle regulates mouse embryo nutrient consumption. J. Biol. Chem. 280(18), 18361–18367 (2005).
Google Scholar
Wu, G. & Morris, S. M. Jr. Arginine metabolism: Nitric oxide and beyond. Biochem. J. 336(Pt 1), 1–17 (1998).
Google Scholar
Liu, Z. & Foote, R. H. Development of bovine embryos in KSOM with added superoxide dismutase and taurine and with five and twenty percent O2. Biol. Reprod. 53(4), 786–790 (1995).
Google Scholar
Van Winkle, L. J., Haghighat, N. & Campione, A. L. Glycine protects preimplantation mouse conceptuses from a detrimental effect on development of the inorganic ions in oviductal fluid. J. Exp. Zool. 253(2), 215–219 (1990).
Google Scholar
Lindenbaum, A. A survey of naturally occurring chelating ligands. Adv. Exp. Med. Biol. 40, 67–77 (1973).
Google Scholar
Brison, D. R. et al. Identification of viable embryos in IVF by non-invasive measurement of amino acid turnover. Hum. Reprod. 19(10), 2319–2324 (2004).
Google Scholar
Houghton, F. D. et al. Non-invasive amino acid turnover predicts human embryo developmental capacity. Hum. Reprod. 17(4), 999–1005 (2002).
Google Scholar
Gardner, D. K. et al. Quality control in human in vitro fertilization. Semin. Reprod. Med. 23(4), 319–324 (2005).
Google Scholar
Lane, M. & Gardner, D. K. Differential regulation of mouse embryo development and viability by amino acids. J. Reprod. Fertil 109(1), 153–164 (1997).
Google Scholar
Martin, P. M. & Sutherland, A. E. Exogenous amino acids regulate trophectoderm differentiation in the mouse blastocyst through an mTOR-dependent pathway. Dev. Biol. 240(1), 182–193 (2001).
Google Scholar
Gardner, D. K. & Wale, P. L. Analysis of metabolism to select viable human embryos for transfer. Fertil Steril 99(4), 1062–1072 (2013).
Google Scholar
Sturmey, R. G., Brison, D. R. & Leese, H. J. Symposium: Innovative techniques in human embryo viability assessment. Assessing embryo viability by measurement of amino acid turnover. Reprod. Biomed. Online 17(4), 486–496 (2008).
Google Scholar
Krisher, R. L. et al. Applying metabolomic analyses to the practice of embryology: physiology, development and assisted reproductive technology. Reprod. Fertil. Dev. 27(4), 602–620 (2015).
Google Scholar
Booth, P. J. et al. Amino acid depletion and appearance during porcine preimplantation embryo development in vitro. Reproduction 130(5), 655–668 (2005).
Google Scholar
Eckert, J. J. et al. Human embryos developing in vitro are susceptible to impaired epithelial junction biogenesis correlating with abnormal metabolic activity. Hum. Reprod. 22(8), 2214–2224 (2007).
Google Scholar
Johnson, D. C. & Dey, S. K. Role of histamine in implantation: dexamethasone inhibits estradiol-induced implantation in the rat. Biol. Reprod. 22(5), 1136–1141 (1980).
Google Scholar
Zhao, X. et al. Blastocyst H(2) receptor is the target for uterine histamine in implantation in the mouse. Development 127(12), 2643–2651 (2000).
Google Scholar
Bavister, B. D. Culture of preimplantation embryos: facts and artifacts. Hum Reprod Update 1(2), 91–148 (1995).
Google Scholar
Harris, S. E. et al. Nutrient concentrations in murine follicular fluid and the female reproductive tract. Theriogenology 64(4), 992–1006 (2005).
Google Scholar
Hugentobler, S. A. et al. Amino acids in oviduct and uterine fluid and blood plasma during the estrous cycle in the bovine. Mol. Reprod. Dev. 74(4), 445–454 (2007).
Google Scholar
Martin, P. M., Sutherland, A. E. & Van Winkle, L. J. Amino acid transport regulates blastocyst implantation. Biol. Reprod.. 69(4), 1101–1108 (2003).
Google Scholar
Phang, J. M., Liu, W. & Zabirnyk, O. Proline metabolism and microenvironmental stress. Annu. Rev. Nutr. 30, 441–463 (2010).
Google Scholar
Phang, J. M., Liu, W. & Hancock, C. Bridging epigenetics and metabolism: role of non-essential amino acids. Epigenetics 8(3), 231–236 (2013).
Google Scholar
González, I. M. et al. Leucine and arginine regulate trophoblast motility through mTOR-dependent and independent pathways in the preimplantation mouse embryo. Dev Biol 361(2), 286–300 (2012).
Google Scholar
Lenis, Y. Y. et al. Physiological importance of polyamines. Zygote 25(3), 244–255 (2017).
Google Scholar
Hussain, T. et al. Exploring polyamines: Functions in embryo/fetal development. Anim Nutr 3(1), 7–10 (2017).
Google Scholar
Pegg, A. E. Mammalian polyamine metabolism and function. IUBMB Life 61, 880–894 (2009).
Google Scholar
Wu, F. et al. Uptake of 14C- and 11C-labeled glutamate, glutamine and aspartate in vitro and in vivo. Anticancer Res. 20(1a), 251–256 (2000).
Google Scholar
Chatot, C. L. et al. An improved culture medium supports development of random-bred 1-cell mouse embryos in vitro. J. Reprod. Fertil. 86(2), 679–688 (1989).
Google Scholar
Zielke, H. R. et al. Growth of human diploid fibroblasts in the absence of glucose utilization. Proc Natl Acad Sci U S A 73(11), 4110–4114 (1976).
Google Scholar
Suzuki, C. et al. Glutamine and hypotaurine improves intracellular oxidative status and in vitro development of porcine preimplantation embryos. Zygote 15(4), 317–324 (2007).
Google Scholar
Lawitts, J. A. & Biggers, J. D. Joint effects of sodium chloride, glutamine, and glucose in mouse preimplantation embryo culture media. Mol Reprod Dev 31(3), 189–194 (1992).
Google Scholar
Manser, R. C., Leese, H. J. & Houghton, F. D. Effect of inhibiting nitric oxide production on mouse preimplantation embryo development and metabolism. Biol. Reprod. 71(2), 528–533 (2004).
Google Scholar
Rosselli, M. Nitric oxide and reproduction. Mol. Hum. Reprod. 3(8), 639–641 (1997).
Google Scholar
Rosselli, M., Keller, P. J. & Dubey, R. K. Role of nitric oxide in the biology, physiology and pathophysiology of reproduction. Hum Reprod Update 4(1), 3–24 (1998).
Google Scholar
Jablonka-Shariff, A. & Olson, L. M. The role of nitric oxide in oocyte meiotic maturation and ovulation: Meiotic abnormalities of endothelial nitric oxide synthase knock-out mouse oocytes. Endocrinology 139(6), 2944–2954 (1998).
Google Scholar
Lightfoot, T. J. et al. Risk of non-Hodgkin lymphoma associated with polymorphisms in folate-metabolizing genes. Cancer Epidemiol. Biomarkers Prev. 14(12), 2999–3003 (2005).
Google Scholar
Gilbody, S., Lewis, S. & Lightfoot, T. Methylenetetrahydrofolate reductase (MTHFR) genetic polymorphisms and psychiatric disorders: A HuGE review. Am. J.. Epidemiol. 165(1), 1–13 (2007).
Google Scholar
Levine, R. L., Moskovitz, J. & Stadtman, E. R. Oxidation of methionine in proteins: Roles in antioxidant defense and cellular regulation. IUBMB Life 50(4–5), 301–307 (2000).
Google Scholar
Moskovitz, J. Roles of methionine suldfoxide reductases in antioxidant defense, protein regulation and survival. Curr. Pharm. Des. 11(11), 1451–1457 (2005).
Google Scholar

