Preloader

The effect of chemical and structural modifiers on the haemostatic process and cytotoxicity of the beta-chitin patch

  • 1.

    Irita, K. Risk and crisis management in intraoperative hemorrhage: Human factors in hemorrhagic critical events. Korean J. Anesthesiol. 60, 151–160. https://doi.org/10.4097/kjae.2011.60.3.151 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 2.

    Brouwers, H. B. & Greenberg, S. M. Hematoma expansion following acute intracerebral hemorrhage. Cerebrovasc. Dis. 35, 195–201. https://doi.org/10.1159/000346599 (2013).

    Article 
    PubMed 

    Google Scholar 

  • 3.

    Yao, H. H., Hong, M. K. & Drummond, K. J. Haemostasis in neurosurgery: What is the evidence for gelatin-thrombin matrix sealant?. J. Clin. Neurosci. 20, 349–356. https://doi.org/10.1016/j.jocn.2012.09.005 (2013).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 4.

    Grant, G. A. Update on hemostasis: neurosurgery. Surgery 142, S55–S60. https://doi.org/10.1016/j.surg.2007.06.030 (2007).

    Article 

    Google Scholar 

  • 5.

    Rajiv, S. et al. The efficacy and safety of chitosan dextran gel in a burr hole neurosurgical sheep model. Acta Neurochir. 155, 1361–1366. https://doi.org/10.1007/s00701-013-1767-0 (2013).

    Article 
    PubMed 

    Google Scholar 

  • 6.

    Menovsky, T. et al. Massive swelling of Surgicel Fibrillar hemostat after spinal surgery. Case report and a review of the literature. Minim. Invasive Neurosurg. 54, 257–259. https://doi.org/10.1055/s-0031-1284394 (2011).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 7.

    Oz, M. C., Rondinone, J. F. & Shargill, N. S. FloSeal Matrix: New generation topical hemostatic sealant. J. Card. Surg. 18, 486–493 (2003).

    Article 

    Google Scholar 

  • 8.

    Tsurkan, M. V. et al. Progress in chitin analytics. Carbohydr. Polym. 252, 117204. https://doi.org/10.1016/j.carbpol.2020.117204 (2021).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 9.

    Benhabiles, M. S. et al. Antibacterial activity of chitin, chitosan and its oligomers prepared from shrimp shell waste. Food Hydrocolloids 29, 48–56. https://doi.org/10.1016/j.foodhyd.2012.02.013 (2012).

    CAS 
    Article 

    Google Scholar 

  • 10.

    Burkatovskaya, M. et al. Use of chitosan bandage to prevent fatal infections developing from highly contaminated wounds in mice. Biomaterials 27, 4157–4164. https://doi.org/10.1016/j.biomaterials.2006.03.028 (2006).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 11.

    Lin, L. X. et al. Evaluation of surgical anti-adhesion products to reduce postsurgical intra-abdominal adhesion formation in a rat model. PLoS One 12, e0172088. https://doi.org/10.1371/journal.pone.0172088 (2017).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 12.

    Keskin, F. & Esen, H. Comparison of the effects of an adhesion barrier and chitin on experimental epidural fibrosis. Turk. Neurosurg. 20, 457–463. https://doi.org/10.5137/1019-5149.jtn.3205-10.2 (2010).

    Article 
    PubMed 

    Google Scholar 

  • 13.

    Azuma, K. et al. Chitin, chitosan, and its derivatives for wound healing: Old and new materials. J. Funct. Biomater. 6, 104–142. https://doi.org/10.3390/jfb6010104 (2015).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 14.

    Ueno, H. et al. Accelerating effects of chitosan for healing at early phase of experimental open wound in dogs. Biomaterials 20, 1407–1414. https://doi.org/10.1016/s0142-9612(99)00046-0 (1999).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 15.

    Brandenberg, G., Leibrock, L. G., Shuman, R., Malette, W. G. & Quigley, H. Chitosan: A new topical hemostatic agent for diffuse capillary bleeding in brain tissue. Neurosurgery 15, 9–13 (1984).

    CAS 
    Article 

    Google Scholar 

  • 16.

    Jewelewicz, D. D., Cohn, S. M., Crookes, B. A. & Proctor, K. G. Modified rapid deployment hemostat bandage reduces blood loss and mortality in coagulopathic pigs with severe liver injury. J. Trauma 55, 275–280. https://doi.org/10.1097/01.TA.0000079375.69610.89 (2003) (discussion 280–271).

    Article 
    PubMed 

    Google Scholar 

  • 17.

    Smith, C. J., Vournakis, J. N., Demcheva, M. & Fischer, T. H. Differential effect of materials for surface hemostasis on red blood cell morphology. Microsc. Res. Tech. 71, 721–729. https://doi.org/10.1002/jemt.20612 (2008).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 18.

    Thatte, H. S., Zagarins, S. E., Amiji, M. & Khuri, S. F. Poly-N-acetyl glucosamine-mediated red blood cell interactions. J. Trauma 57, S7–S12. https://doi.org/10.1097/01.ta.0000136742.04816.38 (2004).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 19.

    Thatte, H. S., Zagarins, S., Khuri, S. F. & Fischer, T. H. Mechanisms of poly-N-acetyl glucosamine polymer-mediated hemostasis: Platelet interactions. J. Trauma 57, S13–S21. https://doi.org/10.1097/01.ta.0000136743.12440.89 (2004).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 20.

    Chou, T.-C., Fu, E., Wu, C.-J. & Yeh, J.-H. Chitosan enhances platelet adhesion and aggregation. Biochem. Biophys. Res. Commun. 302, 480–483. https://doi.org/10.1016/s0006-291x(03)00173-6 (2003).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 21.

    Paul, B. Z., Jin, J. & Kunapuli, S. P. Molecular mechanism of thromboxane A(2)-induced platelet aggregation. Essential role for p2t(ac) and alpha(2a) receptors. J. Biol. Chem. 274, 29108–29114. https://doi.org/10.1074/jbc.274.41.29108 (1999).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 22.

    Hong, H., Liu, C. & Wu, W. Preparation and characterization of chitosan/PEG/gelatin composites for tissue engineering. J. Appl. Polym. Sci. 114, 1220–1225. https://doi.org/10.1002/app.30619 (2009).

    CAS 
    Article 

    Google Scholar 

  • 23.

    Liu, X., An, Y., Feng, J., Zhu, X. & Li, F. Preparation and properties of carbon nanofiber modified emulsified asphalt based on ultrasonication and surfactant and the impact of SBR and NH4Cl. Front. Mater. https://doi.org/10.3389/fmats.2020.00209 (2020).

    Article 

    Google Scholar 

  • 24.

    Austin, S. K. Haemostasis. Medicine 45, 204–208. https://doi.org/10.1016/j.mpmed.2017.01.013 (2017).

    Article 

    Google Scholar 

  • 25.

    Xu, J., McCarthy, S. P., Gross, R. A. & Kaplan, D. L. Chitosan film acylation and effects on biodegradability. Macromolecules 29, 3436–3440. https://doi.org/10.1021/ma951638b (1996).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 26.

    Focher, B., Beltrame, P. L., Naggi, A. & Torri, G. Alkaline N-deacetylation of chitin enhanced by flash treatments. Reaction kinetics and structure modifications. Carbohydr. Polym. 12, 405–418. https://doi.org/10.1016/0144-8617(90)90090-F (1990).

    CAS 
    Article 

    Google Scholar 

  • 27.

    Zhang, Y., Xue, C., Xue, Y., Gao, R. & Zhang, X. Determination of the degree of deacetylation of chitin and chitosan by X-ray powder diffraction. Carbohydr. Res. 340, 1914–1917. https://doi.org/10.1016/j.carres.2005.05.005 (2005).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 28.

    Shih, M. F. et al. Platelet adsorption and hemolytic properties of liquid crystal/composite polymers. Int. J. Pharm. 327, 117–125. https://doi.org/10.1016/j.ijpharm.2006.07.043 (2006).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 29.

    Ong, S. Y., Wu, J., Moochhala, S. M., Tan, M. H. & Lu, J. Development of a chitosan-based wound dressing with improved hemostatic and antimicrobial properties. Biomaterials 29, 4323–4332. https://doi.org/10.1016/j.biomaterials.2008.07.034 (2008).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 30.

    Kokubo, T. & Takadama, H. How useful is SBF in predicting in vivo bone bioactivity?. Biomaterials 27, 2907–2915. https://doi.org/10.1016/j.biomaterials.2006.01.017 (2006).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 31.

    De Castro, G. P. et al. Determination of efficacy of novel modified chitosan sponge dressing in a lethal arterial injury model in swine. J. Trauma Acute Care Surg. 72, 899–907. https://doi.org/10.1097/TA.0b013e318248baa1 (2012).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 32.

    Greene, L. A. & Tischler, A. S. Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc. Natl. Acad. Sci. U.S.A. 73, 2424–2428. https://doi.org/10.1073/pnas.73.7.2424 (1976).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 33.

    Chaussard, G. & Domard, A. New aspects of the extraction of chitin from squid pens. Biomacromol 5, 559–564. https://doi.org/10.1021/bm034401t (2004).

    CAS 
    Article 

    Google Scholar 

  • 34.

    Cortizo, M. S., Berghoff, C. F. & Alessandrini, J. L. Characterization of chitin from Illex argentinus squid pen. Carbohydr. Polym. 74, 10–15. https://doi.org/10.1016/j.carbpol.2008.01.004 (2008).

    CAS 
    Article 

    Google Scholar 

  • 35.

    Youn, D. K., No, H. K. & Prinyawiwatkul, W. Preparation and characteristics of squid pen β-chitin prepared under optimal deproteinisation and demineralisation condition. Int. J. Food Sci. Technol. 48, 571–577. https://doi.org/10.1111/ijfs.12001 (2013).

    CAS 
    Article 

    Google Scholar 

  • 36.

    Shavandi, A., Bekhit, A. A., Bekhit, A.E.-D.A., Sun, Z. & Ali, M. A. Preparation and characterisation of irradiated crab chitosan and New Zealand Arrow squid pen chitosan. Mater. Chem. Phys. 167, 295–302. https://doi.org/10.1016/j.matchemphys.2015.10.047 (2015).

    CAS 
    Article 

    Google Scholar 

  • 37.

    Ottøy, M. H., Vårum, K. M. & Smidsrød, O. Compositional heterogeneity of heterogeneously deacetylated chitosans. Carbohydr. Polym. 29, 17–24. https://doi.org/10.1016/0144-8617(95)00154-9 (1996).

    Article 

    Google Scholar 

  • 38.

    Huang, E. M. & Detwiler, T. C. In Biochemistry of Platelets (eds Phillips, D. R. & Shuman, M. A.) 1–68 (Academic Press, 1986).

    Google Scholar 

  • 39.

    Ware, J. A., Decenzo, M. T., Smith, M. & Saitoh, M. Calcium mobilization and glycoprotein IIb–IIIa complex ligands in epinephrine-stimulated platelets. Am. J. Physiol. 260, H1619-1624. https://doi.org/10.1152/ajpheart.1991.260.5.H1619 (1991).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 40.

    Sundaram, M. N., Mony, U., Varma, P. K. & Rangasamy, J. Vasoconstrictor and coagulation activator entrapped chitosan based composite hydrogel for rapid bleeding control. Carbohydr. Polym. 258, 117634. https://doi.org/10.1016/j.carbpol.2021.117634 (2021).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 41.

    Jaques, L. B. & Dunlop, A. P. The effect of calcium concentration on prothrombin time. Am. J. Physiol. 145, 67–76. https://doi.org/10.1152/ajplegacy.1945.145.1.67 (1945).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 42.

    Li, Z. L. et al. Effects of extracellular calcium concentration on platelets aggregation, coagulation indices and thromboelastography. Zhonghua Yi Xue Za Zhi 90, 1547–1550 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • 43.

    Xu, L.-C. & Siedlecki, C. A. Protein adsorption, platelet adhesion, and bacterial adhesion to polyethylene-glycol-textured polyurethane biomaterial surfaces. J. Biomed. Mater. Res. B Appl. Biomater. 105, 668–678. https://doi.org/10.1002/jbm.b.33592 (2017).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 44.

    You, J. et al. Pharmacokinetics, clearance, and biosafety of polyethylene glycol-coated hollow gold nanospheres. Part. Fibre Toxicol. 11, 26. https://doi.org/10.1186/1743-8977-11-26 (2014).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 45.

    Park, K. D. et al. Platelet adhesion and activation on polyethylene glycol modified polyurethane surfaces. Measurement of cytoplasmic calcium. ASAIO J. 42, M876–M881. https://doi.org/10.1097/00002480-199609000-00117 (1996).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 46.

    Docampo, R., Ulrich, P. & Moreno, S. N. J. Evolution of acidocalcisomes and their role in polyphosphate storage and osmoregulation in eukaryotic microbes. Philos. Trans. R. Soc. Lond. B Biol. Sci. 365, 775–784. https://doi.org/10.1098/rstb.2009.0179 (2010).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 47.

    Ruiz, F. A., Lea, C. R., Oldfield, E. & Docampo, R. Human platelet dense granules contain polyphosphate and are similar to acidocalcisomes of bacteria and unicellular eukaryotes. J. Biol. Chem. 279, 44250–44257. https://doi.org/10.1074/jbc.M406261200 (2004).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 48.

    Choi, S. H. et al. Phosphoramidate end labeling of inorganic polyphosphates: facile manipulation of polyphosphate for investigating and modulating its biological activities. Biochemistry 49, 9935–9941. https://doi.org/10.1021/bi1014437 (2010).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 49.

    Engel, R., Brain, C. M., Paget, J., Lionikiene, A. S. & Mutch, N. J. Single-chain factor XII exhibits activity when complexed to polyphosphate. J. Thromb. Haemost. 12, 1513–1522. https://doi.org/10.1111/jth.12663 (2014).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 50.

    Smith, S. A. & Morrissey, J. H. Polyphosphate: A new player in the field of hemostasis. Curr. Opin. Hematol. 21, 388–394. https://doi.org/10.1097/MOH.0000000000000069 (2014).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 51.

    The International Organization for Standardization. in 10993-5:2009 (International Organization for Standardization Switzerland, 2009).

  • 52.

    Hexig, B., Nakaoka, R. & Tsuchiya, T. Safety evaluation of surgical materials by cytotoxicity testing. J. Artif. Organs 11, 204–211. https://doi.org/10.1007/s10047-008-0429-0 (2008).

    Article 
    PubMed 

    Google Scholar 

  • 53.

    Wang, H. & Chen, P. Surgicel (oxidized regenerated cellulose) granuloma mimicking local recurrent gastrointestinal stromal tumor: A case report. Oncol. Lett. 5, 1497–1500. https://doi.org/10.3892/ol.2013.1218 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 54.

    Graber, J. J., Tabar, V., Brennan, C., Rosenblum, M. & DeAngelis, L. M. Acute inflammatory reactions to hemostatic materials mimicking post-operative intracranial abscess. Interdiscip. Neurosurg. 1, 5–7. https://doi.org/10.1016/j.inat.2014.01.002 (2014).

    Article 

    Google Scholar 

  • 55.

    Anderson, J. M., Rodriguez, A. & Chang, D. T. Foreign body reaction to biomaterials. Semin. Immunol. 20, 86–100. https://doi.org/10.1016/j.smim.2007.11.004 (2008).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 56.

    Harry, G. J. & Kraft, A. D. Neuroinflammation and microglia: considerations and approaches for neurotoxicity assessment. Expert Opin. Drug Metab. Toxicol. 4, 1265–1277. https://doi.org/10.1517/17425255.4.10.1265 (2008).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Source link