Irita, K. Risk and crisis management in intraoperative hemorrhage: Human factors in hemorrhagic critical events. Korean J. Anesthesiol. 60, 151–160. https://doi.org/10.4097/kjae.2011.60.3.151 (2011).
Google Scholar
Brouwers, H. B. & Greenberg, S. M. Hematoma expansion following acute intracerebral hemorrhage. Cerebrovasc. Dis. 35, 195–201. https://doi.org/10.1159/000346599 (2013).
Google Scholar
Yao, H. H., Hong, M. K. & Drummond, K. J. Haemostasis in neurosurgery: What is the evidence for gelatin-thrombin matrix sealant?. J. Clin. Neurosci. 20, 349–356. https://doi.org/10.1016/j.jocn.2012.09.005 (2013).
Google Scholar
Grant, G. A. Update on hemostasis: neurosurgery. Surgery 142, S55–S60. https://doi.org/10.1016/j.surg.2007.06.030 (2007).
Google Scholar
Rajiv, S. et al. The efficacy and safety of chitosan dextran gel in a burr hole neurosurgical sheep model. Acta Neurochir. 155, 1361–1366. https://doi.org/10.1007/s00701-013-1767-0 (2013).
Google Scholar
Menovsky, T. et al. Massive swelling of Surgicel Fibrillar hemostat after spinal surgery. Case report and a review of the literature. Minim. Invasive Neurosurg. 54, 257–259. https://doi.org/10.1055/s-0031-1284394 (2011).
Google Scholar
Oz, M. C., Rondinone, J. F. & Shargill, N. S. FloSeal Matrix: New generation topical hemostatic sealant. J. Card. Surg. 18, 486–493 (2003).
Google Scholar
Tsurkan, M. V. et al. Progress in chitin analytics. Carbohydr. Polym. 252, 117204. https://doi.org/10.1016/j.carbpol.2020.117204 (2021).
Google Scholar
Benhabiles, M. S. et al. Antibacterial activity of chitin, chitosan and its oligomers prepared from shrimp shell waste. Food Hydrocolloids 29, 48–56. https://doi.org/10.1016/j.foodhyd.2012.02.013 (2012).
Google Scholar
Burkatovskaya, M. et al. Use of chitosan bandage to prevent fatal infections developing from highly contaminated wounds in mice. Biomaterials 27, 4157–4164. https://doi.org/10.1016/j.biomaterials.2006.03.028 (2006).
Google Scholar
Lin, L. X. et al. Evaluation of surgical anti-adhesion products to reduce postsurgical intra-abdominal adhesion formation in a rat model. PLoS One 12, e0172088. https://doi.org/10.1371/journal.pone.0172088 (2017).
Google Scholar
Keskin, F. & Esen, H. Comparison of the effects of an adhesion barrier and chitin on experimental epidural fibrosis. Turk. Neurosurg. 20, 457–463. https://doi.org/10.5137/1019-5149.jtn.3205-10.2 (2010).
Google Scholar
Azuma, K. et al. Chitin, chitosan, and its derivatives for wound healing: Old and new materials. J. Funct. Biomater. 6, 104–142. https://doi.org/10.3390/jfb6010104 (2015).
Google Scholar
Ueno, H. et al. Accelerating effects of chitosan for healing at early phase of experimental open wound in dogs. Biomaterials 20, 1407–1414. https://doi.org/10.1016/s0142-9612(99)00046-0 (1999).
Google Scholar
Brandenberg, G., Leibrock, L. G., Shuman, R., Malette, W. G. & Quigley, H. Chitosan: A new topical hemostatic agent for diffuse capillary bleeding in brain tissue. Neurosurgery 15, 9–13 (1984).
Google Scholar
Jewelewicz, D. D., Cohn, S. M., Crookes, B. A. & Proctor, K. G. Modified rapid deployment hemostat bandage reduces blood loss and mortality in coagulopathic pigs with severe liver injury. J. Trauma 55, 275–280. https://doi.org/10.1097/01.TA.0000079375.69610.89 (2003) (discussion 280–271).
Google Scholar
Smith, C. J., Vournakis, J. N., Demcheva, M. & Fischer, T. H. Differential effect of materials for surface hemostasis on red blood cell morphology. Microsc. Res. Tech. 71, 721–729. https://doi.org/10.1002/jemt.20612 (2008).
Google Scholar
Thatte, H. S., Zagarins, S. E., Amiji, M. & Khuri, S. F. Poly-N-acetyl glucosamine-mediated red blood cell interactions. J. Trauma 57, S7–S12. https://doi.org/10.1097/01.ta.0000136742.04816.38 (2004).
Google Scholar
Thatte, H. S., Zagarins, S., Khuri, S. F. & Fischer, T. H. Mechanisms of poly-N-acetyl glucosamine polymer-mediated hemostasis: Platelet interactions. J. Trauma 57, S13–S21. https://doi.org/10.1097/01.ta.0000136743.12440.89 (2004).
Google Scholar
Chou, T.-C., Fu, E., Wu, C.-J. & Yeh, J.-H. Chitosan enhances platelet adhesion and aggregation. Biochem. Biophys. Res. Commun. 302, 480–483. https://doi.org/10.1016/s0006-291x(03)00173-6 (2003).
Google Scholar
Paul, B. Z., Jin, J. & Kunapuli, S. P. Molecular mechanism of thromboxane A(2)-induced platelet aggregation. Essential role for p2t(ac) and alpha(2a) receptors. J. Biol. Chem. 274, 29108–29114. https://doi.org/10.1074/jbc.274.41.29108 (1999).
Google Scholar
Hong, H., Liu, C. & Wu, W. Preparation and characterization of chitosan/PEG/gelatin composites for tissue engineering. J. Appl. Polym. Sci. 114, 1220–1225. https://doi.org/10.1002/app.30619 (2009).
Google Scholar
Liu, X., An, Y., Feng, J., Zhu, X. & Li, F. Preparation and properties of carbon nanofiber modified emulsified asphalt based on ultrasonication and surfactant and the impact of SBR and NH4Cl. Front. Mater. https://doi.org/10.3389/fmats.2020.00209 (2020).
Google Scholar
Austin, S. K. Haemostasis. Medicine 45, 204–208. https://doi.org/10.1016/j.mpmed.2017.01.013 (2017).
Google Scholar
Xu, J., McCarthy, S. P., Gross, R. A. & Kaplan, D. L. Chitosan film acylation and effects on biodegradability. Macromolecules 29, 3436–3440. https://doi.org/10.1021/ma951638b (1996).
Google Scholar
Focher, B., Beltrame, P. L., Naggi, A. & Torri, G. Alkaline N-deacetylation of chitin enhanced by flash treatments. Reaction kinetics and structure modifications. Carbohydr. Polym. 12, 405–418. https://doi.org/10.1016/0144-8617(90)90090-F (1990).
Google Scholar
Zhang, Y., Xue, C., Xue, Y., Gao, R. & Zhang, X. Determination of the degree of deacetylation of chitin and chitosan by X-ray powder diffraction. Carbohydr. Res. 340, 1914–1917. https://doi.org/10.1016/j.carres.2005.05.005 (2005).
Google Scholar
Shih, M. F. et al. Platelet adsorption and hemolytic properties of liquid crystal/composite polymers. Int. J. Pharm. 327, 117–125. https://doi.org/10.1016/j.ijpharm.2006.07.043 (2006).
Google Scholar
Ong, S. Y., Wu, J., Moochhala, S. M., Tan, M. H. & Lu, J. Development of a chitosan-based wound dressing with improved hemostatic and antimicrobial properties. Biomaterials 29, 4323–4332. https://doi.org/10.1016/j.biomaterials.2008.07.034 (2008).
Google Scholar
Kokubo, T. & Takadama, H. How useful is SBF in predicting in vivo bone bioactivity?. Biomaterials 27, 2907–2915. https://doi.org/10.1016/j.biomaterials.2006.01.017 (2006).
Google Scholar
De Castro, G. P. et al. Determination of efficacy of novel modified chitosan sponge dressing in a lethal arterial injury model in swine. J. Trauma Acute Care Surg. 72, 899–907. https://doi.org/10.1097/TA.0b013e318248baa1 (2012).
Google Scholar
Greene, L. A. & Tischler, A. S. Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc. Natl. Acad. Sci. U.S.A. 73, 2424–2428. https://doi.org/10.1073/pnas.73.7.2424 (1976).
Google Scholar
Chaussard, G. & Domard, A. New aspects of the extraction of chitin from squid pens. Biomacromol 5, 559–564. https://doi.org/10.1021/bm034401t (2004).
Google Scholar
Cortizo, M. S., Berghoff, C. F. & Alessandrini, J. L. Characterization of chitin from Illex argentinus squid pen. Carbohydr. Polym. 74, 10–15. https://doi.org/10.1016/j.carbpol.2008.01.004 (2008).
Google Scholar
Youn, D. K., No, H. K. & Prinyawiwatkul, W. Preparation and characteristics of squid pen β-chitin prepared under optimal deproteinisation and demineralisation condition. Int. J. Food Sci. Technol. 48, 571–577. https://doi.org/10.1111/ijfs.12001 (2013).
Google Scholar
Shavandi, A., Bekhit, A. A., Bekhit, A.E.-D.A., Sun, Z. & Ali, M. A. Preparation and characterisation of irradiated crab chitosan and New Zealand Arrow squid pen chitosan. Mater. Chem. Phys. 167, 295–302. https://doi.org/10.1016/j.matchemphys.2015.10.047 (2015).
Google Scholar
Ottøy, M. H., Vårum, K. M. & Smidsrød, O. Compositional heterogeneity of heterogeneously deacetylated chitosans. Carbohydr. Polym. 29, 17–24. https://doi.org/10.1016/0144-8617(95)00154-9 (1996).
Google Scholar
Huang, E. M. & Detwiler, T. C. In Biochemistry of Platelets (eds Phillips, D. R. & Shuman, M. A.) 1–68 (Academic Press, 1986).
Ware, J. A., Decenzo, M. T., Smith, M. & Saitoh, M. Calcium mobilization and glycoprotein IIb–IIIa complex ligands in epinephrine-stimulated platelets. Am. J. Physiol. 260, H1619-1624. https://doi.org/10.1152/ajpheart.1991.260.5.H1619 (1991).
Google Scholar
Sundaram, M. N., Mony, U., Varma, P. K. & Rangasamy, J. Vasoconstrictor and coagulation activator entrapped chitosan based composite hydrogel for rapid bleeding control. Carbohydr. Polym. 258, 117634. https://doi.org/10.1016/j.carbpol.2021.117634 (2021).
Google Scholar
Jaques, L. B. & Dunlop, A. P. The effect of calcium concentration on prothrombin time. Am. J. Physiol. 145, 67–76. https://doi.org/10.1152/ajplegacy.1945.145.1.67 (1945).
Google Scholar
Li, Z. L. et al. Effects of extracellular calcium concentration on platelets aggregation, coagulation indices and thromboelastography. Zhonghua Yi Xue Za Zhi 90, 1547–1550 (2010).
Google Scholar
Xu, L.-C. & Siedlecki, C. A. Protein adsorption, platelet adhesion, and bacterial adhesion to polyethylene-glycol-textured polyurethane biomaterial surfaces. J. Biomed. Mater. Res. B Appl. Biomater. 105, 668–678. https://doi.org/10.1002/jbm.b.33592 (2017).
Google Scholar
You, J. et al. Pharmacokinetics, clearance, and biosafety of polyethylene glycol-coated hollow gold nanospheres. Part. Fibre Toxicol. 11, 26. https://doi.org/10.1186/1743-8977-11-26 (2014).
Google Scholar
Park, K. D. et al. Platelet adhesion and activation on polyethylene glycol modified polyurethane surfaces. Measurement of cytoplasmic calcium. ASAIO J. 42, M876–M881. https://doi.org/10.1097/00002480-199609000-00117 (1996).
Google Scholar
Docampo, R., Ulrich, P. & Moreno, S. N. J. Evolution of acidocalcisomes and their role in polyphosphate storage and osmoregulation in eukaryotic microbes. Philos. Trans. R. Soc. Lond. B Biol. Sci. 365, 775–784. https://doi.org/10.1098/rstb.2009.0179 (2010).
Google Scholar
Ruiz, F. A., Lea, C. R., Oldfield, E. & Docampo, R. Human platelet dense granules contain polyphosphate and are similar to acidocalcisomes of bacteria and unicellular eukaryotes. J. Biol. Chem. 279, 44250–44257. https://doi.org/10.1074/jbc.M406261200 (2004).
Google Scholar
Choi, S. H. et al. Phosphoramidate end labeling of inorganic polyphosphates: facile manipulation of polyphosphate for investigating and modulating its biological activities. Biochemistry 49, 9935–9941. https://doi.org/10.1021/bi1014437 (2010).
Google Scholar
Engel, R., Brain, C. M., Paget, J., Lionikiene, A. S. & Mutch, N. J. Single-chain factor XII exhibits activity when complexed to polyphosphate. J. Thromb. Haemost. 12, 1513–1522. https://doi.org/10.1111/jth.12663 (2014).
Google Scholar
Smith, S. A. & Morrissey, J. H. Polyphosphate: A new player in the field of hemostasis. Curr. Opin. Hematol. 21, 388–394. https://doi.org/10.1097/MOH.0000000000000069 (2014).
Google Scholar
The International Organization for Standardization. in 10993-5:2009 (International Organization for Standardization Switzerland, 2009).
Hexig, B., Nakaoka, R. & Tsuchiya, T. Safety evaluation of surgical materials by cytotoxicity testing. J. Artif. Organs 11, 204–211. https://doi.org/10.1007/s10047-008-0429-0 (2008).
Google Scholar
Wang, H. & Chen, P. Surgicel (oxidized regenerated cellulose) granuloma mimicking local recurrent gastrointestinal stromal tumor: A case report. Oncol. Lett. 5, 1497–1500. https://doi.org/10.3892/ol.2013.1218 (2013).
Google Scholar
Graber, J. J., Tabar, V., Brennan, C., Rosenblum, M. & DeAngelis, L. M. Acute inflammatory reactions to hemostatic materials mimicking post-operative intracranial abscess. Interdiscip. Neurosurg. 1, 5–7. https://doi.org/10.1016/j.inat.2014.01.002 (2014).
Google Scholar
Anderson, J. M., Rodriguez, A. & Chang, D. T. Foreign body reaction to biomaterials. Semin. Immunol. 20, 86–100. https://doi.org/10.1016/j.smim.2007.11.004 (2008).
Google Scholar
Harry, G. J. & Kraft, A. D. Neuroinflammation and microglia: considerations and approaches for neurotoxicity assessment. Expert Opin. Drug Metab. Toxicol. 4, 1265–1277. https://doi.org/10.1517/17425255.4.10.1265 (2008).
Google Scholar

