Preloader

The biological applications of DNA nanomaterials: current challenges and future directions

  • 1.

    Dong, Y. et al. DNA functional materials assembled from branched DNA: design, synthesis, and applications. Chem. Rev. 120, 9420–9481 (2020).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 2.

    Broker, T. R. & Lehman, I. R. Branched DNA molecules: intermediates in T4 recombination. J. Mol. Biol. 60, 131–149 (1971).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 3.

    Seeman, N. C. DNA nanotechnology: from the pub to information-based chemistry. Methods Mol. Biol. 1811, 1–9 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 4.

    Seeman, N. C. DNA nanotechnology: novel DNA constructions. Annu. Rev. Biophys. Biomol. Struct. 27, 225–248 (1998).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 5.

    Seeman, N. C. & Sleiman, H. F. DNA nanotechnology. Nat. Rev. Mater 3, 17068 (2018).

    CAS 
    Article 

    Google Scholar 

  • 6.

    Seeman, N. C. Nucleic-acid junctions and lattices. J. Theor. Biol. 99, 237–247 (1982).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 7.

    Seeman, N. C. DNA engineering and its application to nanotechnology. Trends Biotechnol. 17, 437–443 (1999).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 8.

    Seeman, N. C. et al. Two dimensions and two States in DNA nanotechnology. J. Biomol. Struct. Dyn. 17, 253–262 (2000).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 9.

    Seeman, N. C. Key experimental approaches in DNA nanotechnology. Curr. Protoc. Nucleic Acid Chem. Chapter 12, 11 (2002).

    Google Scholar 

  • 10.

    Fan, S. et al. Create nanoscale patterns with DNA origami. Small 15, e1805554 (2019).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 11.

    Jones, M. R., Seeman, N. C. & Mirkin, C. A. Nanomaterials. programmable materials and the nature of the DNA bond. Science 347, 1260901 (2015).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 12.

    Hu, Y. & Niemeyer, C. M. From DNA nanotechnology to material systems engineering. Adv. Mater. 31, e1806294 (2019).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 13.

    Chao, J. et al. Solving mazes with single-molecule DNA navigators. Nat. Mater. 18, 273–279 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 14.

    Harroun, S. G. et al. Programmable DNA switches and their applications. Nanoscale 10, 4607–4641 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 15.

    Hu, Y., Cecconello, A., Idili, A., Ricci, F. & Willner, I. Triplex DNA nanostructures: from basic properties to applications. Angew. Chem. Int. Ed. Engl. 56, 15210–15233 (2017).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 16.

    Seeman, N. C. DNA in a material world. Nature 421, 427–431 (2003).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 17.

    Jia, S. et al. Programming DNA origami patterning with non-canonical DNA-based metallization reactions. Nat. Commun. 10, 5597 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 18.

    Gopinath, A., Miyazono, E., Faraon, A. & Rothemund, P. W. Engineering and mapping nanocavity emission via precision placement of DNA origami. Nature 535, 401–405 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 19.

    Wing, R. et al. Crystal structure analysis of a complete turn of B-DNA. Nature 287, 755–758 (1980).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 20.

    Franklin, R. E. & Gosling, R. G. Molecular structure of nucleic acids. Molecular configuration in sodium thymonucleate. 1953. Ann. N. Y. Acad. Sci. 758, 16–17 (1995).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 21.

    Franklin, R. E. & Gosling, R. G. Molecular configuration in sodium thymonucleate. Nature 171, 740–741 (1953).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 22.

    Wilkins, M. H., Stokes, A. R. & Wilson, H. R. Molecular structure of nucleic acids. Molecular structure of deoxypentose nucleic acids. 1953. Ann. N. Y. Acad. Sci. 758, 13–16 (1995).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 23.

    Wilkins, M. H., Stokes, A. R. & Wilson, H. R. Molecular structure of deoxypentose nucleic acids. Nature 171, 738–740 (1953).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 24.

    Watson, J. D. & Crick, F. H. Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature 171, 737–738 (1953).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 25.

    Mergny, J. L. & Sen, D. DNA quadruple helices in nanotechnology. Chem. Rev. 119, 6290–6325 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 26.

    Leslie, A. G., Arnott, S., Chandrasekaran, R. & Ratliff, R. L. Polymorphism of DNA double helices. J. Mol. Biol. 143, 49–72 (1980).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 27.

    Basu, H. S., Feuerstein, B. G., Zarling, D. A., Shafer, R. H. & Marton, L. J. Recognition of Z-RNA and Z-DNA determinants by polyamines in solution: experimental and theoretical studies. J. Biomol. Struct. Dyn. 6, 299–309 (1988).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 28.

    Irobalieva, R. N. et al. Structural diversity of supercoiled DNA. Nat. Commun. 6, 8440 (2015).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 29.

    Zhang, F., Nangreave, J., Liu, Y. & Yan, H. Structural DNA nanotechnology: state of the art and future perspective. J. Am. Chem. Soc. 136, 11198–11211 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 30.

    Fu, J., Liu, M., Liu, Y. & Yan, H. Spatially-interactive biomolecular networks organized by nucleic acid nanostructures. Acc. Chem. Res 45, 1215–1226 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 31.

    Alivisatos, A. P. et al. Organization of ‘nanocrystal molecules’ using DNA. Nature 382, 609–611 (1996).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 32.

    Mirkin, C. A., Letsinger, R. L., Mucic, R. C. & Storhoff, J. J. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382, 607–609 (1996).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 33.

    Julin, S., Nummelin, S., Kostiainen, M. A. & Linko, V. DNA nanostructure-directed assembly of metal nanoparticle superlattices. J. Nanopart. Res.: Interdiscip. Forum Nanoscale Sci. Technol. 20, 119 (2018).

    Article 
    CAS 

    Google Scholar 

  • 34.

    Aldaye, F. A., Palmer, A. L. & Sleiman, H. F. Assembling materials with DNA as the guide. Science 321, 1795–1799 (2008).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 35.

    Wang, X. et al. Paranemic crossover DNA: there and back again. Chem. Rev. 119, 6273–6289 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 36.

    Loescher, S., Groeer, S. & Walther, A. 3D DNA origami nanoparticles: from basic design principles to emerging applications in soft matter and (bio-)nanosciences. Angew. Chem. Int. Ed. Engl. 57, 10436–10448 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 37.

    Hong, F., Zhang, F., Liu, Y. & Yan, H. DNA origami: scaffolds for creating higher order structures. Chem. Rev. 117, 12584–12640 (2017).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 38.

    Rothemund, P. W. & Folding, D. N. A. to create nanoscale shapes and patterns. Nature 440, 297–302 (2006).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 39.

    Torring, T., Voigt, N. V., Nangreave, J., Yan, H. & Gothelf, K. V. DNA origami: a quantum leap for self-assembly of complex structures. Chem. Soc. Rev. 40, 5636–5646 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 40.

    Petersen, P., Tikhomirov, G. & Qian, L. Information-based autonomous reconfiguration in systems of interacting DNA nanostructures. Nat. Commun. 9, 5362 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 41.

    Wang, S. S. & Ellington, A. D. Pattern generation with nucleic acid chemical reaction networks. Chem. Rev. 119, 6370–6383 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 42.

    Simmel, F. C., Yurke, B. & Singh, H. R. Principles and applications of nucleic acid strand displacement reactions. Chem. Rev. 119, 6326–6369 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 43.

    Thubagere, A. J. et al. A cargo-sorting DNA robot. Science 357, eaan6558 (2017).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 44.

    Zhang, D. Y. & Seelig, G. Dynamic DNA nanotechnology using strand-displacement reactions. Nat. Chem. 3, 103–113 (2011).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 45.

    Kopperger, E. et al. A self-assembled nanoscale robotic arm controlled by electric fields. Science 359, 296–301 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 46.

    Hu, Q., Li, H., Wang, L., Gu, H. & Fan, C. DNA nanotechnology-enabled drug delivery systems. Chem. Rev. 119, 6459–6506 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 47.

    Kohman, R. E., Kunjapur, A. M., Hysolli, E., Wang, Y. & Church, G. M. From designing the molecules of life to designing life: future applications derived from advances in DNA technologies. Angew. Chem. Int. Ed. Engl. 57, 4313–4328 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 48.

    Li, J., Green, A. A., Yan, H. & Fan, C. Engineering nucleic acid structures for programmable molecular circuitry and intracellular biocomputation. Nat. Chem. 9, 1056–1067 (2017).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 49.

    Yang, D. et al. DNA materials: bridging nanotechnology and biotechnology. Acc. Chem. Res. 47, 1902–1911 (2014).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 50.

    Zhang, Y. et al. Programmable and multifunctional DNA-based materials for biomedical applications. Adv. Mater. 30, e1703658 (2018).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 51.

    Zhou, L. et al. Functional DNA-based hydrogel intelligent materials for biomedical applications. J. Mater. Chem. B 8, 1991–2009 (2020).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 52.

    Jiang, Q. et al. Rationally designed DNA-based nanocarriers. Adv. Drug Deliv. Rev. 147, 2–21 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 53.

    Elfwing, A. et al. DNA based hybrid material for interface engineering in polymer solar cells. ACS Appl. Mater. Interfaces 10, 9579–9586 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 54.

    Li, J. et al. Functional nucleic acid-based hydrogels for bioanalytical and biomedical applications. Chem. Soc. Rev. 45, 1410–1431 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 55.

    Maeda, M., Kojima, T., Song, Y. & Takayama, S. DNA-based biomaterials for immunoengineering. Adv. Healthc. Mater. 8, e1801243 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 56.

    Chandrasekaran, A. R. et al. DNA nanotechnology approaches for microRNA detection and diagnosis. Nucleic Acids Res. 47, 10489–10505 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 57.

    Roh, Y. H., Ruiz, R. C., Peng, S., Lee, J. B. & Luo, D. Engineering DNA-based functional materials. Chem. Soc. Rev. 40, 5730–5744 (2011).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 58.

    Khajouei, S., Ravan, H. & Ebrahimi, A. DNA hydrogel-empowered biosensing. Adv. Colloid Interface Sci. 275, 102060 (2020).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 59.

    Li, M. et al. Engineering multifunctional DNA hybrid nanospheres through coordination-driven self-assembly. Angew. Chem. Int. Ed. Engl. 58, 1350–1354 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 60.

    Liu, S., Jiang, Q., Wang, Y. & Ding, B. Biomedical applications of DNA-based molecular devices. Adv. Healthc. Mater. 8, e1801658 (2019).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 61.

    Samanta, A. & Medintz, I. L. Nanoparticles and DNA-a powerful and growing functional combination in bionanotechnology. Nanoscale 8, 9037–9095 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 62.

    Liu, N. et al. Tetrahedral framework nucleic acids promote corneal epithelial wound healing in vitro and in vivo. Small 15, e1901907 (2019).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 63.

    Ma, W. et al. Self-assembled tetrahedral DNA nanostructures promote neural stem cell proliferation and neuronal differentiation. ACS Appl Mater. Interfaces 10, 7892–7900 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 64.

    Ma, W. J. et al. Tetrahedral DNA nanostructures facilitate neural stem cell migration via activating RHOA/ROCK2 signalling pathway. Cell Prolif. 51, e12503 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 65.

    Shao, X. et al. Tetrahedral DNA nanostructure: a potential promoter for cartilage tissue regeneration via regulating chondrocyte phenotype and proliferation. Small 13, 1602770 (2017).

    Article 
    CAS 

    Google Scholar 

  • 66.

    Shi, S. et al. Self-assembled tetrahedral DNA nanostructures promote adipose-derived stem cell migration via lncRNA XLOC 010623 and RHOA/ROCK2 signal pathway. ACS Appl. Mater. Interfaces 8, 19353–19363 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 67.

    Shi, S. R. et al. Effects of tetrahedral DNA nanostructures on autophagy in chondrocytes. Chem. Commun. 54, 1327–1330 (2018).

    CAS 
    Article 

    Google Scholar 

  • 68.

    Ma, W. et al. An intelligent DNA nanorobot with in vitro enhanced protein lysosomal degradation of HER2. Nano Lett. 19, 4505–4517 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 69.

    Lee, H., Dam, D. H., Ha, J. W., Yue, J. & Odom, T. W. Enhanced human epidermal growth factor receptor 2 degradation in breast cancer cells by lysosome-targeting gold nanoconstructs. ACS Nano 9, 9859–9867 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 70.

    Petrizzo, A. et al. Functional characterization of biodegradable nanoparticles as antigen delivery system. J. Exp. Clin. Cancer Res. 34, 114 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 71.

    Liu, B. et al. DNA-origami-based assembly of anisotropic plasmonic gold nanostructures. Small 13, 1603991 (2017).

    Article 
    CAS 

    Google Scholar 

  • 72.

    Edwardson, T. G., Lau, K. L., Bousmail, D., Serpell, C. J. & Sleiman, H. F. Transfer of molecular recognition information from DNA nanostructures to gold nanoparticles. Nat. Chem. 8, 162–170 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 73.

    Utsuno, K. & Uludag, H. Thermodynamics of polyethylenimine-DNA binding and DNA condensation. Biophys. J. 99, 201–207 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 74.

    Zhang, Y. et al. Ionic-crosslinked polysaccharide/PEI/DNA nanoparticles for stabilized gene delivery. Carbohydr. Polym. 201, 246–256 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 75.

    Xie, L., Ding, X., Budry, R. & Mao, G. Layer-by-layer DNA films incorporating highly transfecting bioreducible poly(amido amine) and polyethylenimine for sequential gene delivery. Int. J. Nanomed. 13, 4943–4960 (2018).

    CAS 
    Article 

    Google Scholar 

  • 76.

    Ewe, A. et al. Storage stability of optimal liposome-polyethylenimine complexes (lipopolyplexes) for DNA or siRNA delivery. Acta Biomaterialia 10, 2663–2673 (2014).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 77.

    Tian, T. R. et al. Synthesis of an ethyleneimine/tetrahedral DNA nanostructure complex and its potential application as a multi-functional delivery vehicle. Nanoscale 9, 18402–18412 (2017).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 78.

    Liu, W. et al. An investigation on the physicochemical properties of chitosan/DNA polyelectrolyte complexes. Biomaterials 26, 2705–2711 (2005).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 79.

    Gu, T., Wang, J., Xia, H., Wang, S. & Yu, X. Direct electrochemistry and electrocatalysis of horseradish peroxidase immobilized in a DNA/chitosan-Fe(3)O(4) magnetic nanoparticle bio-complex film. Materials 7, 1069–1083 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 80.

    Kumar, S. et al. Enhanced chitosan-DNA interaction by 2-acrylamido-2-methylpropane coupling for an efficient transfection in cancer cells. J. Mater. Chem. B 3, 3465–3475 (2015).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 81.

    Walsh, D. P. et al. Bioinspired star-shaped poly(l-lysine) polypeptides: efficient polymeric nanocarriers for the delivery of DNA to mesenchymal stem cells. Mol. Pharm. 15, 1878–1891 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 82.

    Boylan, N. J. et al. Enhancement of airway gene transfer by DNA nanoparticles using a pH-responsive block copolymer of polyethylene glycol and poly-L-lysine. Biomaterials 33, 2361–2371 (2012).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 83.

    von Erlach, T. et al. Formation and characterization of DNA-polymer-condensates based on poly(2-methyl-2-oxazoline) grafted poly(L-lysine) for non-viral delivery of therapeutic DNA. Biomaterials 32, 5291–5303 (2011).

    Article 
    CAS 

    Google Scholar 

  • 84.

    Chen, T. & Romesberg, F. E. Enzymatic synthesis, amplification, and application of dna with a functionalized backbone. Angew. Chem. Int. Ed. Engl. 56, 14046–14051 (2017).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 85.

    Zhan, Y. et al. Diversity of DNA nanostructures and applications in oncotherapy. Biotechnol. J. 15, e1900094 (2020).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 86.

    Schnitzbauer, J., Strauss, M. T., Schlichthaerle, T., Schueder, F. & Jungmann, R. Super-resolution microscopy with DNA-PAINT. Nat. Protoc. 12, 1198–1228 (2017).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 87.

    Ngo, T. A. et al. Protein adaptors assemble functional proteins on DNA scaffolds. Chem. Commun. (Camb.) 55, 12428–12446 (2019).

    CAS 
    Article 

    Google Scholar 

  • 88.

    Zhan, Y. et al. DNA-Based nanomedicine with targeting and enhancement of therapeutic efficacy of breast cancer cells. ACS Appl. Mater. Interfaces 11, 15354–15365 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 89.

    Wang, M. et al. Near-infrared light-activated DNA-agonist nanodevice for nongenetically and remotely controlled cellular signaling and behaviors in live animals. Nano Lett. 19, 2603–2613 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 90.

    Taniguchi, J. et al. A synthetic DNA-binding inhibitor of SOX2 guides human induced pluripotent stem cells to differentiate into mesoderm. Nucleic Acids Res. 45, 9219–9228 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 91.

    Hendrikson, W. J. et al. Biological and tribological assessment of poly(ethylene oxide terephthalate)/poly(butylene terephthalate), polycaprolactone, and poly (LDL) lactic acid plotted scaffolds for skeletal tissue regeneration. Adv. Healthc. Mater. 5, 232–243 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 92.

    Jayme, C. C. et al. DNA polymeric films as a support for cell growth as a new material for regenerative medicine: compatibility and applicability. Exp. Cell Res. 360, 404–412 (2017).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 93.

    Basu, S. et al. Harnessing the noncovalent interactions of DNA backbone with 2D silicate nanodisks to fabricate injectable therapeutic hydrogels. ACS Nano 12, 9866–9880 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 94.

    Feng, G. et al. Injectable nanofibrous spongy microspheres for NR4A1 plasmid DNA transfection to reverse fibrotic degeneration and support disc regeneration. Biomaterials 131, 86–97 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 95.

    Zhang, Y. et al. Nucleic acids and analogs for bone regeneration. Bone Res. 6, 37 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 96.

    Mahlknecht, G., Sela, M. & Yarden, Y. Aptamer targeting the ERBB2 receptor tyrosine kinase for applications in tumor therapy. Methods Mol. Biol. 1317, 3–15 (2015).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 97.

    Yu, X. et al. Targeting EGFR/HER2/HER3 with a three-in-one aptamer-siRNA chimera confers superior activity against HER2( +) breast cancer. Mol. Ther. Nucleic Acids 10, 317–330 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 98.

    Bai, S. et al. High-discrimination factor nanosensor based on tetrahedral dna nanostructures and gold nanoparticles for detection of MiRNA-21 in live cells. Theranostics 8, 2424–2434 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 99.

    Zeng, D. et al. DNA tetrahedral nanostructure-based electrochemical miRNA biosensor for simultaneous detection of multiple miRNAs in pancreatic carcinoma. ACS Appl. Mater. Interfaces 9, 24118–24125 (2017).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 100.

    Li, Q. et al. Aptamer-modified tetrahedral DNA nanostructure for tumor-targeted drug delivery. ACS Appl. Mater. Interfaces 9, 36695–36701 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 101.

    Wang, L. & Arrabito, G. Hybrid, multiplexed, functional DNA nanotechnology for bioanalysis. Analyst 140, 5821–5848 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 102.

    Li, C. et al. A writable polypeptide-DNA hydrogel with rationally designed multi-modification sites. Small 11, 1138–1143 (2015).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 103.

    Estrich, N. A., Hernandez-Garcia, A., de Vries, R. & LaBean, T. H. Engineered diblock polypeptides improve DNA and gold solubility during molecular assembly. ACS Nano 11, 831–842 (2017).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 104.

    Nakata, E., Dinh, H., Nguyen, T. M. & Morii, T. DNA binding adaptors to assemble proteins of interest on DNA scaffold. Methods Enzymol. 617, 287–322 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 105.

    Chandrasekaran, A. R. Programmable DNA scaffolds for spatially-ordered protein assembly. Nanoscale 8, 4436–4446 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 106.

    Chandler, M. et al. Breaking and joining single-stranded DNA: the HUH endonuclease superfamily. Nat. Rev. Microbiol. 11, 525–538 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 107.

    Xie, X. et al. Overcoming drug-resistant lung cancer by paclitaxel loaded tetrahedral DNA nanostructures. Nanoscale 10, 5457–5465 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 108.

    Halley, P. D. et al. Daunorubicin-loaded DNA origami nanostructures circumvent drug-resistance mechanisms in a leukemia model. Small 12, 308–320 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 109.

    Kim, K. R. et al. Drug delivery by a self-assembled DNA tetrahedron for overcoming drug resistance in breast cancer cells. Chem. Commun. (Camb.) 49, 2010–2012 (2013).

    CAS 
    Article 

    Google Scholar 

  • 110.

    Liu, M. et al. Aptamer-targeted DNA nanostructures with doxorubicin to treat protein tyrosine kinase 7-positive tumours. Cell Prolif. 52, e12511 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 111.

    Meng, L. et al. Tetrahedral DNA nanostructure-delivered DNAzyme for gene silencing to suppress cell growth. ACS Appl. Mater. Interfaces 11, 6850–6857 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 112.

    Samanta, A., Banerjee, S. & Liu, Y. DNA nanotechnology for nanophotonic applications. Nanoscale 7, 2210–2220 (2015).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 113.

    Wang, Z. G., Song, C. & Ding, B. Functional DNA nanostructures for photonic and biomedical applications. Small 9, 2210–2222 (2013).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 114.

    Shen, B., Kostiainen, M. A. & Linko, V. DNA origami nanophotonics and plasmonics at interfaces. Langmuir 34, 14911–14920 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 115.

    Maune, H. T. et al. Self-assembly of carbon nanotubes into two-dimensional geometries using DNA origami templates. Nat. Nanotechnol. 5, 61–66 (2010).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 116.

    Amodio, A., Del Grosso, E., Troina, A., Placidi, E. & Ricci, F. Remote electronic control of DNA-based reactions and nanostructure assembly. Nano Lett. 18, 2918–2923 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 117.

    Gates, E. P., Dearden, A. M. & Woolley, A. T. DNA-templated lithography and nanofabrication for the fabrication of nanoscale electronic circuitry. Crit. Rev. Anal. Chem. 44, 354–370 (2014).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 118.

    Yang, Y. R., Liu, Y. & Yan, H. DNA nanostructures as programmable biomolecular scaffolds. Bioconjug. Chem. 26, 1381–1395 (2015).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 119.

    Jaekel, A., Stegemann, P. & Sacca, B. Manipulating enzymes properties with DNA nanostructures. Molecules 24, 3694 (2019).

    CAS 
    PubMed Central 
    Article 

    Google Scholar 

  • 120.

    Winfree, E., Liu, F. R., Wenzler, L. A. & Seeman, N. C. Design and self-assembly of two-dimensional DNA crystals. Nature 394, 539–544 (1998).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 121.

    Yan, H., Zhang, X. P., Shen, Z. Y. & Seeman, N. C. A robust DNA mechanical device controlled by hybridization topology. Nature 415, 62–65 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 122.

    Chen, J. H. & Seeman, N. C. Synthesis from DNA of a molecule with the connectivity of a cube. Nature 350, 631–633 (1991).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 123.

    Liu, W. Y., Zhong, H., Wang, R. S. & Seeman, N. C. Crystalline two-dimensional DNA-origami arrays. Angew. Chem. Int Ed. 50, 264–267 (2011).

    CAS 
    Article 

    Google Scholar 

  • 124.

    Le, J. D. et al. DNA-templated self-assembly of metallic nanocomponent arrays on a surface. Nano Lett. 4, 2343–2347 (2004).

    CAS 
    Article 

    Google Scholar 

  • 125.

    Selmi, D. N. et al. DNA-templated protein arrays for single-molecule imaging. Nano Lett. 11, 657–660 (2011).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 126.

    Holthausen, J. T., Wyman, C. & Kanaar, R. Regulation of DNA strand exchange in homologous recombination. DNA Repair 9, 1264–1272 (2010).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 127.

    Wang, X. & Seeman, N. C. Assembly and characterization of 8-arm and 12-arm DNA branched junctions. J. Am. Chem. Soc. 129, 8169–8176 (2007).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 128.

    Wang, Y. L., Mueller, J. E., Kemper, B. & Seeman, N. C. Assembly and characterization of five-arm and six-arm DNA branched junctions. Biochemistry 30, 5667–5674 (1991).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 129.

    Kallenbach, N. R., Ma, R. I. & Seeman, N. C. An immobile nucleic-acid junction constructed from oligonucleotides. Nature 305, 829–831 (1983).

    CAS 
    Article 

    Google Scholar 

  • 130.

    Sa-Ardyen, P., Vologodskii, A. V. & Seeman, N. C. The flexibility of DNA double crossover molecules. Biophys. J. 84, 3829–3837 (2003).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 131.

    Fu, T. J. & Seeman, N. C. DNA double-crossover molecules. Biochemistry 32, 3211–3220 (1993).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 132.

    Winfree, E., Liu, F., Wenzler, L. A. & Seeman, N. C. Design and self-assembly of two-dimensional DNA crystals. Nature 394, 539–544 (1998).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 133.

    Yan, H., Park, S. H., Finkelstein, G., Reif, J. H. & LaBean, T. H. DNA-templated self-assembly of protein arrays and highly conductive nanowires. Science 301, 1882–1884 (2003).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 134.

    He, Y., Chen, Y., Liu, H., Ribbe, A. E. & Mao, C. Self-assembly of hexagonal DNA two-dimensional (2D) arrays. J. Am. Chem. Soc. 127, 12202–12203 (2005).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 135.

    Mathieu, F. et al. Six-helix bundles designed from DNA. Nano Lett. 5, 661–665 (2005).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 136.

    He, Y., Tian, Y., Ribbe, A. E. & Mao, C. Highly connected two-dimensional crystals of DNA six-point-stars. J. Am. Chem. Soc. 128, 15978–15979 (2006).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 137.

    Lin, C., Liu, Y., Rinker, S. & Yan, H. DNA tile based self-assembly: building complex nanoarchitectures. Chemphyschem 7, 1641–1647 (2006).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 138.

    Zheng, J. et al. From molecular to macroscopic via the rational design of a self-assembled 3D DNA crystal. Nature 461, 74–77 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 139.

    Yan, H., LaBean, T. H., Feng, L. P. & Reif, J. H. Directed nucleation assembly of DNA tile complexes for barcode-patterned lattices. Proc. Natl Acad. Sci. USA 100, 8103–8108 (2003).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 140.

    Shih, W. M., Quispe, J. D. & Joyce, G. F. A 1.7-kilobase single-stranded DNA that folds into a nanoscale octahedron. Nature 427, 618–621 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 141.

    Qian, L. et al. Analogic China map constructed by DNA. Chin. Sci. Bull. 51, 2973–2976 (2006).

    CAS 
    Article 

    Google Scholar 

  • 142.

    Andersen, E. S. et al. DNA origami design of dolphin-shaped structures with flexible tails. ACS Nano 2, 1213–1218 (2008).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 143.

    Han, D. R. et al. DNA origami with complex curvatures in three-dimensional space. Science 332, 342–346 (2011).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 144.

    Yan, H., LaBean, T. H., Feng, L. & Reif, J. H. Directed nucleation assembly of DNA tile complexes for barcode-patterned lattices. Proc. Natl Acad. Sci. USA 100, 8103–8108 (2003).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 145.

    Andersen, E. S. et al. Self-assembly of a nanoscale DNA box with a controllable lid. Nature 459, 73–76 (2009).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 146.

    Zadegan, R. M. et al. Construction of a 4 zeptoliters switchable 3D DNA box origami. ACS Nano 6, 10050–10053 (2012).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 147.

    Zadegan, R. M., Jepsen, M. D. E., Hildebrandt, L. L., Birkedal, V. & Kjems, J. Construction of a fuzzy and boolean logic gates based on DNA. Small 11, 1811–1817 (2015).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 148.

    Kuzuya, A. & Komiyama, M. Design and construction of a box-shaped 3D-DNA origami. Chem. Commun. (Camb.) 28, 4182–4184 (2009).

    Article 
    CAS 

    Google Scholar 

  • 149.

    Endo, M., Hidaka, K., Kato, T., Namba, K. & Sugiyama, H. DNA prism structures constructed by folding of multiple rectangular arms. J. Am. Chem. Soc. 131, 15570–15571 (2009).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 150.

    Douglas, S. M., Chou, J. J. & Shih, W. M. DNA-nanotube-induced alignment of membrane proteins for NMR structure determination. Proc. Natl Acad. Sci. USA 104, 6644–6648 (2007).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 151.

    Han, D. et al. DNA origami with complex curvatures in three-dimensional space. Science 332, 342–346 (2011).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 152.

    Pound, E., Ashton, J. R., Becerril, H. A. & Woolley, A. T. Polymerase chain reaction based scaffold preparation for the production of thin, branched DNA origami nanostructures of arbitrary sizes. Nano Lett. 9, 4302–4305 (2009).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 153.

    Han, D. et al. DNA gridiron nanostructures based on four-arm junctions. Science 339, 1412–1415 (2013).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 154.

    Zhang, F. et al. Complex wireframe DNA origami nanostructures with multi-arm junction vertices. Nat. Nanotechnol. 10, 779-+ (2015).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 155.

    Veneziano, R. et al. DNA NANOTECHNOLOGY Designer nanoscale DNA assemblies programmed from the top down. Science 352, 1534 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 156.

    Benson, E. et al. DNA rendering of polyhedral meshes at the nanoscale. Nature 523, 441–444 (2015).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 157.

    Benson, E. et al. Computer-aided production of scaffolded DNA nanostructures from flat sheet meshes. Angew. Chem. Int. Ed. Engl. 55, 8869–8872 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 158.

    Ellis-Monaghan, J. A., McDowell, A., Moffatt, I. & Pangborn, G. DNA origami and the complexity of Eulerian circuits with turning costs. Nat. Comput. 14, 491–503 (2015).

    CAS 
    Article 

    Google Scholar 

  • 159.

    Matthies, M., Agarwal, N. P. & Schmidt, T. L. Design and synthesis of triangulated DNA origami trusses. Nano Lett. 16, 2108–2113 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 160.

    Mallik, L. et al. Electron microscopic visualization of protein assemblies on flattened DNA origami. ACS Nano 9, 7133–7141 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 161.

    Wu, N. et al. Molecular threading and tunable molecular recognition on DNA origami nanostructures. J. Am. Chem. Soc. 135, 12172–12175 (2013).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 162.

    Douglas, S. M. et al. Self-assembly of DNA into nanoscale three-dimensional shapes (vol 459, pg 414, 2009). Nature 459, 1154–1154 (2009).

    CAS 
    Article 

    Google Scholar 

  • 163.

    Ke, Y. G. et al. Multilayer DNA origami packed on a square lattice. J. Am. Chem. Soc. 131, 15903–15908 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 164.

    Ke, Y. G., Voigt, N. V., Gothelf, K. V. & Shih, W. M. Multilayer DNA origami packed on hexagonal and hybrid lattices. J. Am. Chem. Soc. 134, 1770–1774 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 165.

    Dietz, H., Douglas, S. M. & Shih, W. M. Folding DNA into twisted and curved nanoscale shapes. Science 325, 725–730 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 166.

    Liedl, T., Hogberg, B., Tytell, J., Ingber, D. E. & Shih, W. M. Self-assembly of three-dimensional prestressed tensegrity structures from DNA. Nat. Nanotechnol. 5, 520–524 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 167.

    Ke, Y., Bellot, G., Voigt, N. V., Fradkov, E. & Shih, W. M. Two design strategies for enhancement of multilayer-DNA-origami folding: underwinding for specific intercalator rescue and staple-break positioning. Chem. Sci. 3, 2587–2597 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 168.

    Hong, F., Jiang, S., Wang, T., Liu, Y. & Yan, H. 3D framework DNA origami with layered crossovers. Angew. Chem. Int. Ed. Engl. 55, 12832–12835 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 169.

    Douglas, S. M. et al. Rapid prototyping of 3D DNA-origami shapes with caDNAno. Nucleic Acids Res. 37, 5001–5006 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 170.

    Catherinot, V. & Labesse, G. ViTO: tool for refinement of protein sequence-structure alignments. Bioinformatics 20, 3694–3696 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 171.

    Bai, X. C., Martin, T. G., Scheres, S. H. & Dietz, H. Cryo-EM structure of a 3D DNA-origami object. Proc. Natl Acad. Sci. USA 109, 20012–20017 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 172.

    Fischer, S. et al. Shape and interhelical spacing of dna origami nanostructures studied by small-angle x-ray scattering. Nano Lett. 16, 4282–4287 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 173.

    Wagenbauer, K. F., Wachauf, C. H. & Dietz, H. Quantifying quality in DNA self-assembly. Nat. Commun. 5, 3691 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 174.

    Brown, S. et al. An easy-to-prepare mini-scaffold for DNA origami. Nanoscale 7, 16621–16624 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 175.

    Nickels, P. C. et al. DNA origami structures directly assembled from intact bacteriophages. Small 10, 1765–1769 (2014).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 176.

    Kick, B., Praetorius, F., Dietz, H. & Weuster-Botz, D. Efficient production of single-stranded phage DNA as scaffolds for DNA origami. Nano Lett. 15, 4672–4676 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 177.

    Kick, B., Hensler, S., Praetorius, F., Dietz, H. & Weuster-Botz, D. Specific growth rate and multiplicity of infection affect high-cell-density fermentation with bacteriophage M13 for ssDNA production. Biotechnol. Bioeng. 114, 777–784 (2017).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 178.

    Said, H. et al. M1.3–a small scaffold for DNA origami. Nanoscale 5, 284–290 (2013).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 179.

    Martin, T. G. & Dietz, H. Magnesium-free self-assembly of multi-layer DNA objects. Nat. Commun. 3, 1103 (2012).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 180.

    Zhang, Z., Song, J., Besenbacher, F., Dong, M. & Gothelf, K. V. Self-assembly of DNA origami and single-stranded tile structures at room temperature. Angew. Chem. Int. Ed. Engl. 52, 9219–9223 (2013).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 181.

    Kopielski, A., Schneider, A., Csaki, A. & Fritzsche, W. Isothermal DNA origami folding: avoiding denaturing conditions for one-pot, hybrid-component annealing. Nanoscale 7, 2102–2106 (2015).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 182.

    Timm, C. & Niemeyer, C. M. Assembly and purification of enzyme-functionalized DNA origami structures. Angew. Chem. Int. Ed. Engl. 54, 6745–6750 (2015).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 183.

    Shaw, A., Benson, E. & Hogberg, B. Purification of functionalized DNA origami nanostructures. ACS Nano 9, 4968–4975 (2015).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 184.

    Stahl, E., Martin, T. G., Praetorius, F. & Dietz, H. Facile and scalable preparation of pure and dense DNA origami solutions. Angew. Chem. Int. Ed. Engl. 53, 12735–12740 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 185.

    Bellot, G., McClintock, M. A., Lin, C. & Shih, W. M. Recovery of intact DNA nanostructures after agarose gel-based separation. Nat. Methods 8, 192–194 (2011).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 186.

    Lin, C., Perrault, S. D., Kwak, M., Graf, F. & Shih, W. M. Purification of DNA-origami nanostructures by rate-zonal centrifugation. Nucleic Acids Res. 41, e40 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 187.

    Rajendran, A., Endo, M., Katsuda, Y., Hidaka, K. & Sugiyama, H. Photo-cross-linking-assisted thermal stability of DNA origami structures and its application for higher-temperature self-assembly. J. Am. Chem. Soc. 133, 14488–14491 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 188.

    Hofr, C. & Brabec, V. Thermal and thermodynamic properties of duplex DNA containing site-specific interstrand cross-link of antitumor cisplatin or its clinically ineffective trans isomer. J. Biol. Chem. 276, 9655–9661 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 189.

    Eskelinen, A. P., Rosilo, H., Kuzyk, A., Torma, P. & Kostiainen, M. A. Controlling the formation of DNA origami structures with external signals. Small 8, 2016–2020 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 190.

    Browne, W. R. & Feringa, B. L. Making molecular machines work. Nat. Nanotechnol. 1, 25–35 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 191.

    Li, S. L. et al. New light on the ring-chain equilibrium of a hydrogen-bonded supramolecular polymer based on a photochromic dithienylethene unit and its energy-transfer properties as a storage material. Chem.-Eur. J. 17, 10716–10723 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 192.

    ten Brinke, G., Ruokolainen, J. & Ikkala, O. Supramolecular materials based on hydrogen-bonded polymers. Adv. Polym. Sci. 207, 113–177 (2007).

    Article 
    CAS 

    Google Scholar 

  • 193.

    Stuart, M. A. et al. Emerging applications of stimuli-responsive polymer materials. Nat. Mater. 9, 101–113 (2010).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 194.

    Gallego, I., Grover, M. A. & Hud, N. V. Folding and imaging of DNA nanostructures in anhydrous and hydrated deep-eutectic solvents. Angew. Chem. Int. Ed. Engl. 54, 6765–6769 (2015).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 195.

    Berthiaume, F., Maguire, T. J. & Yarmush, M. L. Tissue engineering and regenerative medicine: history, progress, and challenges. Annu. Rev. Chem. Biomolecular Eng. 2, 403–430 (2011).

    Article 

    Google Scholar 

  • 196.

    Orlando, G. et al. Regenerative medicine and organ transplantation: past, present, and future. Transplantation 91, 1310–1317 (2011).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 197.

    Song, H. G., Rumma, R. T., Ozaki, C. K., Edelman, E. R. & Chen, C. S. Vascular tissue engineering: progress, challenges, and clinical promise. Cell Stem Cell 22, 340–354 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 198.

    Tarassoli, S. P. et al. Skin tissue engineering using 3D bioprinting: an evolving research field. J. Plast. Reconstr. Aesthet. Surg. 71, 615–623 (2018).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 199.

    Yu, J. R. et al. Current and future perspectives on skin tissue engineering: key features of biomedical research, translational assessment, and clinical application. Adv. Healthc. Mater. 8, e1801471 (2019).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 200.

    Jana, S., Levengood, S. K. & Zhang, M. Anisotropic materials for skeletal-muscle-tissue engineering. Adv. Mater. 28, 10588–10612 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 201.

    Hassanzadeh, P., Atyabi, F. & Dinarvand, R. Tissue engineering: Still facing a long way ahead. J. Control. Release 279, 181–197 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 202.

    Polacheck, W. J., Kutys, M. L., Tefft, J. B. & Chen, C. S. Microfabricated blood vessels for modeling the vascular transport barrier. Nat. Protoc. 14, 1425–1454 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 203.

    Wang, Y. et al. Engineering vascular tissue with functional smooth muscle cells derived from human iPS cells and nanofibrous scaffolds. Biomaterials 35, 8960–8969 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 204.

    Dufrane, D. Impact of age on human adipose stem cells for bone tissue engineering. Cell Transplant. 26, 1496–1504 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 205.

    Ho-Shui-Ling, A. et al. Bone regeneration strategies: engineered scaffolds, bioactive molecules and stem cells current stage and future perspectives. Biomaterials 180, 143–162 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 206.

    Kwee, B. J. & Mooney, D. J. Biomaterials for skeletal muscle tissue engineering. Curr. Opin. Biotechnol. 47, 16–22 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 207.

    Aamodt, J. M. & Grainger, D. W. Extracellular matrix-based biomaterial scaffolds and the host response. Biomaterials 86, 68–82 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 208.

    Shih, Y. V. & Varghese, S. Tissue engineered bone mimetics to study bone disorders ex vivo: role of bioinspired materials. Biomaterials 198, 107–121 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 209.

    Saldin, L. T., Cramer, M. C., Velankar, S. S., White, L. J. & Badylak, S. F. Extracellular matrix hydrogels from decellularized tissues: Structure and function. Acta Biomaterialia 49, 1–15 (2017).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 210.

    Keane, T. J., Swinehart, I. T. & Badylak, S. F. Methods of tissue decellularization used for preparation of biologic scaffolds and in vivo relevance. Methods 84, 25–34 (2015).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 211.

    Lancaster, M. A. et al. Guided self-organization and cortical plate formation in human brain organoids. Nat. Biotechnol. 35, 659–666 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 212.

    Kang, H. W. et al. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat. Biotechnol. 34, 312–319 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 213.

    Takebe, T., Zhang, B. & Radisic, M. Synergistic engineering: organoids meet organs-on-a-chip. Cell Stem Cell 21, 297–300 (2017).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 214.

    Wubneh, A., Tsekoura, E. K., Ayranci, C. & Uludag, H. Current state of fabrication technologies and materials for bone tissue engineering. Acta Biomaterialia 80, 1–30 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 215.

    Atasoy-Zeybek, A. & Kose, G. T. Gene therapy strategies in bone tissue engineering and current clinical applications. Adv. Exp. Med. Biol. 1119, 85–101 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 216.

    Langer, R. & Vacanti, J. P. Tissue engineering. Science 260, 920–926 (1993).

    CAS 
    Article 

    Google Scholar 

  • 217.

    Salvay, D. M. & Shea, L. D. Inductive tissue engineering with protein and DNA-releasing scaffolds. Mol. Biosyst. 2, 36–48 (2006).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 218.

    Wobus, A. M. & Boheler, K. R. Embryonic stem cells: prospects for developmental biology and cell therapy. Physiol. Rev. 85, 635–678 (2005).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 219.

    Guan, K., Schmidt, M. M., Ding, Q., Chang, H. & Wobus, A. M. Embryonic stem cells in vitro-prospects for cell and developmental biology, embryotoxicology and cell therapy. Altex 16, 135–141 (1999).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 220.

    Keller, G. Embryonic stem cell differentiation: emergence of a new era in biology and medicine. Genes Dev. 19, 1129–1155 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 221.

    Hersel, U., Dahmen, C. & Kessler, H. RGD modified polymers: biomaterials for stimulated cell adhesion and beyond. Biomaterials 24, 4385–4415 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 222.

    Arnold, M. S., Guler, M. O., Hersam, M. C. & Stupp, S. I. Encapsulation of carbon nanotubes by self-assembling peptide amphiphiles. Langmuir 21, 4705–4709 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 223.

    Zhang, S. et al. Self-complementary oligopeptide matrices support mammalian cell attachment. Biomaterials 16, 1385–1393 (1995).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 224.

    Vasita, R. & Katti, D. S. Nanofibers and their applications in tissue engineering. Int. J. Nanomed. 1, 15–30 (2006).

    CAS 
    Article 

    Google Scholar 

  • 225.

    Murphy, W. L. & Mooney, D. J. Controlled delivery of inductive proteins, plasmid DNA and cells from tissue engineering matrices. J. Periodontal Res. 34, 413–419 (1999).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 226.

    Jang, J. H., Bengali, Z., Houchin, T. L. & Shea, L. D. Surface adsorption of DNA to tissue engineering scaffolds for efficient gene delivery. J. Biomed. Mater. Res. Part A 77, 50–58 (2006).

    Article 
    CAS 

    Google Scholar 

  • 227.

    Zhou, M. et al. Effect of tetrahedral DNA nanostructures on proliferation and osteo/odontogenic differentiation of dental pulp stem cells via activation of the notch signaling pathway. Nanomedicine 14, 1227–1236 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 228.

    Gonzalez-Fernandez, T. et al. Pore-forming bioinks to enable spatio-temporally defined gene delivery in bioprinted tissues. J. Control. Release 301, 13–27 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 229.

    Walsh, D. P. et al. Transfection of autologous host cells in vivo using gene activated collagen scaffolds incorporating star-polypeptides. J. Control. Release 304, 191–203 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 230.

    Ma, W. et al. Enhanced neural regeneration with a concomitant treatment of framework nucleic acid and stem cells in spinal cord injury. ACS Appl. Mater. Interfaces 12, 2095–2106 (2020).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 231.

    Zhu, J. et al. Tetrahedral framework nucleic acids promote scarless healing of cutaneous wounds via the AKT-signaling pathway. Signal Transduct. Target. Ther. 5, 120 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 232.

    Li, W. et al. A gene-activating skin substitute comprising PLLA/POSS nanofibers and plasmid DNA encoding ANG and bFGF promotes in vivo revascularization and epidermalization. J. Mater. Chem. B 6, 6977–6992 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 233.

    Duman, N. et al. Topical folinic acid enhances wound healing in rat model. Adv. Med. Sci. 63, 347–352 (2018).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 234.

    Eke, G., Mangir, N., Hasirci, N., MacNeil, S. & Hasirci, V. Development of a UV crosslinked biodegradable hydrogel containing adipose derived stem cells to promote vascularization for skin wounds and tissue engineering. Biomaterials 129, 188–198 (2017).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 235.

    Milan, P. B. et al. Accelerated wound healing in a diabetic rat model using decellularized dermal matrix and human umbilical cord perivascular cells. Acta Biomaterialia 45, 234–246 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 236.

    Bhowmick, S., Scharnweber, D. & Koul, V. Co-cultivation of keratinocyte-human mesenchymal stem cell (hMSC) on sericin loaded electrospun nanofibrous composite scaffold (cationic gelatin/hyaluronan/chondroitin sulfate) stimulates epithelial differentiation in hMSCs: In vitro study. Biomaterials 88, 83–96 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 237.

    Keil, T. W. M., Baldassi, D. & Merkel, O. M. T-cell targeted pulmonary siRNA delivery for the treatment of asthma. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 12, e1634 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 238.

    Liang, H. et al. Topical nanoparticles interfering with the DNA-LL37 complex to alleviate psoriatic inflammation in mice and monkeys. Sci. Adv. 6, eabb5274 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 239.

    Mao, C. et al. The clearance effect of tetrahedral DNA nanostructures on senescent human dermal fibroblasts. ACS Appl. Mater. Interfaces 11, 1942–1950 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 240.

    Shao, X. R. et al. Neuroprotective effect of tetrahedral DNA nanostructures in a cell model of Alzheimer’s disease. ACS Appl. Mater. Interfaces 10, 23682–23692 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 241.

    Whittlesey, K. J. & Shea, L. D. Delivery systems for small molecule drugs, proteins, and DNA: the neuroscience/biomaterial interface. Exp. Neurol. 190, 1–16 (2004).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 242.

    Pannier, A. K. & Shea, L. D. Controlled release systems for DNA delivery. Mol. Ther. 10, 19–26 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 243.

    Amani, A., Kabiri, T., Shafiee, S. & Hamidi, A. Preparation and characterization of PLA-PEG-PLA/PEI/DNA nanoparticles for improvement of transfection efficiency and controlled release of DNA in gene delivery systems. Iran. J. Pharm. Res.: IJPR 18, 125–141 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 244.

    Gajbhiye, K. R., Chaudhari, B. P., Pokharkar, V. B., Pawar, A. & Gajbhiye, V. Stimuli-responsive biodegradable polyurethane nano-constructs as a potential triggered drug delivery vehicle for cancer therapy. Int. J. Pharm. 588, 119781 (2020).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 245.

    Hashemi, M., Shamshiri, A., Saeedi, M., Tayebi, L. & Yazdian-Robati, R. Aptamer-conjugated PLGA nanoparticles for delivery and imaging of cancer therapeutic drugs. Arch. Biochem. Biophys. 691, 108485 (2020).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 246.

    Wolski, P., Nieszporek, K. & Panczyk, A. T. Carbon nanotubes and short cytosine-rich telomeric DNA oligomeres as platforms for controlled release of doxorubicin-a molecular dynamics study. Int. J. Mol. Sci. 21, 3619 (2020).

    CAS 
    PubMed Central 
    Article 

    Google Scholar 

  • 247.

    Tan, X., Jia, F., Wang, P. & Zhang, K. Nucleic acid-based drug delivery strategies. J. Control. Release 323, 240–252 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 248.

    Peng, Q. et al. Understanding the biomedical effects of the self-assembled tetrahedral DNA nanostructure on living cells. ACS Appl. Mater. Interfaces 8, 12733–12739 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 249.

    Faingold, A., Cohen, S. R., Reznikov, N. & Wagner, H. D. Osteonal lamellae elementary units: lamellar microstructure, curvature and mechanical properties. Acta Biomaterialia 9, 5956–5962 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 250.

    Raftery, R. M. et al. Delivering nucleic-acid based nanomedicines on biomaterial scaffolds for orthopedic tissue repair: challenges, progress and future perspectives. Adv. Mater. 28, 5447–5469 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 251.

    Betz, V. M. et al. Recent advances in gene-enhanced bone tissue engineering. J. Gene Med. 20, e3018 (2018).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 252.

    Balmayor, E. R. & Evans, C. H. RNA therapeutics for tissue engineering. Tissue Eng. Part A 25, 9–11 (2019).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 253.

    Shim, M. S. & Kwon, Y. J. Controlled cytoplasmic and nuclear localization of plasmid DNA and siRNA by differentially tailored polyethylenimine. J. Control. Release 133, 206–213 (2009).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 254.

    Khorsand, B. et al. Regeneration of bone using nanoplex delivery of FGF-2 and BMP-2 genes in diaphyseal long bone radial defects in a diabetic rabbit model. J. Control. Release 248, 53–59 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 255.

    Kim, T. H., Singh, R. K., Kang, M. S., Kim, J. H. & Kim, H. W. Gene delivery nanocarriers of bioactive glass with unique potential to load BMP2 plasmid DNA and to internalize into mesenchymal stem cells for osteogenesis and bone regeneration. Nanoscale 8, 8300–8311 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 256.

    Schlickewei, C. et al. A bioactive nano-calcium phosphate paste for in-situ transfection of BMP-7 and VEGF-A in a rabbit critical-size bone defect: results of an in vivo study. J. Mater. Sci. Mater. Med. 30, 15 (2019).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 257.

    Takanche, J. S. et al. Chitosan-gold nanoparticles mediated gene delivery of c-myb facilitates osseointegration of dental implants in ovariectomized rat. Artif. Cells Nanomed. Biotechnol. 46, S807–S817 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 258.

    Huang, M. et al. Comparison of osteogenic differentiation induced by siNoggin and pBMP-2 delivered by lipopolysaccharide-amine nanopolymersomes and underlying molecular mechanisms. Int. J. Nanomed. 14, 4229–4245 (2019).

    CAS 
    Article 

    Google Scholar 

  • 259.

    Liang, D. et al. In vitro non-viral gene delivery with nanofibrous scaffolds. Nucleic Acids Res. 33, e170 (2005).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 260.

    Li, Y. & Liu, C. Nanomaterial-based bone regeneration. Nanoscale 9, 4862–4874 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 261.

    Wang, S. J. et al. Biomimetic nanosilica-collagen scaffolds for in situ bone regeneration: toward a cell-free, one-step surgery. Adv. Mater. 31, e1904341 (2019).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 262.

    Li, G., Zhou, T., Lin, S., Shi, S. & Lin, Y. Nanomaterials for craniofacial and dental tissue engineering. J. Dent. Res. 96, 725–732 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 263.

    Mohammadi, M. et al. Micro and nanotechnologies for bone regeneration: Recent advances and emerging designs. J. Control. Release 274, 35–55 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 264.

    Lv, L. et al. The nanoscale geometry of TiO2 nanotubes influences the osteogenic differentiation of human adipose-derived stem cells by modulating H3K4 trimethylation. Biomaterials 39, 193–205 (2015).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 265.

    D’Mello, S. et al. Bone regeneration using gene-activated matrices. AAPS J. 19, 43–53 (2017).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 266.

    Tierney, E. G., Duffy, G. P., Hibbitts, A. J., Cryan, S. A. & O’Brien, F. J. The development of non-viral gene-activated matrices for bone regeneration using polyethyleneimine (PEI) and collagen-based scaffolds. J. Control. Release 158, 304–311 (2012).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 267.

    Shimer, A. L., Oner, F. C. & Vaccaro, A. R. Spinal reconstruction and bone morphogenetic proteins: open questions. Injury 40, S32–S38 (2009).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 268.

    Winn, S. R., Hu, Y., Sfeir, C. & Hollinger, J. O. Gene therapy approaches for modulating bone regeneration. Adv. Drug Deliv. Rev. 42, 121–138 (2000).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 269.

    Chan, H. L. & McCauley, L. K. Parathyroid hormone applications in the craniofacial skeleton. J. Dent. Res. 92, 18–25 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 270.

    Elangovan, S. et al. Chemically modified RNA activated matrices enhance bone regeneration. J. Control. Release 218, 22–28 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 271.

    Higashi, T. et al. Novel lipidated sorbitol-based molecular transporters for non-viral gene delivery. J. Control. Release 136, 140–147 (2009).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 272.

    des Rieux, A., Shikanov, A. & Shea, L. D. Fibrin hydrogels for non-viral vector delivery in vitro. J. Control. Release 136, 148–154 (2009).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 273.

    Lei, Y., Rahim, M., Ng, Q. & Segura, T. Hyaluronic acid and fibrin hydrogels with concentrated DNA/PEI polyplexes for local gene delivery. J. Control. Release 153, 255–261 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 274.

    Togashi, R. et al. A hepatic pDNA delivery system based on an intracellular environment sensitive vitamin E-scaffold lipid-like material with the aid of an anti-inflammatory drug. J. Control. Release 279, 262–270 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 275.

    Siegman, S., Truong, N. F. & Segura, T. Encapsulation of PEGylated low-molecular-weight PEI polyplexes in hyaluronic acid hydrogels reduces aggregation. Acta Biomaterialia 28, 45–54 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 276.

    Nie, H., Soh, B. W., Fu, Y. C. & Wang, C. H. Three-dimensional fibrous PLGA/HAp composite scaffold for BMP-2 delivery. Biotechnol. Bioeng. 99, 223–234 (2008).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 277.

    Nie, H. & Wang, C. H. Fabrication and characterization of PLGA/HAp composite scaffolds for delivery of BMP-2 plasmid DNA. J. Control. Release 120, 111–121 (2007).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 278.

    Fu, Y. C., Nie, H., Ho, M. L., Wang, C. K. & Wang, C. H. Optimized bone regeneration based on sustained release from three-dimensional fibrous PLGA/HAp composite scaffolds loaded with BMP-2. Biotechnol. Bioeng. 99, 996–1006 (2008).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 279.

    Nie, H., Ho, M. L., Wang, C. K., Wang, C. H. & Fu, Y. C. BMP-2 plasmid loaded PLGA/HAp composite scaffolds for treatment of bone defects in nude mice. Biomaterials 30, 892–901 (2009).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 280.

    Keeney, M. et al. Scaffold-mediated BMP-2 minicircle DNA delivery accelerated bone repair in a mouse critical-size calvarial defect model. J. Biomed. Mater. Res. Part A 104, 2099–2107 (2016).

    CAS 
    Article 

    Google Scholar 

  • 281.

    Atluri, K., Seabold, D., Hong, L., Elangovan, S. & Salem, A. K. Nanoplex-mediated codelivery of fibroblast growth factor and bone morphogenetic protein genes promotes osteogenesis in human adipocyte-derived mesenchymal stem cells. Mol. Pharm. 12, 3032–3042 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 282.

    Elangovan, S. et al. The enhancement of bone regeneration by gene activated matrix encoding for platelet derived growth factor. Biomaterials 35, 737–747 (2014).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 283.

    Qiao, C. et al. Using poly(lactic-co-glycolic acid) microspheres to encapsulate plasmid of bone morphogenetic protein 2/polyethylenimine nanoparticles to promote bone formation in vitro and in vivo. Int. J. Nanomed. 8, 2985–2995 (2013).

    Google Scholar 

  • 284.

    Qiao, C. et al. Sustained release poly (lactic-co-glycolic acid) microspheres of bone morphogenetic protein 2 plasmid/calcium phosphate to promote in vitro bone formation and in vivo ectopic osteogenesis. Am. J. Transl. Res. 7, 2561–2572 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 285.

    Hadjicharalambous, C., Kozlova, D., Sokolova, V., Epple, M. & Chatzinikolaidou, M. Calcium phosphate nanoparticles carrying BMP-7 plasmid DNA induce an osteogenic response in MC3T3-E1 pre-osteoblasts. J. Biomed. Mater. Res. Part A 103, 3834–3842 (2015).

    CAS 
    Article 

    Google Scholar 

  • 286.

    Bhattarai, G., Lee, Y. H., Lee, M. H. & Yi, H. K. Gene delivery of c-myb increases bone formation surrounding oral implants. J. Dent. Res. 92, 840–845 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 287.

    Li, D. D. et al. Characterization and cytocompatibility of thermosensitive hydrogel embedded with chitosan nanoparticles for delivery of bone morphogenetic protein-2 plasmid DNA. J. Mater. Sci. Mater. Med. 27, 134 (2016).

    PubMed 

    Google Scholar 

  • 288.

    Li, H. et al. Accelerated bony defect healing based on chitosan thermosensitive hydrogel scaffolds embedded with chitosan nanoparticles for the delivery of BMP2 plasmid DNA. J. Biomed. Mater. Res. Part A 105, 265–273 (2017).

    CAS 
    Article 

    Google Scholar 

  • 289.

    Supper, S. et al. Thermosensitive chitosan/glycerophosphate-based hydrogel and its derivatives in pharmaceutical and biomedical applications. Expert Opin. drug Deliv. 11, 249–267 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 290.

    Carballo-Pedrares, N., Fuentes-Boquete, I., Diaz-Prado, S. & Rey-Rico, A. hydrogel-based localized nonviral gene delivery in regenerative medicine approaches-an overview. Pharmaceutics 12, 752 (2020).

    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 

  • 291.

    Lauritano, D., Limongelli, L., Moreo, G., Favia, G. & Carinci, F. Nanomaterials for periodontal tissue engineering: chitosan-based scaffolds. a systematic review. Nanomaterials 10, 605 (2020).

    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 

  • 292.

    Wu, S. et al. Evaluation of chitosan hydrogel for sustained delivery of VEGF for odontogenic differentiation of dental pulp stem cells. Stem Cells Int. 2019, 1515040 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 293.

    Walsh, D. P. et al. Bioinspired star-shaped poly(L-lysine) polypeptides: efficient polymeric nanocarriers for the delivery of dna to mesenchymal stem cells. Mol. Pharm. 15, 1878–1891 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 294.

    Shinozaki, Y. et al. Evaluation of bone formation guided by DNA/protamine complex with FGF-2 in an adult rat calvarial defect model. J. Biomed. Mater. Res. Part B, Appl. Biomater. 102, 1669–1676 (2014).

    Article 
    CAS 

    Google Scholar 

  • 295.

    Toda, M., Ohno, J., Shinozaki, Y., Ozaki, M. & Fukushima, T. Osteogenic potential for replacing cells in rat cranial defects implanted with a DNA/protamine complex paste. Bone 67, 237–245 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 296.

    Charles, L. F. et al. Effects of low dose FGF-2 and BMP-2 on healing of calvarial defects in old mice. Exp. Gerontol. 64, 62–69 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 297.

    Shi, S. et al. Modulation of chondrocyte motility by tetrahedral DNA nanostructures. Cell Prolif. 50, e12368 (2017).

    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 298.

    Shi, S. et al. Effects of tetrahedral DNA nanostructures on autophagy in chondrocytes. Chem. Commun. (Camb.) 54, 1327–1330 (2018).

    CAS 
    Article 

    Google Scholar 

  • 299.

    Shao, X. R. et al. Effect of tetrahedral DNA nanostructures on osteogenic differentiation of mesenchymal stem cells via activation of the Wnt/beta-catenin signaling pathway. Nanomedicine 13, 1809–1819 (2017).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 300.

    Zhou, M. et al. Effect of tetrahedral DNA nanostructures on proliferation and osteogenic differentiation of human periodontal ligament stem cells. Cell Prolif. 52, e12566 (2019).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 301.

    Zhou, M. et al. The protective effect of tetrahedral framework nucleic acids on periodontium under inflammatory conditions. Bioact. Mater. 6, 1676–1688 (2021).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 302.

    Sirong, S. et al. Effects of tetrahedral framework nucleic acid/wogonin complexes on osteoarthritis. Bone Res. 8, 6 (2020).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 303.

    Wang, G. et al. Evaluation of the protective effect of a prime-boost strategy with plasmid DNA followed by recombinant adenovirus expressing BmAMA1 as vaccines against Babesia microti infection in hamster. Acta Parasitol. 63, 368–374 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 304.

    Burger, C. & Chu, B. Functional nanofibrous scaffolds for bone reconstruction. Colloids Surf. B Biointerfaces 56, 134–141 (2007).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 305.

    Gunatillake, P. A. & Adhikari, R. Biodegradable synthetic polymers for tissue engineering. Eur. Cells Mater. 5, 1–16 (2003).

    CAS 
    Article 

    Google Scholar 

  • 306.

    Wang, M. O. et al. Evaluating 3D-printed biomaterials as scaffolds for vascularized bone tissue engineering. Adv. Mater. 27, 138–144 (2015).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 307.

    O’Brien, F. J. Biomaterials & scaffolds for tissue engineering. Mater. Today 14, 88–95 (2011).

    Article 
    CAS 

    Google Scholar 

  • 308.

    Meinel, L. & Kaplan, D. L. Silk constructs for delivery of musculoskeletal therapeutics. Adv. Drug Deliv. Rev. 64, 1111–1122 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 309.

    Raftery, R. M. et al. Delivering nucleic-acid based nanomedicines on biomaterial scaffolds for orthopedic tissue repair: challenges, progress and future. Perspectives 28, 5447–5469 (2016).

    CAS 

    Google Scholar 

  • 310.

    Chirico, G., Pallavicini, P. & Collini, M. Gold nanostars for superficial diseases: a promising tool for localized hyperthermia? Nanomedicine (Lond.) 9, 1–3 (2014).

    CAS 
    Article 

    Google Scholar 

  • 311.

    Vilella, A. et al. Endocytosis of nanomedicines: the case of glycopeptide engineered PLGA nanoparticles. Pharmaceutics 7, 74–89 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 312.

    Katav, T. et al. Modified pectin-based carrier for gene delivery: cellular barriers in gene delivery course. J. Control. Release 130, 183–191 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 313.

    Jeong, G. W. & Nah, J. W. Evaluation of disulfide bond-conjugated LMWSC-g-bPEI as non-viral vector for low cytotoxicity and efficient gene delivery. Carbohydr. Polym. 178, 322–330 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 314.

    Singh, J., Michel, D., Chitanda, J. M., Verrall, R. E. & Badea, I. Evaluation of cellular uptake and intracellular trafficking as determining factors of gene expression for amino acid-substituted gemini surfactant-based DNA nanoparticles. J. Nanobiotechnol. 10, 7 (2012).

    CAS 
    Article 

    Google Scholar 

  • 315.

    Zhang, B. & Mallapragada, S. The mechanism of selective transfection mediated by pentablock copolymers; part II: nuclear entry and endosomal escape. Acta Biomaterialia 7, 1580–1587 (2011).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 316.

    Wang, J., Dou, B. & Bao, Y. Efficient targeted pDNA/siRNA delivery with folate-low-molecular-weight polyethyleneimine-modified pullulan as non-viral carrier. Mater. Sci. Eng. C. Mater. Biol. Appl. 34, 98–109 (2014).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 317.

    Gu, X., Ding, F. & Williams, D. F. Neural tissue engineering options for peripheral nerve regeneration. Biomaterials 35, 6143–6156 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 318.

    Chooi, W. H. & Chew, S. Y. Modulation of cell-cell interactions for neural tissue engineering: Potential therapeutic applications of cell adhesion molecules in nerve regeneration. Biomaterials 197, 327–344 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 319.

    Madigan, N. N., McMahon, S., O’Brien, T., Yaszemski, M. J. & Windebank, A. J. Current tissue engineering and novel therapeutic approaches to axonal regeneration following spinal cord injury using polymer scaffolds. Respir. Physiol. Neurobiol. 169, 183–199 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 320.

    Editorial. Engineering approaches to enhance neural tissue regeneration. Exp. Neurol. 319, 112873 (2019).

  • 321.

    Koss, K. M. & Unsworth, L. D. Neural tissue engineering: bioresponsive nanoscaffolds using engineered self-assembling peptides. Acta Biomaterialia 44, 2–15 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 322.

    Tang, X. et al. Bridging peripheral nerve defects with a tissue engineered nerve graft composed of an in vitro cultured nerve equivalent and a silk fibroin-based scaffold. Biomaterials 33, 3860–3867 (2012).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 323.

    Yang, S. et al. Self-assembling peptide hydrogels functionalized with LN- and BDNF- mimicking epitopes synergistically enhance peripheral nerve regeneration. Theranostics 10, 8227–8249 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 324.

    Willerth, S. M. & Sakiyama-Elbert, S. E. Approaches to neural tissue engineering using scaffolds for drug delivery. Adv. Drug Deliv. Rev. 59, 325–338 (2007).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 325.

    Yao, Y. et al. Efect of longitudinally oriented collagen conduit combined with nerve growth factor on nerve regeneration after dog sciatic nerve injury. J. Biomed. Mater. Res. Part B, Appl. Biomater. 106, 2131–2139 (2018).

    CAS 
    Article 

    Google Scholar 

  • 326.

    Baiguera, S. et al. Electrospun gelatin scaffolds incorporating rat decellularized brain extracellular matrix for neural tissue engineering. Biomaterials 35, 1205–1214 (2014).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 327.

    Liang, Y., Walczak, P. & Bulte, J. W. The survival of engrafted neural stem cells within hyaluronic acid hydrogels. Biomaterials 34, 5521–5529 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 328.

    Sufan, W. et al. Sciatic nerve regeneration through alginate with tubulation or nontubulation repair in cat. J. Neurotrauma 18, 329–338 (2001).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 329.

    Chong, E. J. et al. Evaluation of electrospun PCL/gelatin nanofibrous scaffold for wound healing and layered dermal reconstitution. Acta Biomaterialia 3, 321–330 (2007).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 330.

    Cui, W. et al. Neuroprotective and neurotherapeutic effects of tetrahedral framework nucleic acids on Parkinson’s disease in vitro. ACS Appl. Mater. Interfaces 11, 32787–32797 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 331.

    Li, J. et al. Ternary polyplex micelles with PEG shells and intermediate barrier to complexed DNA cores for efficient systemic gene delivery. J. Control. Release 209, 77–87 (2015).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 332.

    Feng, G. et al. Gene therapy for nucleus pulposus regeneration by heme oxygenase-1 plasmid DNA carried by mixed polyplex micelles with thermo-responsive heterogeneous coronas. Biomaterials 52, 1–13 (2015).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 333.

    Houchin-Ray, T., Swift, L. A., Jang, J. H. & Shea, L. D. Patterned PLG substrates for localized DNA delivery and directed neurite extension. Biomaterials 28, 2603–2611 (2007).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 334.

    Li, J., Zha, Z. & Ge, Z. Thermo-responsive polyplex micelles with PEG shells and PNIPAM layer to protect DNA cores for systemic gene therapy. Methods Mol. Biol. 1445, 269–276 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 335.

    Arkenbout, E. K. et al. Protective function of transcription factor TR3 orphan receptor in atherogenesis: decreased lesion formation in carotid artery ligation model in TR3 transgenic mice. Circulation 106, 1530–1535 (2002).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 336.

    Pires, N. M. et al. Activation of nuclear receptor Nur77 by 6-mercaptopurine protects against neointima formation. Circulation 115, 493–500 (2007).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 337.

    Fassett, M. S., Jiang, W., D’Alise, A. M., Mathis, D. & Benoist, C. Nuclear receptor Nr4a1 modulates both regulatory T-cell (Treg) differentiation and clonal deletion. Proc. Natl Acad. Sci. USA 109, 3891–3896 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 338.

    Hanna, R. N. et al. The transcription factor NR4A1 (Nur77) controls bone marrow differentiation and the survival of Ly6C- monocytes. Nat. Immunol. 12, 778–785 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 339.

    Maxwell, M. A. et al. Nur77 regulates lipolysis in skeletal muscle cells. Evidence for cross-talk between the beta-adrenergic and an orphan nuclear hormone receptor pathway. J. Biol. Chem. 280, 12573–12584 (2005).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 340.

    Myers, S. A., Eriksson, N., Burow, R., Wang, S. C. & Muscat, G. E. Beta-adrenergic signaling regulates NR4A nuclear receptor and metabolic gene expression in multiple tissues. Mol. Cell. Endocrinol. 309, 101–108 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 341.

    Pei, L. et al. NR4A orphan nuclear receptors are transcriptional regulators of hepatic glucose metabolism. Nat. Med. 12, 1048–1055 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 342.

    Taniguchi, J. et al. A synthetic DNA-binding inhibitor of SOX2 guides human induced pluripotent stem cells to differentiate into mesoderm. Nucleic Acids Res. 45, 9219–9228 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 343.

    Wang, L. et al. Imaging of Neurite Network with an Anti-L1CAM Aptamer Generated by Neurite-SELEX. J. Am. Chem. Soc. 140, 18066–18073 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 344.

    Shah, B., Yin, P. T., Ghoshal, S. & Lee, K. B. Multimodal magnetic core-shell nanoparticles for effective stem-cell differentiation and imaging. Angew. Chem. Int. Ed. Engl. 52, 6190–6195 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 345.

    Shan, J. & Tenhu, H. Recent advances in polymer protected gold nanoparticles: synthesis, properties and applications. Chem. Commun. (Camb.) 28, 4580–4598 (2007).

    Article 
    CAS 

    Google Scholar 

  • 346.

    Ghosh Chaudhuri, R. & Paria, S. Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chem. Rev. 112, 2373–2433 (2012).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 347.

    Balasubramanian, B. et al. Synthesis of monodisperse TiO2-paraffin core-shell nanoparticles for improved dielectric properties. ACS Nano 4, 1893–1900 (2010).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 348.

    Zhang, H., Lee, M. Y., Hogg, M. G., Dordick, J. S. & Sharfstein, S. T. Gene delivery in three-dimensional cell cultures by superparamagnetic nanoparticles. ACS Nano 4, 4733–4743 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 349.

    Shao, X. et al. Treatment of Alzheimer’s disease with framework nucleic acids. Cell Prolif. 53, e12787 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 350.

    Wackerhage, H., Del, Re,D. P., Judson, R. N., Sudol, M. & Sadoshima, J. The Hippo signal transduction network in skeletal and cardiac muscle. Sci. Signal. 7, re4 (2014).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 351.

    Lin, K. C. et al. Regulation of Hippo pathway transcription factor TEAD by p38 MAPK-induced cytoplasmic translocation. Nat. Cell Biol. 19, 996–1002 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 352.

    Xin, M., Olson, E. N. & Bassel-Duby, R. Mending broken hearts: cardiac development as a basis for adult heart regeneration and repair. Nat. Rev. Mol. Cell Biol. 14, 529–541 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 353.

    Addis, R. C. & Epstein, J. A. Induced regeneration–the progress and promise of direct reprogramming for heart repair. Nat. Med. 19, 829–836 (2013).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 354.

    Qian, L. et al. In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes. Nature 485, 593–598 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 355.

    Collins, C. A. et al. Stem cell function, self-renewal, and behavioral heterogeneity of cells from the adult muscle satellite cell niche. Cell 122, 289–301 (2005).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 356.

    Dumont, N. A., Wang, Y. X. & Rudnicki, M. A. Intrinsic and extrinsic mechanisms regulating satellite cell function. Development 142, 1572–1581 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 357.

    Day, K., Shefer, G., Richardson, J. B., Enikolopov, G. & Yablonka-Reuveni, Z. Nestin-GFP reporter expression defines the quiescent state of skeletal muscle satellite cells. Dev. Biol. 304, 246–259 (2007).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 358.

    Kim, J. H. et al. Neural cell integration into 3D bioprinted skeletal muscle constructs accelerates restoration of muscle function. Nat. Commun. 11, 1025 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 359.

    Qazi, T. H., Mooney, D. J., Pumberger, M., Geissler, S. & Duda, G. N. Biomaterials based strategies for skeletal muscle tissue engineering: existing technologies and future trends. Biomaterials 53, 502–521 (2015).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 360.

    Del Carmen Ortuno-Costela, M., Garcia-Lopez, M., Cerrada, V. & Gallardo, M. E. iPSCs: a powerful tool for skeletal muscle tissue engineering. J. Cell. Mol. Med. 23, 3784–3794 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 361.

    Singh, V. K., Kumar, N., Kalsan, M., Saini, A. & Chandra, R. Mechanism of induction: induced pluripotent stem cells (iPSCs). J. Stem Cells 10, 43–62 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 362.

    Gorecka, A. et al. Autologous transplantation of adipose-derived stem cells improves functional recovery of skeletal muscle without direct participation in new myofiber formation. Stem Cell Res. Ther. 9, 195 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 363.

    Beldjilali-Labro, M. et al. Biomaterials in tendon and skeletal muscle tissue engineering: current trends and challenges. Materials 11, 4580–98 (2018).

    Article 
    CAS 

    Google Scholar 

  • 364.

    Blumenfeld, C. M. et al. Drug capture materials based on genomic DNA-functionalized magnetic nanoparticles. Nat. Commun. 9, 2870 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 365.

    Ueki, R. et al. A chemically unmodified agonistic DNA with growth factor functionality for in vivo therapeutic application. Sci. Adv. 6, eaay2801 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 366.

    Zhang, M. et al. Cardioprotection of tetrahedral DNA nanostructures in myocardial ischemia-reperfusion injury. ACS Appl. Mater. interfaces 11, 30631–30639 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 367.

    Zhang, X. et al. The Nrf-2/HO-1 signaling axis: a ray of hope in cardiovascular diseases. Cardiol. Res. Pract. 2020, 5695723 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 368.

    Shen, Y., Liu, X., Shi, J. & Wu, X. Involvement of Nrf2 in myocardial ischemia and reperfusion injury. Int. J. Biol. Macromol. 125, 496–502 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 369.

    Seifert, A. W. et al. Skin shedding and tissue regeneration in African spiny mice (Acomys). Nature 489, 561–565 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 370.

    Metcalfe, A. D. & Ferguson, M. W. Tissue engineering of replacement skin: the crossroads of biomaterials, wound healing, embryonic development, stem cells and regeneration. J. R. Soc. Interface 4, 413–437 (2007).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 371.

    Fuchs, E. Epithelial skin biology: three decades of developmental biology, a hundred questions answered and a thousand new ones to address. Curr. Top. Dev. Biol. 116, 357–374 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 372.

    Roger, M. et al. Bioengineering the microanatomy of human skin. J. Anat. 234, 438–455 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 373.

    Driskell, R. R. et al. Distinct fibroblast lineages determine dermal architecture in skin development and repair. Nature 504, 277–281 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 374.

    Kim, B. S., Gao, G., Kim, J. Y. & Cho, D. W. 3D cell printing of perfusable vascularized human skin equivalent composed of epidermis, dermis, and hypodermis for better structural recapitulation of native skin. Adv. Healthc. Mater. 8, e1801019 (2019).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 375.

    Jiang, Y. & Lu, S. Three-dimensional insights into dermal tissue as a cue for cellular behavior. Burns 40, 191–199 (2014).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 376.

    Hurtley, S., Hines, P. J., Mueller, K. L., & Culotta, E. Skin. From bench to bedside. Introduction. Science 346, 932–933 (2014).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 377.

    Khavkin, J. & Ellis, D. A. Aging skin: histology, physiology, and pathology. Facial Plast. Surg. Clin. North Am. 19, 229–234 (2011).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 378.

    Parna, E., Aluoja, A. & Kingo, K. Quality of life and emotional state in chronic skin disease. Acta Derm. Venereol. 95, 312–316 (2015).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 379.

    Mendes, A. L., Miot, H. A. & Haddad, V. J. Diabetes mellitus and the skin. Bras. Dermatol. 92, 8–20 (2017).

    Article 

    Google Scholar 

  • 380.

    Robinson, K. P. & Chan, J. J. Colchicine in dermatology: a review. Australas. J. Dermatol. 59, 278–285 (2018).

    PubMed 
    Article 

    Google Scholar 

  • 381.

    Morton, L. M. & Phillips, T. J. Wound healing and treating wounds: differential diagnosis and evaluation of chronic wounds. J. Am. Acad. Dermatol. 74, 589–605 (2016). quiz 605-586.

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 382.

    Tottoli, E. M. et al. Skin wound healing process and new emerging technologies for skin wound care and regeneration. Pharmaceutics 12, 735 (2020).

    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 

  • 383.

    Chouhan, D., Dey, N., Bhardwaj, N. & Mandal, B. B. Emerging and innovative approaches for wound healing and skin regeneration: current status and advances. Biomaterials 216, 119267 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 384.

    Wang, C. et al. Engineering bioactive self-healing antibacterial exosomes hydrogel for promoting chronic diabetic wound healing and complete skin regeneration. Theranostics 9, 65–76 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 385.

    Chouhan, D. & Mandal, B. B. Silk biomaterials in wound healing and skin regeneration therapeutics: from bench to bedside. Acta Biomaterialia 103, 24–51 (2020).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 386.

    Sapru, S., Das, S., Mandal, M., Ghosh, A. K. & Kundu, S. C. Prospects of nonmulberry silk protein sericin-based nanofibrous matrices for wound healing-In vitro and in vivo investigations. Acta Biomaterialia 78, 137–150 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 387.

    Chouhan, D. et al. Recombinant spider silk functionalized silkworm silk matrices as potential bioactive wound dressings and skin grafts. ACS Appl. Mater. Interfaces 10, 23560–23572 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 388.

    Guo, R., Xu, S., Ma, L., Huang, A. & Gao, C. The healing of full-thickness burns treated by using plasmid DNA encoding VEGF-165 activated collagen-chitosan dermal equivalents. Biomaterials 32, 1019–1031 (2011).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 389.

    Guo, R., Xu, S., Ma, L., Huang, A. & Gao, C. Enhanced angiogenesis of gene-activated dermal equivalent for treatment of full thickness incisional wounds in a porcine model. Biomaterials 31, 7308–7320 (2010).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 390.

    Yang, Y. et al. Electrospun fibers with plasmid bFGF polyplex loadings promote skin wound healing in diabetic rats. Mol. Pharm. 9, 48–58 (2012).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 391.

    Lou, D., Luo, Y., Pang, Q., Tan, W. Q. & Ma, L. Gene-activated dermal equivalents to accelerate healing of diabetic chronic wounds by regulating inflammation and promoting angiogenesis. Bioact. Mater. 5, 667–679 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 392.

    Bao, P. et al. The role of vascular endothelial growth factor in wound healing. J. Surg. Res. 153, 347–358 (2009).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 393.

    Wang, P. et al. In situ formed anti-inflammatory hydrogel loading plasmid DNA encoding VEGF for burn wound healing. Acta Biomaterialia 100, 191–201 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 394.

    Yang, Y. et al. Promotion of skin regeneration in diabetic rats by electrospun core-sheath fibers loaded with basic fibroblast growth factor. Biomaterials 32, 4243–4254 (2011).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 395.

    He, S. et al. Multiple release of polyplexes of plasmids VEGF and bFGF from electrospun fibrous scaffolds towards regeneration of mature blood vessels. Acta Biomaterialia 8, 2659–2669 (2012).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 396.

    Losi, P. et al. Fibrin-based scaffold incorporating VEGF- and bFGF-loaded nanoparticles stimulates wound healing in diabetic mice. Acta Biomaterialia 9, 7814–7821 (2013).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 397.

    Mo, Y. et al. Controlled dual delivery of angiogenin and curcumin by electrospun nanofibers for skin regeneration. Tissue Eng. Part A 23, 597–608 (2017).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 398.

    Szczesny, G. et al. Bacteriology of callus of closed fractures of tibia and femur. J. Trauma 65, 837–842 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 399.

    Wiraja, C. et al. Framework nucleic acids as programmable carrier for transdermal drug delivery. Nat. Commun. 10, 1147 (2019).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 400.

    Son, J. et al. DNA aptamer immobilized hydroxyapatite for enhancing angiogenesis and bone regeneration. Acta Biomaterialia 99, 469–478 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 401.

    Mao, Z. et al. Enhanced angiogenesis of porous collagen scaffolds by incorporation of TMC/DNA complexes encoding vascular endothelial growth factor. Acta Biomaterialia 5, 2983–2994 (2009).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 402.

    Nillesen, S. T. et al. Increased angiogenesis and blood vessel maturation in acellular collagen-heparin scaffolds containing both FGF2 and VEGF. Biomaterials 28, 1123–1131 (2007).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 403.

    Nillesen, S. T. et al. Increased angiogenesis in acellular scaffolds by combined release of FGF2 and VEGF. J. Control. Release 116, e88–e90 (2006).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 404.

    Qin, X. et al. Tetrahedral framework nucleic acids prevent retina ischemia-reperfusion injury from oxidative stress via activating the Akt/Nrf2 pathway. Nanoscale 11, 20667–20675 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 405.

    Zhao, D. et al. Tetrahedral DNA nanostructure promotes endothelial cell proliferation, migration, and angiogenesis via Notch signaling pathway. ACS Appl. Mater. Interfaces 10, 37911–37918 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 406.

    Zhao, D. et al. Tetrahedral framework nucleic acid promotes the treatment of bisphosphonate-related osteonecrosis of the jaws by promoting angiogenesis and M2 polarization. ACS Appl. Mater. interfaces 12, 44508–44522 (2020).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 407.

    Cui, W. et al. Preventive effect of tetrahedral framework nucleic acids on bisphosphonate-related osteonecrosis of the jaw. Nanoscale 12, 17196–17202 (2020).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 408.

    Willem de Vries, J. et al. DNA nanoparticles for ophthalmic drug delivery. Biomaterials 157, 98–106 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 409.

    Rodier, J. T. et al. Linear polyethylenimine-DNA nanoconstruct for corneal gene delivery. J. Ocul. Pharmacol. Ther. 35, 23–31 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 410.

    Trigueros, S., Domenech, E. B., Toulis, V. & Marfany, G. In vitro gene delivery in retinal pigment epithelium cells by plasmid dna-wrapped gold nanoparticles. Genes 10, 289 (2019).

    CAS 
    PubMed Central 
    Article 

    Google Scholar 

  • 411.

    Gao, S. et al. Tetrahedral framework nucleic acids induce immune tolerance and prevent the onset of type 1 diabetes. Nano Lett. 21, 4437–4446 (2021).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 412.

    Xia, K. et al. Systematic study in mammalian cells showing no adverse response to tetrahedral DNA nanostructure. ACS Appl. Mater. Interfaces 10, 15442–15448 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 413.

    Pei, H., Zuo, X., Zhu, D., Huang, Q. & Fan, C. Functional DNA nanostructures for theranostic applications. Acc. Chem. Res. 47, 550–559 (2014).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 414.

    Liang, L. et al. Single-particle tracking and modulation of cell entry pathways of a tetrahedral DNA nanostructure in live cells. Angew. Chem. Int. Ed. Engl. 53, 7745–7750 (2014).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 415.

    Yang, D., Tan, Z., Mi, Y. & Wei, B. DNA nanostructures constructed with multi-stranded motifs. Nucleic Acids Res. 45, 3606–3611 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 416.

    Bagalkot, V., Farokhzad, O. C., Langer, R. & Jon, S. An aptamer-doxorubicin physical conjugate as a novel targeted drug-delivery platform. Angew. Chem. Int. Ed. Engl. 45, 8149–8152 (2006).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 417.

    Erben, C. M., Goodman, R. P. & Turberfield, A. J. Single-molecule protein encapsulation in a rigid DNA cage. Angew. Chem. Int. Ed. 45, 7414–7417 (2006).

    CAS 
    Article 

    Google Scholar 

  • 418.

    Chou, L. Y., Zagorovsky, K. & Chan, W. C. DNA assembly of nanoparticle superstructures for controlled biological delivery and elimination. Nat. Nanotechnol. 9, 148–155 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 419.

    He, Y. et al. Hierarchical self-assembly of DNA into symmetric supramolecular polyhedra. Nature 452, 198–201 (2008).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 420.

    Iinuma, R. et al. Polyhedra self-assembled from DNA tripods and characterized with 3D DNA-paint. Science 344, 65–69 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 421.

    Peng, R. et al. Facile assembly/disassembly of DNA nanostructures anchored on cell-mimicking giant vesicles. J. Am. Chem. Soc. 139, 12410–12413 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 422.

    Liu, X., Yan, H., Liu, Y. & Chang, Y. Targeted cell-cell interactions by DNA nanoscaffold-templated multivalent bispecific aptamers. Small 7, 1673–1682 (2011).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 423.

    Shi, P. et al. In situ synthesis of an aptamer-based polyvalent antibody mimic on the cell surface for enhanced interactions between immune and cancer cells. Angew. Chem. Int. Ed. Engl. 59, 11892–11897 (2020).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 424.

    Yong-Xing, Z. et al. DNA origami delivery system for cancer therapy with tunable release properties. ACS Nano 6, 8684–8691 (2012).

    Article 
    CAS 

    Google Scholar 

  • 425.

    Qian, Z. et al. DNA origami as an in vivo drug delivery vehicle for cancer therapy. ACS Nano 8, 6633–6643 (2014).

    Article 
    CAS 

    Google Scholar 

  • 426.

    Zhang, G., Zhang, Z. & Yang., J. DNA tetrahedron delivery enhances doxorubicin-induced apoptosis of HT-29 colon cancer cells. Nanoscale Res. Lett. 12, 495 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 427.

    Li, S. et al. A DNA nanorobot functions as a cancer therapeutic in response to a molecular trigger in vivo. Nat. Biotechnol. 36, 258–264 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 428.

    Vindigni, G. et al. Receptor-mediated entry of pristine octahedral DNA nanocages in mammalian cells. ACS Nano 10, 5971–5979 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 429.

    Chang, M., Yang, C.-S. & Huang., D.-M. Aptamer-conjugated DNA icosahedral nanoparticles as a carrier of doxorubicin for cancer therapy. ACS Nano 5, 6156–6163 (2011).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 430.

    Taghdisi, S. M. et al. Double targeting and aptamer-assisted controlled release delivery of epirubicin to cancer cells by aptamers-based dendrimer in vitro and in vivo. Eur. J. Pharm. Biopharm. 102, 152–158 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 431.

    Lee, H. et al. Molecularly self-assembled nucleic acid nanoparticles for targeted in vivo siRNA delivery. Nat. Nanotechnol. 7, 389–393 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 432.

    Liu, X. et al. A DNA nanostructure platform for directed assembly of synthetic vaccines. Nano Lett. 12, 4254–4259 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 433.

    Yang, J. et al. Self-assembled double-bundle DNA tetrahedron for efficient antisense delivery. ACS Appl Mater. Interfaces 10, 23693–23699 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 434.

    Kim, K.-R. et al. Sentinel lymph node imaging by a fluorescently labeled DNA tetrahedron. Biomaterials 34, 5226–5235 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 435.

    Goodman, R. P., Berry, R. M. & Turberfield, A. J. The single-step synthesis of a DNA tetrahedron. Chem. Commun. (Camb) 21, 1372–1373 (2004).

    Article 
    CAS 

    Google Scholar 

  • 436.

    Li, Z. et al. A replicable tetrahedral nanostructure self-assembled from a single DNA strand. J. Am. Chem. Soc. 131, 13093–13098 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 437.

    Zhang, Y. et al. DNA-affibody nanoparticles for inhibiting breast cancer cells overexpressing HER2. Chem. Commun. (Camb.) 53, 573–576 (2017).

    CAS 
    Article 

    Google Scholar 

  • 438.

    Sun, P. et al. SL2B aptamer and folic acid dual-targeting DNA nanostructures for synergic biological effect with chemotherapy to combat colorectal cancer. Int. J. Nanomed. 12, 2657–2672 (2017).

    CAS 
    Article 

    Google Scholar 

  • 439.

    Ma, W. et al. An intelligent DNA nanorobot with in vitro enhanced protein lysosomal degradation of HER2. Nano Lett. 19, 4505–4517 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 440.

    Loibl, S. & Gianni, L. HER2-positive breast cancer. Lancet 389, 2415–2429 (2017).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 441.

    Hyojin Lee, D. et al. Enhanced human epidermal growth factor receptor 2 degradation in breast cancer cells by lysosome-targeting gold nanoconstructs. ACS Nano 9, 9859–9867 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 442.

    Mahlknecht, G. et al. Aptamer to ErbB-2/HER2 enhances degradation of the target and inhibits tumorigenic growth. Proc. Natl Acad. Sci. USA 110, 8170–8175 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 443.

    Bates, P. J., Laber, D. A., Miller, D. M., Thomas, S. D. & Trent, J. O. Discovery and development of the G-rich oligonucleotide AS1411 as a novel treatment for cancer. Exp. Mol. Pathol. 86, 151–164 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 444.

    Reyes-Reyes, E. M., Salipur, F. R., Shams, M., Forsthoefel, M. K. & Bates, P. J. Mechanistic studies of anticancer aptamer AS1411 reveal a novel role for nucleolin in regulating Rac1 activation. Mol. Oncol. 9, 1392–1405 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 445.

    Charoenphol, P. & Bermudez, H. Aptamer-targeted DNA nanostructures for therapeutic delivery. Mol. Pharm. 11, 1721–1725 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 446.

    Xia, Z. et al. Tumor-penetrating peptide-modified DNA tetrahedron for targeting drug delivery. Biochemistry 55, 1326–1331 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 447.

    Setyawati, M. I., Kutty, R. V. & Leong, D. T. DNA nanostructures carrying stoichiometrically definable antibodies. Small 12, 5601–5611 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 448.

    Miao, P., Wang, B., Chen, X., Li, X. & Tang, Y. Tetrahedral DNA nanostructure-based microRNA biosensor coupled with catalytic recycling of the analyte. ACS Appl Mater. Interfaces 7, 6238–6243 (2015).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 449.

    Liu, X., Wu, L., Wang, L. & Jiang, W. A dual-targeting DNA tetrahedron nanocarrier for breast cancer cell imaging and drug delivery. Talanta 179, 356–363 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 450.

    Fu, W. et al. Enhanced efficacy of temozolomide loaded by a tetrahedral framework DNA nanoparticle in the therapy for glioblastoma. ACS Appl Mater. Interfaces 11, 39525–39533 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 451.

    Chen, C. H. et al. Aptamer-based endocytosis of a lysosomal enzyme. Proc. Natl Acad. Sci. USA 105, 15908–15913 (2008).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 452.

    Tian, Y., Huang, Y., Gao, P. & Chen, T. Nucleus-targeted DNA tetrahedron as a nanocarrier of metal complexes for enhanced glioma therapy. Chem. Commun. (Camb.) 54, 9394–9397 (2018).

    CAS 
    Article 

    Google Scholar 

  • 453.

    Bugaj, A. M. Targeted photodynamic therapy–a promising strategy of tumor treatment. Photochem Photobio. Sci. 10, 1097–1109 (2011).

    CAS 
    Article 

    Google Scholar 

  • 454.

    Kim, K.-R., Bangb, D. & Ahn., D.-R. Nano-formulation of a photosensitizer using a DNA tetrahedron and its potential for in vivo photodynamic therapy. Biomater. Sci. 4, 605–609 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 455.

    Zhuang, X. et al. A photosensitizer-loaded DNA origami nanosystem for photodynamic therapy. ACS Nano 10, 3486–3495 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 456.

    Bujold, K. E., Hsu, J. C. C. & Sleiman, H. F. Optimized DNA “nanosuitcases” for encapsulation and conditional release of siRNA. J. Am. Chem. Soc. 138, 14030–14038 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 457.

    Ren, K. et al. A DNA dual lock-and-key strategy for cell-subtype-specific siRNA delivery. Nat. Commun. 7, 13580 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 458.

    Zhang, Q. et al. Anti-inflammatory and antioxidative effects of tetrahedral dna nanostructures via the modulation of macrophage responses. ACS Appl. Mater. interfaces 10, 3421–3430 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 459.

    Zhang, Y. et al. Inhibiting methicillin-resistant Staphylococcus aureus by tetrahedral DNA nanostructure-enabled antisense peptide nucleic acid delivery. Nano Lett. 18, 5652–5659 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 460.

    Zhang, Y. et al. Multi-targeted antisense oligonucleotide delivery by a framework nucleic acid for inhibiting biofilm formation and virulence. Nano-Micro Lett 12, 74 (2020).

    CAS 
    Article 

    Google Scholar 

  • 461.

    Gerling, T., Wagenbauer, K. F., Neuner, A. M. & Dietz, H. Dynamic DNA devices and assemblies formed by shape-complementary, non-base pairing 3D components. Science 347, 1446–1452 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 462.

    Wu, C. et al. Building a multifunctional aptamer-based DNA nanoassembly for targeted cancer therapy. J. Am. Chem. Soc. 135, 18644–18650 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 463.

    Zhu, G. et al. Self-assembled, aptamer-tethered DNA nanotrains for targeted transport of molecular drugs in cancer theranostics. Proc. Natl Acad. Sci. USA 110, 7998–8003 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 464.

    Lv, Y. et al. Preparation and biomedical applications of programmable and multifunctional DNA nanoflowers. Nat. Protoc. 10, 1508–1524 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 465.

    Da, H. et al. Engineering a cell-surface aptamer circuit for targeted and amplified photodynamic cancer therapy. ACS Nano 7, 2312–2319 (2013).

    Article 
    CAS 

    Google Scholar 

  • 466.

    Li, W. et al. Self-assembled DNA nanocentipede as multivalent drug carrier for targeted delivery. ACS Appl. Mater. Interfaces 8, 25733–25740 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 467.

    Zadegan, R. M. et al. Construction of a 4 zeptoliters switchable 3D DNA box origami. ACS Nano 6, 10050–10053 (2012).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 468.

    Douglas, S. M., Bachelet, I. & Church., G. M. A logic-gated nanorobot for targeted transport of molecular payloads. Science 335, 831–834 (2012).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 469.

    Wang, Y., Jiang, L. P., Zhou, S., Bi, S. & Zhu, J. J. DNA polymerase-directed hairpin assembly for targeted drug delivery and amplified biosensing. ACS Appl Mater. Interfaces 8, 26532–26540 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 470.

    Bi, S., Xiu, B., Ye, J. & Dong, Y. Target-catalyzed DNA four-way junctions for cret imaging of microrna, concatenated logic operations, and self-assembly of DNA nanohydrogels for targeted drug delivery. ACS Appl Mater. Interfaces 7, 23310–23319 (2015).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 471.

    Li, J. et al. Self-assembly of DNA nanohydrogels with controllable size and stimuli-responsive property for targeted gene regulation therapy. J. Am. Chem. Soc. 137, 1412–1415 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 472.

    Daljit Singh, J. K., Luu, M. T., Abbas, A. & Wickham, S. F. J. Switchable DNA-origami nanostructures that respond to their environment and their applications. Biophys. Rev. 10, 1283–1293 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 473.

    Endo, M. & Sugiyama, H. DNA origami nanomachines. Molecules 23, 1766 (2018).

    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 474.

    Kuzuya, A., Sakai, Y., Yamazaki, T., Xu, Y. & Komiyama, M. Nanomechanical DNA origami ‘single-molecule beacons’ directly imaged by atomic force microscopy. Nat. Commun. 2, 449 (2011).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 475.

    Bernard, Y. et al. A DNA-fuelled molecular machine made of DNA. nature 406, 605–608 (2000).

    Article 
    CAS 

    Google Scholar 

  • 476.

    Kuzuya, A. et al. Nanomechanical DNA Origami pH. Sens. Sens. 14, 19329–19335 (2014).

    Article 
    CAS 

    Google Scholar 

  • 477.

    Zadegan, R. M., Jepsen, M. D., Hildebrandt, L. L., Birkedal, V. & Kjems, J. Construction of a fuzzy and Boolean logic gates based on DNA. Small 11, 1811–1817 (2015).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 478.

    Amir, Y. et al. Universal computing by DNA origami robots in a living animal. Nat. Nanotechnol. 9, 353–357 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 479.

    Bao-an, C. et al. Reversal of multidrug resistance by magnetic Fe3O4 nanoparticle copolymerizating daunorubicin and MDr1 shrNA expression vector in leukemia cells. Int. J. Nanomed. 5, 437–444 (2010).

    Google Scholar 

  • 480.

    Mariagrazia, M. et al. P-glycoprotein (PGP), lung resistance-related protein (LRP) and multidrug resistance-associated protein (MRP) expression in acute promyelocytic leukaemia. Br. J. Haematol. 108, 703–709 (2000).

    Article 

    Google Scholar 

  • 481.

    Morris, S. A., Farrell, D. & Grodzinski, P. Nanotechnologies in cancer treatment and diagnosis. J. Natl Compr. Cancer Netw. 12, 1727–1733 (2014).

    CAS 
    Article 

    Google Scholar 

  • 482.

    Qiao, J. et al. DNA origami as a carrier for circumvention of drug resistance. J. Am. Chem. Soc. 134, 13396–13403 (2012).

    Article 
    CAS 

    Google Scholar 

  • 483.

    Liu, J. et al. Multifunctional aptamer-based nanoparticles for targeted drug delivery to circumvent cancer resistance. Biomaterials 91, 44–56 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 484.

    Mei, L. et al. Self-assembled multifunctional DNA nanoflowers for the circumvention of multidrug resistance in targeted anticancer drug delivery. Nano Res. 8, 3447–3460 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 485.

    Fu, J. et al. DNA-scaffolded proximity assembly and confinement of multienzyme reactions. Top. Curr. Chem. (Cham) 378, 38 (2020).

    CAS 
    Article 

    Google Scholar 

  • 486.

    Hiroaki, H. et al. A Toll-like receptor recognizes bacterial DNA. Nature 408, 740–745 (2000).

    Article 
    CAS 

    Google Scholar 

  • 487.

    Arthur, M. K. et al. CpG motifs in bacterial DNA trigger direct B-cell activation. Nature 374, 546–549 (1995).

    Article 

    Google Scholar 

  • 488.

    Gupta, G. K. & Agrawal, D. K. CpG oligodeoxynucleotides as TLR9 agonists therapeutic application in allergy and asthma. Biodrugs 24, 225–235 (2010).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 489.

    Vollmer, J. & Krieg, A. M. Immunotherapeutic applications of CpG oligodeoxynucleotide TLR9 agonists. Adv. Drug Deliv. Rev. 61, 195–204 (2009).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 490.

    Schu ̈ ller, V. J. et al. Cellular immunostimulation by CpG-sequence-coated DNA origami structures. ACS Nano 5, 9696–9702 (2011).

    Article 
    CAS 

    Google Scholar 

  • 491.

    Sellner, S. et al. DNA nanotubes as intracellular delivery vehicles in vivo. Biomaterials 53, 453–463 (2015).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 492.

    Rattanakiat, S., Nishikawa, M., Funabashi, H., Luo, D. & Takakura, Y. The assembly of a short linear natural cytosine-phosphate-guanine DNA into dendritic structures and its effect on immunostimulatory activity. Biomaterials 30, 5701–5706 (2009).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 493.

    Mohri, K. et al. Self-assembling DNA dendrimer for effective delivery of immunostimulatory CpG DNA to immune cells. Biomacromolecules 16, 1095–1101 (2015).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 494.

    Jiang, L. I. et al. Self-assembled multivalent DNA nanostructures for noninvasive intracellular delivery of immunostimulatory CpG oligonucleotides. ACS Nano 5, 8783–8789 (2011).

    Article 
    CAS 

    Google Scholar 

  • 495.

    Ouyang, X. et al. Rolling circle amplification-based DNA origami nanostructrures for intracellular delivery of immunostimulatory drugs. Small 9, 3082–3087 (2013).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 496.

    de Vries, J. W., Zhang, F. & Herrmann, A. Drug delivery systems based on nucleic acid nanostructures. J. Control Release 172, 467–483 (2013).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 497.

    Nishikawa, M., Matono, M., Rattanakiat, S., Matsuoka, N. & Takakura, Y. Enhanced immunostimulatory activity of oligodeoxynucleotides by Y-shape formation. Immunology 124, 247–255 (2008).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 498.

    Kohta, M. et al. Design and development of nanosized DNA assemblies in polypod-like structures as efficient vehicles for immunostimulatory CpG motifs to immune cells. ACS Nano 6, 5931–5940 (2012).

    Article 
    CAS 

    Google Scholar 

  • 499.

    Hu, J., Liu, M. H. & Zhang, C. Y. Construction of tetrahedral DNA-quantum dot nanostructure with the integration of multistep forster resonance energy transfer for multiplex enzymes assay. ACS Nano 13, 7191–7201 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 500.

    Ma, F., Zhang, Q. & Zhang, C. Y. Catalytic self-assembly of quantum-dot-based MicroRNA nanosensor directed by toehold-mediated strand displacement cascade. Nano Lett. 19, 6370–6376 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 501.

    Shiu, S. C., Fraser, L. A., Ding, Y. & Tanner, J. A. Aptamer display on diverse DNA polyhedron supports. Molecules 23, 1695 (2018).

    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 502.

    Tian, T. et al. Targeted imaging of brain tumors with a framework nucleic acid probe. ACS Appl. Mater. Interfaces 10, 3414–3420 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 503.

    Zhang, K. et al. DNA tetrahedron based biosensor for argonaute2 assay in single cells and human immunodeficiency virus type-1 related ribonuclease H detection in vitro. Anal. Chem. 91, 7086–7096 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 504.

    Li, N. et al. A DNA tetrahedron nanoprobe with controlled distance of dyes for multiple detection in living cells and in vivo. Anal. Chem. 89, 6670–6677 (2017).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 505.

    Li, C. et al. Design of DNA nanostructure-based interfacial probes for the electrochemical detection of nucleic acids directly in whole blood. Chem. Sci. 9, 979–984 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 506.

    Jiang, D. et al. Multiple-armed tetrahedral DNA nanostructures for tumor-targeting, dual-modality in vivo imaging. ACS Appl Mater. Interfaces 8, 4378–4384 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 507.

    Feng, Q. M., Zhu, M. J., Zhang, T. T., Xu, J. J. & Chen, H. Y. A novel DNA tetrahedron-hairpin probe for in situ“off-on” fluorescence imaging of intracellular telomerase activity. Analyst 141, 2474–2480 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 508.

    Bi, X., Yin, J., Chen Guanbang, A. & Liu, C. F. Chemical and enzymatic strategies for bacterial and mammalian cell surface engineering. Chemistry (Easton) 24, 8042–8050 (2018).

    CAS 

    Google Scholar 

  • 509.

    Aghebat Rafat, A., Sagredo, S., Thalhammer, M. & Simmel, F. C. Barcoded DNA origami structures for multiplexed optimization and enrichment of DNA-based protein-binding cavities. Nat. Chem. 12, 852–859 (2020).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 510.

    Gartner, Z. J. & Bertozzi, C. R. Programmed assembly of 3-dimensional microtissues with defined cellular connectivity. Proc. Natl Acad. Sci. USA 106, 4606–4610 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 511.

    Akbari, E. et al. Engineering cell surface function with DNA origami. Adv. Mater. 29, https://doi.org/10.1002/adma.201703632 (2017).

  • 512.

    Sacca, B. et al. Orthogonal protein decoration of DNA origami. Angew. Chem. Int. Ed. Engl. 49, 9378–9383 (2010).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 513.

    Li, H., Han, M., Weng, X., Zhang, Y. & Li, J. DNA-tetrahedral-nanostructure-based entropy-driven amplifier for high-performance photoelectrochemical biosensing. ACS Nano 15, 1710–1717 (2021).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 514.

    Kizer, M. E., Linhardt, R. J., Chandrasekaran, A. R. & Wang, X. A Molecular hero suit for in vitro and in vivo dna nanostructures. Small 15, e1805386 (2019).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 515.

    Tian, T. et al. Proteomic exploration of endocytosis of framework nucleic acids. Small 17, e2100837 (2021).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 516.

    Li, J., Fan, C., Pei, H., Shi, J. & Huang, Q. Smart drug delivery nanocarriers with self-assembled DNA nanostructures. Adv. Mater. 25, 4386–4396 (2013).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 517.

    Walsh, A. S., Yin, H., Erben, C. M., Wood, M. J. & Turberfield, A. J. DNA cage delivery to mammalian cells. ACS Nano 5, 5427–5432 (2011).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 518.

    Yuan, Y., Gu, Z., Yao, C., Luo, D. & Yang, D. Nucleic acid-based functional nanomaterials as advanced cancer therapeutics. Small 15, e1900172 (2019).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 519.

    Sun, Y. et al. Erythromycin loaded by tetrahedral framework nucleic acids are more antimicrobial sensitive against Escherichia coli (E. coli). Bioact. Mater. 6, 2281–2290 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 520.

    Birkholz, O. et al. Multi-functional DNA nanostructures that puncture and remodel lipid membranes into hybrid materials. Nat. Commun. 9, 1521 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 521.

    De Leo, V., Milano, F., Agostiano, A. & Catucci, L. Recent advancements in polymer/liposome assembly for drug delivery: from surface modifications to hybrid vesicles. Polymers 13, 1027 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 522.

    Bhalla, N., Pan, Y., Yang, Z. & Payam, A. F. Opportunities and challenges for biosensors and nanoscale analytical tools for pandemics: COVID-19. ACS Nano 14, 7783–7807 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 523.

    Shen, Q., Grome, M. W., Yang, Y. & Lin, C. Engineering lipid membranes with programmable DNA nanostructures. Adv. Biosyst. 4, 1900215 (2020).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 524.

    Ji, X. et al. Epigenetic remodeling hydrogel patches for multidrug-resistant triple-negative breast cancer. Adv. Mater. 33, e2100949 (2021).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 525.

    Zhou, Y. et al. An organelle-specific nanozyme for diabetes care in genetically or diet-induced models. Adv. Mater. 32, e2003708 (2020).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 526.

    Han, J., Cui, Y., Li, F., Gu, Z. & Yang, D. Responsive disassembly of nucleic acid nanocomplex in cells for precision medicine. Nano Today 39, 101160 (2021).

    CAS 
    Article 

    Google Scholar 

  • Source link