Dong, Y. et al. DNA functional materials assembled from branched DNA: design, synthesis, and applications. Chem. Rev. 120, 9420–9481 (2020).
Google Scholar
Broker, T. R. & Lehman, I. R. Branched DNA molecules: intermediates in T4 recombination. J. Mol. Biol. 60, 131–149 (1971).
Google Scholar
Seeman, N. C. DNA nanotechnology: from the pub to information-based chemistry. Methods Mol. Biol. 1811, 1–9 (2018).
Google Scholar
Seeman, N. C. DNA nanotechnology: novel DNA constructions. Annu. Rev. Biophys. Biomol. Struct. 27, 225–248 (1998).
Google Scholar
Seeman, N. C. & Sleiman, H. F. DNA nanotechnology. Nat. Rev. Mater 3, 17068 (2018).
Google Scholar
Seeman, N. C. Nucleic-acid junctions and lattices. J. Theor. Biol. 99, 237–247 (1982).
Google Scholar
Seeman, N. C. DNA engineering and its application to nanotechnology. Trends Biotechnol. 17, 437–443 (1999).
Google Scholar
Seeman, N. C. et al. Two dimensions and two States in DNA nanotechnology. J. Biomol. Struct. Dyn. 17, 253–262 (2000).
Google Scholar
Seeman, N. C. Key experimental approaches in DNA nanotechnology. Curr. Protoc. Nucleic Acid Chem. Chapter 12, 11 (2002).
Fan, S. et al. Create nanoscale patterns with DNA origami. Small 15, e1805554 (2019).
Google Scholar
Jones, M. R., Seeman, N. C. & Mirkin, C. A. Nanomaterials. programmable materials and the nature of the DNA bond. Science 347, 1260901 (2015).
Google Scholar
Hu, Y. & Niemeyer, C. M. From DNA nanotechnology to material systems engineering. Adv. Mater. 31, e1806294 (2019).
Google Scholar
Chao, J. et al. Solving mazes with single-molecule DNA navigators. Nat. Mater. 18, 273–279 (2019).
Google Scholar
Harroun, S. G. et al. Programmable DNA switches and their applications. Nanoscale 10, 4607–4641 (2018).
Google Scholar
Hu, Y., Cecconello, A., Idili, A., Ricci, F. & Willner, I. Triplex DNA nanostructures: from basic properties to applications. Angew. Chem. Int. Ed. Engl. 56, 15210–15233 (2017).
Google Scholar
Seeman, N. C. DNA in a material world. Nature 421, 427–431 (2003).
Google Scholar
Jia, S. et al. Programming DNA origami patterning with non-canonical DNA-based metallization reactions. Nat. Commun. 10, 5597 (2019).
Google Scholar
Gopinath, A., Miyazono, E., Faraon, A. & Rothemund, P. W. Engineering and mapping nanocavity emission via precision placement of DNA origami. Nature 535, 401–405 (2016).
Google Scholar
Wing, R. et al. Crystal structure analysis of a complete turn of B-DNA. Nature 287, 755–758 (1980).
Google Scholar
Franklin, R. E. & Gosling, R. G. Molecular structure of nucleic acids. Molecular configuration in sodium thymonucleate. 1953. Ann. N. Y. Acad. Sci. 758, 16–17 (1995).
Google Scholar
Franklin, R. E. & Gosling, R. G. Molecular configuration in sodium thymonucleate. Nature 171, 740–741 (1953).
Google Scholar
Wilkins, M. H., Stokes, A. R. & Wilson, H. R. Molecular structure of nucleic acids. Molecular structure of deoxypentose nucleic acids. 1953. Ann. N. Y. Acad. Sci. 758, 13–16 (1995).
Google Scholar
Wilkins, M. H., Stokes, A. R. & Wilson, H. R. Molecular structure of deoxypentose nucleic acids. Nature 171, 738–740 (1953).
Google Scholar
Watson, J. D. & Crick, F. H. Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature 171, 737–738 (1953).
Google Scholar
Mergny, J. L. & Sen, D. DNA quadruple helices in nanotechnology. Chem. Rev. 119, 6290–6325 (2019).
Google Scholar
Leslie, A. G., Arnott, S., Chandrasekaran, R. & Ratliff, R. L. Polymorphism of DNA double helices. J. Mol. Biol. 143, 49–72 (1980).
Google Scholar
Basu, H. S., Feuerstein, B. G., Zarling, D. A., Shafer, R. H. & Marton, L. J. Recognition of Z-RNA and Z-DNA determinants by polyamines in solution: experimental and theoretical studies. J. Biomol. Struct. Dyn. 6, 299–309 (1988).
Google Scholar
Irobalieva, R. N. et al. Structural diversity of supercoiled DNA. Nat. Commun. 6, 8440 (2015).
Google Scholar
Zhang, F., Nangreave, J., Liu, Y. & Yan, H. Structural DNA nanotechnology: state of the art and future perspective. J. Am. Chem. Soc. 136, 11198–11211 (2014).
Google Scholar
Fu, J., Liu, M., Liu, Y. & Yan, H. Spatially-interactive biomolecular networks organized by nucleic acid nanostructures. Acc. Chem. Res 45, 1215–1226 (2012).
Google Scholar
Alivisatos, A. P. et al. Organization of ‘nanocrystal molecules’ using DNA. Nature 382, 609–611 (1996).
Google Scholar
Mirkin, C. A., Letsinger, R. L., Mucic, R. C. & Storhoff, J. J. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382, 607–609 (1996).
Google Scholar
Julin, S., Nummelin, S., Kostiainen, M. A. & Linko, V. DNA nanostructure-directed assembly of metal nanoparticle superlattices. J. Nanopart. Res.: Interdiscip. Forum Nanoscale Sci. Technol. 20, 119 (2018).
Google Scholar
Aldaye, F. A., Palmer, A. L. & Sleiman, H. F. Assembling materials with DNA as the guide. Science 321, 1795–1799 (2008).
Google Scholar
Wang, X. et al. Paranemic crossover DNA: there and back again. Chem. Rev. 119, 6273–6289 (2019).
Google Scholar
Loescher, S., Groeer, S. & Walther, A. 3D DNA origami nanoparticles: from basic design principles to emerging applications in soft matter and (bio-)nanosciences. Angew. Chem. Int. Ed. Engl. 57, 10436–10448 (2018).
Google Scholar
Hong, F., Zhang, F., Liu, Y. & Yan, H. DNA origami: scaffolds for creating higher order structures. Chem. Rev. 117, 12584–12640 (2017).
Google Scholar
Rothemund, P. W. & Folding, D. N. A. to create nanoscale shapes and patterns. Nature 440, 297–302 (2006).
Google Scholar
Torring, T., Voigt, N. V., Nangreave, J., Yan, H. & Gothelf, K. V. DNA origami: a quantum leap for self-assembly of complex structures. Chem. Soc. Rev. 40, 5636–5646 (2011).
Google Scholar
Petersen, P., Tikhomirov, G. & Qian, L. Information-based autonomous reconfiguration in systems of interacting DNA nanostructures. Nat. Commun. 9, 5362 (2018).
Google Scholar
Wang, S. S. & Ellington, A. D. Pattern generation with nucleic acid chemical reaction networks. Chem. Rev. 119, 6370–6383 (2019).
Google Scholar
Simmel, F. C., Yurke, B. & Singh, H. R. Principles and applications of nucleic acid strand displacement reactions. Chem. Rev. 119, 6326–6369 (2019).
Google Scholar
Thubagere, A. J. et al. A cargo-sorting DNA robot. Science 357, eaan6558 (2017).
Google Scholar
Zhang, D. Y. & Seelig, G. Dynamic DNA nanotechnology using strand-displacement reactions. Nat. Chem. 3, 103–113 (2011).
Google Scholar
Kopperger, E. et al. A self-assembled nanoscale robotic arm controlled by electric fields. Science 359, 296–301 (2018).
Google Scholar
Hu, Q., Li, H., Wang, L., Gu, H. & Fan, C. DNA nanotechnology-enabled drug delivery systems. Chem. Rev. 119, 6459–6506 (2019).
Google Scholar
Kohman, R. E., Kunjapur, A. M., Hysolli, E., Wang, Y. & Church, G. M. From designing the molecules of life to designing life: future applications derived from advances in DNA technologies. Angew. Chem. Int. Ed. Engl. 57, 4313–4328 (2018).
Google Scholar
Li, J., Green, A. A., Yan, H. & Fan, C. Engineering nucleic acid structures for programmable molecular circuitry and intracellular biocomputation. Nat. Chem. 9, 1056–1067 (2017).
Google Scholar
Yang, D. et al. DNA materials: bridging nanotechnology and biotechnology. Acc. Chem. Res. 47, 1902–1911 (2014).
Google Scholar
Zhang, Y. et al. Programmable and multifunctional DNA-based materials for biomedical applications. Adv. Mater. 30, e1703658 (2018).
Google Scholar
Zhou, L. et al. Functional DNA-based hydrogel intelligent materials for biomedical applications. J. Mater. Chem. B 8, 1991–2009 (2020).
Google Scholar
Jiang, Q. et al. Rationally designed DNA-based nanocarriers. Adv. Drug Deliv. Rev. 147, 2–21 (2019).
Google Scholar
Elfwing, A. et al. DNA based hybrid material for interface engineering in polymer solar cells. ACS Appl. Mater. Interfaces 10, 9579–9586 (2018).
Google Scholar
Li, J. et al. Functional nucleic acid-based hydrogels for bioanalytical and biomedical applications. Chem. Soc. Rev. 45, 1410–1431 (2016).
Google Scholar
Maeda, M., Kojima, T., Song, Y. & Takayama, S. DNA-based biomaterials for immunoengineering. Adv. Healthc. Mater. 8, e1801243 (2019).
Google Scholar
Chandrasekaran, A. R. et al. DNA nanotechnology approaches for microRNA detection and diagnosis. Nucleic Acids Res. 47, 10489–10505 (2019).
Google Scholar
Roh, Y. H., Ruiz, R. C., Peng, S., Lee, J. B. & Luo, D. Engineering DNA-based functional materials. Chem. Soc. Rev. 40, 5730–5744 (2011).
Google Scholar
Khajouei, S., Ravan, H. & Ebrahimi, A. DNA hydrogel-empowered biosensing. Adv. Colloid Interface Sci. 275, 102060 (2020).
Google Scholar
Li, M. et al. Engineering multifunctional DNA hybrid nanospheres through coordination-driven self-assembly. Angew. Chem. Int. Ed. Engl. 58, 1350–1354 (2019).
Google Scholar
Liu, S., Jiang, Q., Wang, Y. & Ding, B. Biomedical applications of DNA-based molecular devices. Adv. Healthc. Mater. 8, e1801658 (2019).
Google Scholar
Samanta, A. & Medintz, I. L. Nanoparticles and DNA-a powerful and growing functional combination in bionanotechnology. Nanoscale 8, 9037–9095 (2016).
Google Scholar
Liu, N. et al. Tetrahedral framework nucleic acids promote corneal epithelial wound healing in vitro and in vivo. Small 15, e1901907 (2019).
Google Scholar
Ma, W. et al. Self-assembled tetrahedral DNA nanostructures promote neural stem cell proliferation and neuronal differentiation. ACS Appl Mater. Interfaces 10, 7892–7900 (2018).
Google Scholar
Ma, W. J. et al. Tetrahedral DNA nanostructures facilitate neural stem cell migration via activating RHOA/ROCK2 signalling pathway. Cell Prolif. 51, e12503 (2018).
Google Scholar
Shao, X. et al. Tetrahedral DNA nanostructure: a potential promoter for cartilage tissue regeneration via regulating chondrocyte phenotype and proliferation. Small 13, 1602770 (2017).
Google Scholar
Shi, S. et al. Self-assembled tetrahedral DNA nanostructures promote adipose-derived stem cell migration via lncRNA XLOC 010623 and RHOA/ROCK2 signal pathway. ACS Appl. Mater. Interfaces 8, 19353–19363 (2016).
Google Scholar
Shi, S. R. et al. Effects of tetrahedral DNA nanostructures on autophagy in chondrocytes. Chem. Commun. 54, 1327–1330 (2018).
Google Scholar
Ma, W. et al. An intelligent DNA nanorobot with in vitro enhanced protein lysosomal degradation of HER2. Nano Lett. 19, 4505–4517 (2019).
Google Scholar
Lee, H., Dam, D. H., Ha, J. W., Yue, J. & Odom, T. W. Enhanced human epidermal growth factor receptor 2 degradation in breast cancer cells by lysosome-targeting gold nanoconstructs. ACS Nano 9, 9859–9867 (2015).
Google Scholar
Petrizzo, A. et al. Functional characterization of biodegradable nanoparticles as antigen delivery system. J. Exp. Clin. Cancer Res. 34, 114 (2015).
Google Scholar
Liu, B. et al. DNA-origami-based assembly of anisotropic plasmonic gold nanostructures. Small 13, 1603991 (2017).
Google Scholar
Edwardson, T. G., Lau, K. L., Bousmail, D., Serpell, C. J. & Sleiman, H. F. Transfer of molecular recognition information from DNA nanostructures to gold nanoparticles. Nat. Chem. 8, 162–170 (2016).
Google Scholar
Utsuno, K. & Uludag, H. Thermodynamics of polyethylenimine-DNA binding and DNA condensation. Biophys. J. 99, 201–207 (2010).
Google Scholar
Zhang, Y. et al. Ionic-crosslinked polysaccharide/PEI/DNA nanoparticles for stabilized gene delivery. Carbohydr. Polym. 201, 246–256 (2018).
Google Scholar
Xie, L., Ding, X., Budry, R. & Mao, G. Layer-by-layer DNA films incorporating highly transfecting bioreducible poly(amido amine) and polyethylenimine for sequential gene delivery. Int. J. Nanomed. 13, 4943–4960 (2018).
Google Scholar
Ewe, A. et al. Storage stability of optimal liposome-polyethylenimine complexes (lipopolyplexes) for DNA or siRNA delivery. Acta Biomaterialia 10, 2663–2673 (2014).
Google Scholar
Tian, T. R. et al. Synthesis of an ethyleneimine/tetrahedral DNA nanostructure complex and its potential application as a multi-functional delivery vehicle. Nanoscale 9, 18402–18412 (2017).
Google Scholar
Liu, W. et al. An investigation on the physicochemical properties of chitosan/DNA polyelectrolyte complexes. Biomaterials 26, 2705–2711 (2005).
Google Scholar
Gu, T., Wang, J., Xia, H., Wang, S. & Yu, X. Direct electrochemistry and electrocatalysis of horseradish peroxidase immobilized in a DNA/chitosan-Fe(3)O(4) magnetic nanoparticle bio-complex film. Materials 7, 1069–1083 (2014).
Google Scholar
Kumar, S. et al. Enhanced chitosan-DNA interaction by 2-acrylamido-2-methylpropane coupling for an efficient transfection in cancer cells. J. Mater. Chem. B 3, 3465–3475 (2015).
Google Scholar
Walsh, D. P. et al. Bioinspired star-shaped poly(l-lysine) polypeptides: efficient polymeric nanocarriers for the delivery of DNA to mesenchymal stem cells. Mol. Pharm. 15, 1878–1891 (2018).
Google Scholar
Boylan, N. J. et al. Enhancement of airway gene transfer by DNA nanoparticles using a pH-responsive block copolymer of polyethylene glycol and poly-L-lysine. Biomaterials 33, 2361–2371 (2012).
Google Scholar
von Erlach, T. et al. Formation and characterization of DNA-polymer-condensates based on poly(2-methyl-2-oxazoline) grafted poly(L-lysine) for non-viral delivery of therapeutic DNA. Biomaterials 32, 5291–5303 (2011).
Google Scholar
Chen, T. & Romesberg, F. E. Enzymatic synthesis, amplification, and application of dna with a functionalized backbone. Angew. Chem. Int. Ed. Engl. 56, 14046–14051 (2017).
Google Scholar
Zhan, Y. et al. Diversity of DNA nanostructures and applications in oncotherapy. Biotechnol. J. 15, e1900094 (2020).
Google Scholar
Schnitzbauer, J., Strauss, M. T., Schlichthaerle, T., Schueder, F. & Jungmann, R. Super-resolution microscopy with DNA-PAINT. Nat. Protoc. 12, 1198–1228 (2017).
Google Scholar
Ngo, T. A. et al. Protein adaptors assemble functional proteins on DNA scaffolds. Chem. Commun. (Camb.) 55, 12428–12446 (2019).
Google Scholar
Zhan, Y. et al. DNA-Based nanomedicine with targeting and enhancement of therapeutic efficacy of breast cancer cells. ACS Appl. Mater. Interfaces 11, 15354–15365 (2019).
Google Scholar
Wang, M. et al. Near-infrared light-activated DNA-agonist nanodevice for nongenetically and remotely controlled cellular signaling and behaviors in live animals. Nano Lett. 19, 2603–2613 (2019).
Google Scholar
Taniguchi, J. et al. A synthetic DNA-binding inhibitor of SOX2 guides human induced pluripotent stem cells to differentiate into mesoderm. Nucleic Acids Res. 45, 9219–9228 (2017).
Google Scholar
Hendrikson, W. J. et al. Biological and tribological assessment of poly(ethylene oxide terephthalate)/poly(butylene terephthalate), polycaprolactone, and poly (LDL) lactic acid plotted scaffolds for skeletal tissue regeneration. Adv. Healthc. Mater. 5, 232–243 (2016).
Google Scholar
Jayme, C. C. et al. DNA polymeric films as a support for cell growth as a new material for regenerative medicine: compatibility and applicability. Exp. Cell Res. 360, 404–412 (2017).
Google Scholar
Basu, S. et al. Harnessing the noncovalent interactions of DNA backbone with 2D silicate nanodisks to fabricate injectable therapeutic hydrogels. ACS Nano 12, 9866–9880 (2018).
Google Scholar
Feng, G. et al. Injectable nanofibrous spongy microspheres for NR4A1 plasmid DNA transfection to reverse fibrotic degeneration and support disc regeneration. Biomaterials 131, 86–97 (2017).
Google Scholar
Zhang, Y. et al. Nucleic acids and analogs for bone regeneration. Bone Res. 6, 37 (2018).
Google Scholar
Mahlknecht, G., Sela, M. & Yarden, Y. Aptamer targeting the ERBB2 receptor tyrosine kinase for applications in tumor therapy. Methods Mol. Biol. 1317, 3–15 (2015).
Google Scholar
Yu, X. et al. Targeting EGFR/HER2/HER3 with a three-in-one aptamer-siRNA chimera confers superior activity against HER2( +) breast cancer. Mol. Ther. Nucleic Acids 10, 317–330 (2018).
Google Scholar
Bai, S. et al. High-discrimination factor nanosensor based on tetrahedral dna nanostructures and gold nanoparticles for detection of MiRNA-21 in live cells. Theranostics 8, 2424–2434 (2018).
Google Scholar
Zeng, D. et al. DNA tetrahedral nanostructure-based electrochemical miRNA biosensor for simultaneous detection of multiple miRNAs in pancreatic carcinoma. ACS Appl. Mater. Interfaces 9, 24118–24125 (2017).
Google Scholar
Li, Q. et al. Aptamer-modified tetrahedral DNA nanostructure for tumor-targeted drug delivery. ACS Appl. Mater. Interfaces 9, 36695–36701 (2017).
Google Scholar
Wang, L. & Arrabito, G. Hybrid, multiplexed, functional DNA nanotechnology for bioanalysis. Analyst 140, 5821–5848 (2015).
Google Scholar
Li, C. et al. A writable polypeptide-DNA hydrogel with rationally designed multi-modification sites. Small 11, 1138–1143 (2015).
Google Scholar
Estrich, N. A., Hernandez-Garcia, A., de Vries, R. & LaBean, T. H. Engineered diblock polypeptides improve DNA and gold solubility during molecular assembly. ACS Nano 11, 831–842 (2017).
Google Scholar
Nakata, E., Dinh, H., Nguyen, T. M. & Morii, T. DNA binding adaptors to assemble proteins of interest on DNA scaffold. Methods Enzymol. 617, 287–322 (2019).
Google Scholar
Chandrasekaran, A. R. Programmable DNA scaffolds for spatially-ordered protein assembly. Nanoscale 8, 4436–4446 (2016).
Google Scholar
Chandler, M. et al. Breaking and joining single-stranded DNA: the HUH endonuclease superfamily. Nat. Rev. Microbiol. 11, 525–538 (2013).
Google Scholar
Xie, X. et al. Overcoming drug-resistant lung cancer by paclitaxel loaded tetrahedral DNA nanostructures. Nanoscale 10, 5457–5465 (2018).
Google Scholar
Halley, P. D. et al. Daunorubicin-loaded DNA origami nanostructures circumvent drug-resistance mechanisms in a leukemia model. Small 12, 308–320 (2016).
Google Scholar
Kim, K. R. et al. Drug delivery by a self-assembled DNA tetrahedron for overcoming drug resistance in breast cancer cells. Chem. Commun. (Camb.) 49, 2010–2012 (2013).
Google Scholar
Liu, M. et al. Aptamer-targeted DNA nanostructures with doxorubicin to treat protein tyrosine kinase 7-positive tumours. Cell Prolif. 52, e12511 (2018).
Google Scholar
Meng, L. et al. Tetrahedral DNA nanostructure-delivered DNAzyme for gene silencing to suppress cell growth. ACS Appl. Mater. Interfaces 11, 6850–6857 (2019).
Google Scholar
Samanta, A., Banerjee, S. & Liu, Y. DNA nanotechnology for nanophotonic applications. Nanoscale 7, 2210–2220 (2015).
Google Scholar
Wang, Z. G., Song, C. & Ding, B. Functional DNA nanostructures for photonic and biomedical applications. Small 9, 2210–2222 (2013).
Google Scholar
Shen, B., Kostiainen, M. A. & Linko, V. DNA origami nanophotonics and plasmonics at interfaces. Langmuir 34, 14911–14920 (2018).
Google Scholar
Maune, H. T. et al. Self-assembly of carbon nanotubes into two-dimensional geometries using DNA origami templates. Nat. Nanotechnol. 5, 61–66 (2010).
Google Scholar
Amodio, A., Del Grosso, E., Troina, A., Placidi, E. & Ricci, F. Remote electronic control of DNA-based reactions and nanostructure assembly. Nano Lett. 18, 2918–2923 (2018).
Google Scholar
Gates, E. P., Dearden, A. M. & Woolley, A. T. DNA-templated lithography and nanofabrication for the fabrication of nanoscale electronic circuitry. Crit. Rev. Anal. Chem. 44, 354–370 (2014).
Google Scholar
Yang, Y. R., Liu, Y. & Yan, H. DNA nanostructures as programmable biomolecular scaffolds. Bioconjug. Chem. 26, 1381–1395 (2015).
Google Scholar
Jaekel, A., Stegemann, P. & Sacca, B. Manipulating enzymes properties with DNA nanostructures. Molecules 24, 3694 (2019).
Google Scholar
Winfree, E., Liu, F. R., Wenzler, L. A. & Seeman, N. C. Design and self-assembly of two-dimensional DNA crystals. Nature 394, 539–544 (1998).
Google Scholar
Yan, H., Zhang, X. P., Shen, Z. Y. & Seeman, N. C. A robust DNA mechanical device controlled by hybridization topology. Nature 415, 62–65 (2002).
Google Scholar
Chen, J. H. & Seeman, N. C. Synthesis from DNA of a molecule with the connectivity of a cube. Nature 350, 631–633 (1991).
Google Scholar
Liu, W. Y., Zhong, H., Wang, R. S. & Seeman, N. C. Crystalline two-dimensional DNA-origami arrays. Angew. Chem. Int Ed. 50, 264–267 (2011).
Google Scholar
Le, J. D. et al. DNA-templated self-assembly of metallic nanocomponent arrays on a surface. Nano Lett. 4, 2343–2347 (2004).
Google Scholar
Selmi, D. N. et al. DNA-templated protein arrays for single-molecule imaging. Nano Lett. 11, 657–660 (2011).
Google Scholar
Holthausen, J. T., Wyman, C. & Kanaar, R. Regulation of DNA strand exchange in homologous recombination. DNA Repair 9, 1264–1272 (2010).
Google Scholar
Wang, X. & Seeman, N. C. Assembly and characterization of 8-arm and 12-arm DNA branched junctions. J. Am. Chem. Soc. 129, 8169–8176 (2007).
Google Scholar
Wang, Y. L., Mueller, J. E., Kemper, B. & Seeman, N. C. Assembly and characterization of five-arm and six-arm DNA branched junctions. Biochemistry 30, 5667–5674 (1991).
Google Scholar
Kallenbach, N. R., Ma, R. I. & Seeman, N. C. An immobile nucleic-acid junction constructed from oligonucleotides. Nature 305, 829–831 (1983).
Google Scholar
Sa-Ardyen, P., Vologodskii, A. V. & Seeman, N. C. The flexibility of DNA double crossover molecules. Biophys. J. 84, 3829–3837 (2003).
Google Scholar
Fu, T. J. & Seeman, N. C. DNA double-crossover molecules. Biochemistry 32, 3211–3220 (1993).
Google Scholar
Winfree, E., Liu, F., Wenzler, L. A. & Seeman, N. C. Design and self-assembly of two-dimensional DNA crystals. Nature 394, 539–544 (1998).
Google Scholar
Yan, H., Park, S. H., Finkelstein, G., Reif, J. H. & LaBean, T. H. DNA-templated self-assembly of protein arrays and highly conductive nanowires. Science 301, 1882–1884 (2003).
Google Scholar
He, Y., Chen, Y., Liu, H., Ribbe, A. E. & Mao, C. Self-assembly of hexagonal DNA two-dimensional (2D) arrays. J. Am. Chem. Soc. 127, 12202–12203 (2005).
Google Scholar
Mathieu, F. et al. Six-helix bundles designed from DNA. Nano Lett. 5, 661–665 (2005).
Google Scholar
He, Y., Tian, Y., Ribbe, A. E. & Mao, C. Highly connected two-dimensional crystals of DNA six-point-stars. J. Am. Chem. Soc. 128, 15978–15979 (2006).
Google Scholar
Lin, C., Liu, Y., Rinker, S. & Yan, H. DNA tile based self-assembly: building complex nanoarchitectures. Chemphyschem 7, 1641–1647 (2006).
Google Scholar
Zheng, J. et al. From molecular to macroscopic via the rational design of a self-assembled 3D DNA crystal. Nature 461, 74–77 (2009).
Google Scholar
Yan, H., LaBean, T. H., Feng, L. P. & Reif, J. H. Directed nucleation assembly of DNA tile complexes for barcode-patterned lattices. Proc. Natl Acad. Sci. USA 100, 8103–8108 (2003).
Google Scholar
Shih, W. M., Quispe, J. D. & Joyce, G. F. A 1.7-kilobase single-stranded DNA that folds into a nanoscale octahedron. Nature 427, 618–621 (2004).
Google Scholar
Qian, L. et al. Analogic China map constructed by DNA. Chin. Sci. Bull. 51, 2973–2976 (2006).
Google Scholar
Andersen, E. S. et al. DNA origami design of dolphin-shaped structures with flexible tails. ACS Nano 2, 1213–1218 (2008).
Google Scholar
Han, D. R. et al. DNA origami with complex curvatures in three-dimensional space. Science 332, 342–346 (2011).
Google Scholar
Yan, H., LaBean, T. H., Feng, L. & Reif, J. H. Directed nucleation assembly of DNA tile complexes for barcode-patterned lattices. Proc. Natl Acad. Sci. USA 100, 8103–8108 (2003).
Google Scholar
Andersen, E. S. et al. Self-assembly of a nanoscale DNA box with a controllable lid. Nature 459, 73–76 (2009).
Google Scholar
Zadegan, R. M. et al. Construction of a 4 zeptoliters switchable 3D DNA box origami. ACS Nano 6, 10050–10053 (2012).
Google Scholar
Zadegan, R. M., Jepsen, M. D. E., Hildebrandt, L. L., Birkedal, V. & Kjems, J. Construction of a fuzzy and boolean logic gates based on DNA. Small 11, 1811–1817 (2015).
Google Scholar
Kuzuya, A. & Komiyama, M. Design and construction of a box-shaped 3D-DNA origami. Chem. Commun. (Camb.) 28, 4182–4184 (2009).
Google Scholar
Endo, M., Hidaka, K., Kato, T., Namba, K. & Sugiyama, H. DNA prism structures constructed by folding of multiple rectangular arms. J. Am. Chem. Soc. 131, 15570–15571 (2009).
Google Scholar
Douglas, S. M., Chou, J. J. & Shih, W. M. DNA-nanotube-induced alignment of membrane proteins for NMR structure determination. Proc. Natl Acad. Sci. USA 104, 6644–6648 (2007).
Google Scholar
Han, D. et al. DNA origami with complex curvatures in three-dimensional space. Science 332, 342–346 (2011).
Google Scholar
Pound, E., Ashton, J. R., Becerril, H. A. & Woolley, A. T. Polymerase chain reaction based scaffold preparation for the production of thin, branched DNA origami nanostructures of arbitrary sizes. Nano Lett. 9, 4302–4305 (2009).
Google Scholar
Han, D. et al. DNA gridiron nanostructures based on four-arm junctions. Science 339, 1412–1415 (2013).
Google Scholar
Zhang, F. et al. Complex wireframe DNA origami nanostructures with multi-arm junction vertices. Nat. Nanotechnol. 10, 779-+ (2015).
Google Scholar
Veneziano, R. et al. DNA NANOTECHNOLOGY Designer nanoscale DNA assemblies programmed from the top down. Science 352, 1534 (2016).
Google Scholar
Benson, E. et al. DNA rendering of polyhedral meshes at the nanoscale. Nature 523, 441–444 (2015).
Google Scholar
Benson, E. et al. Computer-aided production of scaffolded DNA nanostructures from flat sheet meshes. Angew. Chem. Int. Ed. Engl. 55, 8869–8872 (2016).
Google Scholar
Ellis-Monaghan, J. A., McDowell, A., Moffatt, I. & Pangborn, G. DNA origami and the complexity of Eulerian circuits with turning costs. Nat. Comput. 14, 491–503 (2015).
Google Scholar
Matthies, M., Agarwal, N. P. & Schmidt, T. L. Design and synthesis of triangulated DNA origami trusses. Nano Lett. 16, 2108–2113 (2016).
Google Scholar
Mallik, L. et al. Electron microscopic visualization of protein assemblies on flattened DNA origami. ACS Nano 9, 7133–7141 (2015).
Google Scholar
Wu, N. et al. Molecular threading and tunable molecular recognition on DNA origami nanostructures. J. Am. Chem. Soc. 135, 12172–12175 (2013).
Google Scholar
Douglas, S. M. et al. Self-assembly of DNA into nanoscale three-dimensional shapes (vol 459, pg 414, 2009). Nature 459, 1154–1154 (2009).
Google Scholar
Ke, Y. G. et al. Multilayer DNA origami packed on a square lattice. J. Am. Chem. Soc. 131, 15903–15908 (2009).
Google Scholar
Ke, Y. G., Voigt, N. V., Gothelf, K. V. & Shih, W. M. Multilayer DNA origami packed on hexagonal and hybrid lattices. J. Am. Chem. Soc. 134, 1770–1774 (2012).
Google Scholar
Dietz, H., Douglas, S. M. & Shih, W. M. Folding DNA into twisted and curved nanoscale shapes. Science 325, 725–730 (2009).
Google Scholar
Liedl, T., Hogberg, B., Tytell, J., Ingber, D. E. & Shih, W. M. Self-assembly of three-dimensional prestressed tensegrity structures from DNA. Nat. Nanotechnol. 5, 520–524 (2010).
Google Scholar
Ke, Y., Bellot, G., Voigt, N. V., Fradkov, E. & Shih, W. M. Two design strategies for enhancement of multilayer-DNA-origami folding: underwinding for specific intercalator rescue and staple-break positioning. Chem. Sci. 3, 2587–2597 (2012).
Google Scholar
Hong, F., Jiang, S., Wang, T., Liu, Y. & Yan, H. 3D framework DNA origami with layered crossovers. Angew. Chem. Int. Ed. Engl. 55, 12832–12835 (2016).
Google Scholar
Douglas, S. M. et al. Rapid prototyping of 3D DNA-origami shapes with caDNAno. Nucleic Acids Res. 37, 5001–5006 (2009).
Google Scholar
Catherinot, V. & Labesse, G. ViTO: tool for refinement of protein sequence-structure alignments. Bioinformatics 20, 3694–3696 (2004).
Google Scholar
Bai, X. C., Martin, T. G., Scheres, S. H. & Dietz, H. Cryo-EM structure of a 3D DNA-origami object. Proc. Natl Acad. Sci. USA 109, 20012–20017 (2012).
Google Scholar
Fischer, S. et al. Shape and interhelical spacing of dna origami nanostructures studied by small-angle x-ray scattering. Nano Lett. 16, 4282–4287 (2016).
Google Scholar
Wagenbauer, K. F., Wachauf, C. H. & Dietz, H. Quantifying quality in DNA self-assembly. Nat. Commun. 5, 3691 (2014).
Google Scholar
Brown, S. et al. An easy-to-prepare mini-scaffold for DNA origami. Nanoscale 7, 16621–16624 (2015).
Google Scholar
Nickels, P. C. et al. DNA origami structures directly assembled from intact bacteriophages. Small 10, 1765–1769 (2014).
Google Scholar
Kick, B., Praetorius, F., Dietz, H. & Weuster-Botz, D. Efficient production of single-stranded phage DNA as scaffolds for DNA origami. Nano Lett. 15, 4672–4676 (2015).
Google Scholar
Kick, B., Hensler, S., Praetorius, F., Dietz, H. & Weuster-Botz, D. Specific growth rate and multiplicity of infection affect high-cell-density fermentation with bacteriophage M13 for ssDNA production. Biotechnol. Bioeng. 114, 777–784 (2017).
Google Scholar
Said, H. et al. M1.3–a small scaffold for DNA origami. Nanoscale 5, 284–290 (2013).
Google Scholar
Martin, T. G. & Dietz, H. Magnesium-free self-assembly of multi-layer DNA objects. Nat. Commun. 3, 1103 (2012).
Google Scholar
Zhang, Z., Song, J., Besenbacher, F., Dong, M. & Gothelf, K. V. Self-assembly of DNA origami and single-stranded tile structures at room temperature. Angew. Chem. Int. Ed. Engl. 52, 9219–9223 (2013).
Google Scholar
Kopielski, A., Schneider, A., Csaki, A. & Fritzsche, W. Isothermal DNA origami folding: avoiding denaturing conditions for one-pot, hybrid-component annealing. Nanoscale 7, 2102–2106 (2015).
Google Scholar
Timm, C. & Niemeyer, C. M. Assembly and purification of enzyme-functionalized DNA origami structures. Angew. Chem. Int. Ed. Engl. 54, 6745–6750 (2015).
Google Scholar
Shaw, A., Benson, E. & Hogberg, B. Purification of functionalized DNA origami nanostructures. ACS Nano 9, 4968–4975 (2015).
Google Scholar
Stahl, E., Martin, T. G., Praetorius, F. & Dietz, H. Facile and scalable preparation of pure and dense DNA origami solutions. Angew. Chem. Int. Ed. Engl. 53, 12735–12740 (2014).
Google Scholar
Bellot, G., McClintock, M. A., Lin, C. & Shih, W. M. Recovery of intact DNA nanostructures after agarose gel-based separation. Nat. Methods 8, 192–194 (2011).
Google Scholar
Lin, C., Perrault, S. D., Kwak, M., Graf, F. & Shih, W. M. Purification of DNA-origami nanostructures by rate-zonal centrifugation. Nucleic Acids Res. 41, e40 (2013).
Google Scholar
Rajendran, A., Endo, M., Katsuda, Y., Hidaka, K. & Sugiyama, H. Photo-cross-linking-assisted thermal stability of DNA origami structures and its application for higher-temperature self-assembly. J. Am. Chem. Soc. 133, 14488–14491 (2011).
Google Scholar
Hofr, C. & Brabec, V. Thermal and thermodynamic properties of duplex DNA containing site-specific interstrand cross-link of antitumor cisplatin or its clinically ineffective trans isomer. J. Biol. Chem. 276, 9655–9661 (2001).
Google Scholar
Eskelinen, A. P., Rosilo, H., Kuzyk, A., Torma, P. & Kostiainen, M. A. Controlling the formation of DNA origami structures with external signals. Small 8, 2016–2020 (2012).
Google Scholar
Browne, W. R. & Feringa, B. L. Making molecular machines work. Nat. Nanotechnol. 1, 25–35 (2006).
Google Scholar
Li, S. L. et al. New light on the ring-chain equilibrium of a hydrogen-bonded supramolecular polymer based on a photochromic dithienylethene unit and its energy-transfer properties as a storage material. Chem.-Eur. J. 17, 10716–10723 (2011).
Google Scholar
ten Brinke, G., Ruokolainen, J. & Ikkala, O. Supramolecular materials based on hydrogen-bonded polymers. Adv. Polym. Sci. 207, 113–177 (2007).
Google Scholar
Stuart, M. A. et al. Emerging applications of stimuli-responsive polymer materials. Nat. Mater. 9, 101–113 (2010).
Google Scholar
Gallego, I., Grover, M. A. & Hud, N. V. Folding and imaging of DNA nanostructures in anhydrous and hydrated deep-eutectic solvents. Angew. Chem. Int. Ed. Engl. 54, 6765–6769 (2015).
Google Scholar
Berthiaume, F., Maguire, T. J. & Yarmush, M. L. Tissue engineering and regenerative medicine: history, progress, and challenges. Annu. Rev. Chem. Biomolecular Eng. 2, 403–430 (2011).
Google Scholar
Orlando, G. et al. Regenerative medicine and organ transplantation: past, present, and future. Transplantation 91, 1310–1317 (2011).
Google Scholar
Song, H. G., Rumma, R. T., Ozaki, C. K., Edelman, E. R. & Chen, C. S. Vascular tissue engineering: progress, challenges, and clinical promise. Cell Stem Cell 22, 340–354 (2018).
Google Scholar
Tarassoli, S. P. et al. Skin tissue engineering using 3D bioprinting: an evolving research field. J. Plast. Reconstr. Aesthet. Surg. 71, 615–623 (2018).
Google Scholar
Yu, J. R. et al. Current and future perspectives on skin tissue engineering: key features of biomedical research, translational assessment, and clinical application. Adv. Healthc. Mater. 8, e1801471 (2019).
Google Scholar
Jana, S., Levengood, S. K. & Zhang, M. Anisotropic materials for skeletal-muscle-tissue engineering. Adv. Mater. 28, 10588–10612 (2016).
Google Scholar
Hassanzadeh, P., Atyabi, F. & Dinarvand, R. Tissue engineering: Still facing a long way ahead. J. Control. Release 279, 181–197 (2018).
Google Scholar
Polacheck, W. J., Kutys, M. L., Tefft, J. B. & Chen, C. S. Microfabricated blood vessels for modeling the vascular transport barrier. Nat. Protoc. 14, 1425–1454 (2019).
Google Scholar
Wang, Y. et al. Engineering vascular tissue with functional smooth muscle cells derived from human iPS cells and nanofibrous scaffolds. Biomaterials 35, 8960–8969 (2014).
Google Scholar
Dufrane, D. Impact of age on human adipose stem cells for bone tissue engineering. Cell Transplant. 26, 1496–1504 (2017).
Google Scholar
Ho-Shui-Ling, A. et al. Bone regeneration strategies: engineered scaffolds, bioactive molecules and stem cells current stage and future perspectives. Biomaterials 180, 143–162 (2018).
Google Scholar
Kwee, B. J. & Mooney, D. J. Biomaterials for skeletal muscle tissue engineering. Curr. Opin. Biotechnol. 47, 16–22 (2017).
Google Scholar
Aamodt, J. M. & Grainger, D. W. Extracellular matrix-based biomaterial scaffolds and the host response. Biomaterials 86, 68–82 (2016).
Google Scholar
Shih, Y. V. & Varghese, S. Tissue engineered bone mimetics to study bone disorders ex vivo: role of bioinspired materials. Biomaterials 198, 107–121 (2019).
Google Scholar
Saldin, L. T., Cramer, M. C., Velankar, S. S., White, L. J. & Badylak, S. F. Extracellular matrix hydrogels from decellularized tissues: Structure and function. Acta Biomaterialia 49, 1–15 (2017).
Google Scholar
Keane, T. J., Swinehart, I. T. & Badylak, S. F. Methods of tissue decellularization used for preparation of biologic scaffolds and in vivo relevance. Methods 84, 25–34 (2015).
Google Scholar
Lancaster, M. A. et al. Guided self-organization and cortical plate formation in human brain organoids. Nat. Biotechnol. 35, 659–666 (2017).
Google Scholar
Kang, H. W. et al. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat. Biotechnol. 34, 312–319 (2016).
Google Scholar
Takebe, T., Zhang, B. & Radisic, M. Synergistic engineering: organoids meet organs-on-a-chip. Cell Stem Cell 21, 297–300 (2017).
Google Scholar
Wubneh, A., Tsekoura, E. K., Ayranci, C. & Uludag, H. Current state of fabrication technologies and materials for bone tissue engineering. Acta Biomaterialia 80, 1–30 (2018).
Google Scholar
Atasoy-Zeybek, A. & Kose, G. T. Gene therapy strategies in bone tissue engineering and current clinical applications. Adv. Exp. Med. Biol. 1119, 85–101 (2018).
Google Scholar
Langer, R. & Vacanti, J. P. Tissue engineering. Science 260, 920–926 (1993).
Google Scholar
Salvay, D. M. & Shea, L. D. Inductive tissue engineering with protein and DNA-releasing scaffolds. Mol. Biosyst. 2, 36–48 (2006).
Google Scholar
Wobus, A. M. & Boheler, K. R. Embryonic stem cells: prospects for developmental biology and cell therapy. Physiol. Rev. 85, 635–678 (2005).
Google Scholar
Guan, K., Schmidt, M. M., Ding, Q., Chang, H. & Wobus, A. M. Embryonic stem cells in vitro-prospects for cell and developmental biology, embryotoxicology and cell therapy. Altex 16, 135–141 (1999).
Google Scholar
Keller, G. Embryonic stem cell differentiation: emergence of a new era in biology and medicine. Genes Dev. 19, 1129–1155 (2005).
Google Scholar
Hersel, U., Dahmen, C. & Kessler, H. RGD modified polymers: biomaterials for stimulated cell adhesion and beyond. Biomaterials 24, 4385–4415 (2003).
Google Scholar
Arnold, M. S., Guler, M. O., Hersam, M. C. & Stupp, S. I. Encapsulation of carbon nanotubes by self-assembling peptide amphiphiles. Langmuir 21, 4705–4709 (2005).
Google Scholar
Zhang, S. et al. Self-complementary oligopeptide matrices support mammalian cell attachment. Biomaterials 16, 1385–1393 (1995).
Google Scholar
Vasita, R. & Katti, D. S. Nanofibers and their applications in tissue engineering. Int. J. Nanomed. 1, 15–30 (2006).
Google Scholar
Murphy, W. L. & Mooney, D. J. Controlled delivery of inductive proteins, plasmid DNA and cells from tissue engineering matrices. J. Periodontal Res. 34, 413–419 (1999).
Google Scholar
Jang, J. H., Bengali, Z., Houchin, T. L. & Shea, L. D. Surface adsorption of DNA to tissue engineering scaffolds for efficient gene delivery. J. Biomed. Mater. Res. Part A 77, 50–58 (2006).
Google Scholar
Zhou, M. et al. Effect of tetrahedral DNA nanostructures on proliferation and osteo/odontogenic differentiation of dental pulp stem cells via activation of the notch signaling pathway. Nanomedicine 14, 1227–1236 (2018).
Google Scholar
Gonzalez-Fernandez, T. et al. Pore-forming bioinks to enable spatio-temporally defined gene delivery in bioprinted tissues. J. Control. Release 301, 13–27 (2019).
Google Scholar
Walsh, D. P. et al. Transfection of autologous host cells in vivo using gene activated collagen scaffolds incorporating star-polypeptides. J. Control. Release 304, 191–203 (2019).
Google Scholar
Ma, W. et al. Enhanced neural regeneration with a concomitant treatment of framework nucleic acid and stem cells in spinal cord injury. ACS Appl. Mater. Interfaces 12, 2095–2106 (2020).
Google Scholar
Zhu, J. et al. Tetrahedral framework nucleic acids promote scarless healing of cutaneous wounds via the AKT-signaling pathway. Signal Transduct. Target. Ther. 5, 120 (2020).
Google Scholar
Li, W. et al. A gene-activating skin substitute comprising PLLA/POSS nanofibers and plasmid DNA encoding ANG and bFGF promotes in vivo revascularization and epidermalization. J. Mater. Chem. B 6, 6977–6992 (2018).
Google Scholar
Duman, N. et al. Topical folinic acid enhances wound healing in rat model. Adv. Med. Sci. 63, 347–352 (2018).
Google Scholar
Eke, G., Mangir, N., Hasirci, N., MacNeil, S. & Hasirci, V. Development of a UV crosslinked biodegradable hydrogel containing adipose derived stem cells to promote vascularization for skin wounds and tissue engineering. Biomaterials 129, 188–198 (2017).
Google Scholar
Milan, P. B. et al. Accelerated wound healing in a diabetic rat model using decellularized dermal matrix and human umbilical cord perivascular cells. Acta Biomaterialia 45, 234–246 (2016).
Google Scholar
Bhowmick, S., Scharnweber, D. & Koul, V. Co-cultivation of keratinocyte-human mesenchymal stem cell (hMSC) on sericin loaded electrospun nanofibrous composite scaffold (cationic gelatin/hyaluronan/chondroitin sulfate) stimulates epithelial differentiation in hMSCs: In vitro study. Biomaterials 88, 83–96 (2016).
Google Scholar
Keil, T. W. M., Baldassi, D. & Merkel, O. M. T-cell targeted pulmonary siRNA delivery for the treatment of asthma. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 12, e1634 (2020).
Google Scholar
Liang, H. et al. Topical nanoparticles interfering with the DNA-LL37 complex to alleviate psoriatic inflammation in mice and monkeys. Sci. Adv. 6, eabb5274 (2020).
Google Scholar
Mao, C. et al. The clearance effect of tetrahedral DNA nanostructures on senescent human dermal fibroblasts. ACS Appl. Mater. Interfaces 11, 1942–1950 (2019).
Google Scholar
Shao, X. R. et al. Neuroprotective effect of tetrahedral DNA nanostructures in a cell model of Alzheimer’s disease. ACS Appl. Mater. Interfaces 10, 23682–23692 (2018).
Google Scholar
Whittlesey, K. J. & Shea, L. D. Delivery systems for small molecule drugs, proteins, and DNA: the neuroscience/biomaterial interface. Exp. Neurol. 190, 1–16 (2004).
Google Scholar
Pannier, A. K. & Shea, L. D. Controlled release systems for DNA delivery. Mol. Ther. 10, 19–26 (2004).
Google Scholar
Amani, A., Kabiri, T., Shafiee, S. & Hamidi, A. Preparation and characterization of PLA-PEG-PLA/PEI/DNA nanoparticles for improvement of transfection efficiency and controlled release of DNA in gene delivery systems. Iran. J. Pharm. Res.: IJPR 18, 125–141 (2019).
Google Scholar
Gajbhiye, K. R., Chaudhari, B. P., Pokharkar, V. B., Pawar, A. & Gajbhiye, V. Stimuli-responsive biodegradable polyurethane nano-constructs as a potential triggered drug delivery vehicle for cancer therapy. Int. J. Pharm. 588, 119781 (2020).
Google Scholar
Hashemi, M., Shamshiri, A., Saeedi, M., Tayebi, L. & Yazdian-Robati, R. Aptamer-conjugated PLGA nanoparticles for delivery and imaging of cancer therapeutic drugs. Arch. Biochem. Biophys. 691, 108485 (2020).
Google Scholar
Wolski, P., Nieszporek, K. & Panczyk, A. T. Carbon nanotubes and short cytosine-rich telomeric DNA oligomeres as platforms for controlled release of doxorubicin-a molecular dynamics study. Int. J. Mol. Sci. 21, 3619 (2020).
Google Scholar
Tan, X., Jia, F., Wang, P. & Zhang, K. Nucleic acid-based drug delivery strategies. J. Control. Release 323, 240–252 (2020).
Google Scholar
Peng, Q. et al. Understanding the biomedical effects of the self-assembled tetrahedral DNA nanostructure on living cells. ACS Appl. Mater. Interfaces 8, 12733–12739 (2016).
Google Scholar
Faingold, A., Cohen, S. R., Reznikov, N. & Wagner, H. D. Osteonal lamellae elementary units: lamellar microstructure, curvature and mechanical properties. Acta Biomaterialia 9, 5956–5962 (2013).
Google Scholar
Raftery, R. M. et al. Delivering nucleic-acid based nanomedicines on biomaterial scaffolds for orthopedic tissue repair: challenges, progress and future perspectives. Adv. Mater. 28, 5447–5469 (2016).
Google Scholar
Betz, V. M. et al. Recent advances in gene-enhanced bone tissue engineering. J. Gene Med. 20, e3018 (2018).
Google Scholar
Balmayor, E. R. & Evans, C. H. RNA therapeutics for tissue engineering. Tissue Eng. Part A 25, 9–11 (2019).
Google Scholar
Shim, M. S. & Kwon, Y. J. Controlled cytoplasmic and nuclear localization of plasmid DNA and siRNA by differentially tailored polyethylenimine. J. Control. Release 133, 206–213 (2009).
Google Scholar
Khorsand, B. et al. Regeneration of bone using nanoplex delivery of FGF-2 and BMP-2 genes in diaphyseal long bone radial defects in a diabetic rabbit model. J. Control. Release 248, 53–59 (2017).
Google Scholar
Kim, T. H., Singh, R. K., Kang, M. S., Kim, J. H. & Kim, H. W. Gene delivery nanocarriers of bioactive glass with unique potential to load BMP2 plasmid DNA and to internalize into mesenchymal stem cells for osteogenesis and bone regeneration. Nanoscale 8, 8300–8311 (2016).
Google Scholar
Schlickewei, C. et al. A bioactive nano-calcium phosphate paste for in-situ transfection of BMP-7 and VEGF-A in a rabbit critical-size bone defect: results of an in vivo study. J. Mater. Sci. Mater. Med. 30, 15 (2019).
Google Scholar
Takanche, J. S. et al. Chitosan-gold nanoparticles mediated gene delivery of c-myb facilitates osseointegration of dental implants in ovariectomized rat. Artif. Cells Nanomed. Biotechnol. 46, S807–S817 (2018).
Google Scholar
Huang, M. et al. Comparison of osteogenic differentiation induced by siNoggin and pBMP-2 delivered by lipopolysaccharide-amine nanopolymersomes and underlying molecular mechanisms. Int. J. Nanomed. 14, 4229–4245 (2019).
Google Scholar
Liang, D. et al. In vitro non-viral gene delivery with nanofibrous scaffolds. Nucleic Acids Res. 33, e170 (2005).
Google Scholar
Li, Y. & Liu, C. Nanomaterial-based bone regeneration. Nanoscale 9, 4862–4874 (2017).
Google Scholar
Wang, S. J. et al. Biomimetic nanosilica-collagen scaffolds for in situ bone regeneration: toward a cell-free, one-step surgery. Adv. Mater. 31, e1904341 (2019).
Google Scholar
Li, G., Zhou, T., Lin, S., Shi, S. & Lin, Y. Nanomaterials for craniofacial and dental tissue engineering. J. Dent. Res. 96, 725–732 (2017).
Google Scholar
Mohammadi, M. et al. Micro and nanotechnologies for bone regeneration: Recent advances and emerging designs. J. Control. Release 274, 35–55 (2018).
Google Scholar
Lv, L. et al. The nanoscale geometry of TiO2 nanotubes influences the osteogenic differentiation of human adipose-derived stem cells by modulating H3K4 trimethylation. Biomaterials 39, 193–205 (2015).
Google Scholar
D’Mello, S. et al. Bone regeneration using gene-activated matrices. AAPS J. 19, 43–53 (2017).
Google Scholar
Tierney, E. G., Duffy, G. P., Hibbitts, A. J., Cryan, S. A. & O’Brien, F. J. The development of non-viral gene-activated matrices for bone regeneration using polyethyleneimine (PEI) and collagen-based scaffolds. J. Control. Release 158, 304–311 (2012).
Google Scholar
Shimer, A. L., Oner, F. C. & Vaccaro, A. R. Spinal reconstruction and bone morphogenetic proteins: open questions. Injury 40, S32–S38 (2009).
Google Scholar
Winn, S. R., Hu, Y., Sfeir, C. & Hollinger, J. O. Gene therapy approaches for modulating bone regeneration. Adv. Drug Deliv. Rev. 42, 121–138 (2000).
Google Scholar
Chan, H. L. & McCauley, L. K. Parathyroid hormone applications in the craniofacial skeleton. J. Dent. Res. 92, 18–25 (2013).
Google Scholar
Elangovan, S. et al. Chemically modified RNA activated matrices enhance bone regeneration. J. Control. Release 218, 22–28 (2015).
Google Scholar
Higashi, T. et al. Novel lipidated sorbitol-based molecular transporters for non-viral gene delivery. J. Control. Release 136, 140–147 (2009).
Google Scholar
des Rieux, A., Shikanov, A. & Shea, L. D. Fibrin hydrogels for non-viral vector delivery in vitro. J. Control. Release 136, 148–154 (2009).
Google Scholar
Lei, Y., Rahim, M., Ng, Q. & Segura, T. Hyaluronic acid and fibrin hydrogels with concentrated DNA/PEI polyplexes for local gene delivery. J. Control. Release 153, 255–261 (2011).
Google Scholar
Togashi, R. et al. A hepatic pDNA delivery system based on an intracellular environment sensitive vitamin E-scaffold lipid-like material with the aid of an anti-inflammatory drug. J. Control. Release 279, 262–270 (2018).
Google Scholar
Siegman, S., Truong, N. F. & Segura, T. Encapsulation of PEGylated low-molecular-weight PEI polyplexes in hyaluronic acid hydrogels reduces aggregation. Acta Biomaterialia 28, 45–54 (2015).
Google Scholar
Nie, H., Soh, B. W., Fu, Y. C. & Wang, C. H. Three-dimensional fibrous PLGA/HAp composite scaffold for BMP-2 delivery. Biotechnol. Bioeng. 99, 223–234 (2008).
Google Scholar
Nie, H. & Wang, C. H. Fabrication and characterization of PLGA/HAp composite scaffolds for delivery of BMP-2 plasmid DNA. J. Control. Release 120, 111–121 (2007).
Google Scholar
Fu, Y. C., Nie, H., Ho, M. L., Wang, C. K. & Wang, C. H. Optimized bone regeneration based on sustained release from three-dimensional fibrous PLGA/HAp composite scaffolds loaded with BMP-2. Biotechnol. Bioeng. 99, 996–1006 (2008).
Google Scholar
Nie, H., Ho, M. L., Wang, C. K., Wang, C. H. & Fu, Y. C. BMP-2 plasmid loaded PLGA/HAp composite scaffolds for treatment of bone defects in nude mice. Biomaterials 30, 892–901 (2009).
Google Scholar
Keeney, M. et al. Scaffold-mediated BMP-2 minicircle DNA delivery accelerated bone repair in a mouse critical-size calvarial defect model. J. Biomed. Mater. Res. Part A 104, 2099–2107 (2016).
Google Scholar
Atluri, K., Seabold, D., Hong, L., Elangovan, S. & Salem, A. K. Nanoplex-mediated codelivery of fibroblast growth factor and bone morphogenetic protein genes promotes osteogenesis in human adipocyte-derived mesenchymal stem cells. Mol. Pharm. 12, 3032–3042 (2015).
Google Scholar
Elangovan, S. et al. The enhancement of bone regeneration by gene activated matrix encoding for platelet derived growth factor. Biomaterials 35, 737–747 (2014).
Google Scholar
Qiao, C. et al. Using poly(lactic-co-glycolic acid) microspheres to encapsulate plasmid of bone morphogenetic protein 2/polyethylenimine nanoparticles to promote bone formation in vitro and in vivo. Int. J. Nanomed. 8, 2985–2995 (2013).
Qiao, C. et al. Sustained release poly (lactic-co-glycolic acid) microspheres of bone morphogenetic protein 2 plasmid/calcium phosphate to promote in vitro bone formation and in vivo ectopic osteogenesis. Am. J. Transl. Res. 7, 2561–2572 (2015).
Google Scholar
Hadjicharalambous, C., Kozlova, D., Sokolova, V., Epple, M. & Chatzinikolaidou, M. Calcium phosphate nanoparticles carrying BMP-7 plasmid DNA induce an osteogenic response in MC3T3-E1 pre-osteoblasts. J. Biomed. Mater. Res. Part A 103, 3834–3842 (2015).
Google Scholar
Bhattarai, G., Lee, Y. H., Lee, M. H. & Yi, H. K. Gene delivery of c-myb increases bone formation surrounding oral implants. J. Dent. Res. 92, 840–845 (2013).
Google Scholar
Li, D. D. et al. Characterization and cytocompatibility of thermosensitive hydrogel embedded with chitosan nanoparticles for delivery of bone morphogenetic protein-2 plasmid DNA. J. Mater. Sci. Mater. Med. 27, 134 (2016).
Google Scholar
Li, H. et al. Accelerated bony defect healing based on chitosan thermosensitive hydrogel scaffolds embedded with chitosan nanoparticles for the delivery of BMP2 plasmid DNA. J. Biomed. Mater. Res. Part A 105, 265–273 (2017).
Google Scholar
Supper, S. et al. Thermosensitive chitosan/glycerophosphate-based hydrogel and its derivatives in pharmaceutical and biomedical applications. Expert Opin. drug Deliv. 11, 249–267 (2014).
Google Scholar
Carballo-Pedrares, N., Fuentes-Boquete, I., Diaz-Prado, S. & Rey-Rico, A. hydrogel-based localized nonviral gene delivery in regenerative medicine approaches-an overview. Pharmaceutics 12, 752 (2020).
Google Scholar
Lauritano, D., Limongelli, L., Moreo, G., Favia, G. & Carinci, F. Nanomaterials for periodontal tissue engineering: chitosan-based scaffolds. a systematic review. Nanomaterials 10, 605 (2020).
Google Scholar
Wu, S. et al. Evaluation of chitosan hydrogel for sustained delivery of VEGF for odontogenic differentiation of dental pulp stem cells. Stem Cells Int. 2019, 1515040 (2019).
Google Scholar
Walsh, D. P. et al. Bioinspired star-shaped poly(L-lysine) polypeptides: efficient polymeric nanocarriers for the delivery of dna to mesenchymal stem cells. Mol. Pharm. 15, 1878–1891 (2018).
Google Scholar
Shinozaki, Y. et al. Evaluation of bone formation guided by DNA/protamine complex with FGF-2 in an adult rat calvarial defect model. J. Biomed. Mater. Res. Part B, Appl. Biomater. 102, 1669–1676 (2014).
Google Scholar
Toda, M., Ohno, J., Shinozaki, Y., Ozaki, M. & Fukushima, T. Osteogenic potential for replacing cells in rat cranial defects implanted with a DNA/protamine complex paste. Bone 67, 237–245 (2014).
Google Scholar
Charles, L. F. et al. Effects of low dose FGF-2 and BMP-2 on healing of calvarial defects in old mice. Exp. Gerontol. 64, 62–69 (2015).
Google Scholar
Shi, S. et al. Modulation of chondrocyte motility by tetrahedral DNA nanostructures. Cell Prolif. 50, e12368 (2017).
Google Scholar
Shi, S. et al. Effects of tetrahedral DNA nanostructures on autophagy in chondrocytes. Chem. Commun. (Camb.) 54, 1327–1330 (2018).
Google Scholar
Shao, X. R. et al. Effect of tetrahedral DNA nanostructures on osteogenic differentiation of mesenchymal stem cells via activation of the Wnt/beta-catenin signaling pathway. Nanomedicine 13, 1809–1819 (2017).
Google Scholar
Zhou, M. et al. Effect of tetrahedral DNA nanostructures on proliferation and osteogenic differentiation of human periodontal ligament stem cells. Cell Prolif. 52, e12566 (2019).
Google Scholar
Zhou, M. et al. The protective effect of tetrahedral framework nucleic acids on periodontium under inflammatory conditions. Bioact. Mater. 6, 1676–1688 (2021).
Google Scholar
Sirong, S. et al. Effects of tetrahedral framework nucleic acid/wogonin complexes on osteoarthritis. Bone Res. 8, 6 (2020).
Google Scholar
Wang, G. et al. Evaluation of the protective effect of a prime-boost strategy with plasmid DNA followed by recombinant adenovirus expressing BmAMA1 as vaccines against Babesia microti infection in hamster. Acta Parasitol. 63, 368–374 (2018).
Google Scholar
Burger, C. & Chu, B. Functional nanofibrous scaffolds for bone reconstruction. Colloids Surf. B Biointerfaces 56, 134–141 (2007).
Google Scholar
Gunatillake, P. A. & Adhikari, R. Biodegradable synthetic polymers for tissue engineering. Eur. Cells Mater. 5, 1–16 (2003).
Google Scholar
Wang, M. O. et al. Evaluating 3D-printed biomaterials as scaffolds for vascularized bone tissue engineering. Adv. Mater. 27, 138–144 (2015).
Google Scholar
O’Brien, F. J. Biomaterials & scaffolds for tissue engineering. Mater. Today 14, 88–95 (2011).
Google Scholar
Meinel, L. & Kaplan, D. L. Silk constructs for delivery of musculoskeletal therapeutics. Adv. Drug Deliv. Rev. 64, 1111–1122 (2012).
Google Scholar
Raftery, R. M. et al. Delivering nucleic-acid based nanomedicines on biomaterial scaffolds for orthopedic tissue repair: challenges, progress and future. Perspectives 28, 5447–5469 (2016).
Google Scholar
Chirico, G., Pallavicini, P. & Collini, M. Gold nanostars for superficial diseases: a promising tool for localized hyperthermia? Nanomedicine (Lond.) 9, 1–3 (2014).
Google Scholar
Vilella, A. et al. Endocytosis of nanomedicines: the case of glycopeptide engineered PLGA nanoparticles. Pharmaceutics 7, 74–89 (2015).
Google Scholar
Katav, T. et al. Modified pectin-based carrier for gene delivery: cellular barriers in gene delivery course. J. Control. Release 130, 183–191 (2008).
Google Scholar
Jeong, G. W. & Nah, J. W. Evaluation of disulfide bond-conjugated LMWSC-g-bPEI as non-viral vector for low cytotoxicity and efficient gene delivery. Carbohydr. Polym. 178, 322–330 (2017).
Google Scholar
Singh, J., Michel, D., Chitanda, J. M., Verrall, R. E. & Badea, I. Evaluation of cellular uptake and intracellular trafficking as determining factors of gene expression for amino acid-substituted gemini surfactant-based DNA nanoparticles. J. Nanobiotechnol. 10, 7 (2012).
Google Scholar
Zhang, B. & Mallapragada, S. The mechanism of selective transfection mediated by pentablock copolymers; part II: nuclear entry and endosomal escape. Acta Biomaterialia 7, 1580–1587 (2011).
Google Scholar
Wang, J., Dou, B. & Bao, Y. Efficient targeted pDNA/siRNA delivery with folate-low-molecular-weight polyethyleneimine-modified pullulan as non-viral carrier. Mater. Sci. Eng. C. Mater. Biol. Appl. 34, 98–109 (2014).
Google Scholar
Gu, X., Ding, F. & Williams, D. F. Neural tissue engineering options for peripheral nerve regeneration. Biomaterials 35, 6143–6156 (2014).
Google Scholar
Chooi, W. H. & Chew, S. Y. Modulation of cell-cell interactions for neural tissue engineering: Potential therapeutic applications of cell adhesion molecules in nerve regeneration. Biomaterials 197, 327–344 (2019).
Google Scholar
Madigan, N. N., McMahon, S., O’Brien, T., Yaszemski, M. J. & Windebank, A. J. Current tissue engineering and novel therapeutic approaches to axonal regeneration following spinal cord injury using polymer scaffolds. Respir. Physiol. Neurobiol. 169, 183–199 (2009).
Google Scholar
Editorial. Engineering approaches to enhance neural tissue regeneration. Exp. Neurol. 319, 112873 (2019).
Koss, K. M. & Unsworth, L. D. Neural tissue engineering: bioresponsive nanoscaffolds using engineered self-assembling peptides. Acta Biomaterialia 44, 2–15 (2016).
Google Scholar
Tang, X. et al. Bridging peripheral nerve defects with a tissue engineered nerve graft composed of an in vitro cultured nerve equivalent and a silk fibroin-based scaffold. Biomaterials 33, 3860–3867 (2012).
Google Scholar
Yang, S. et al. Self-assembling peptide hydrogels functionalized with LN- and BDNF- mimicking epitopes synergistically enhance peripheral nerve regeneration. Theranostics 10, 8227–8249 (2020).
Google Scholar
Willerth, S. M. & Sakiyama-Elbert, S. E. Approaches to neural tissue engineering using scaffolds for drug delivery. Adv. Drug Deliv. Rev. 59, 325–338 (2007).
Google Scholar
Yao, Y. et al. Efect of longitudinally oriented collagen conduit combined with nerve growth factor on nerve regeneration after dog sciatic nerve injury. J. Biomed. Mater. Res. Part B, Appl. Biomater. 106, 2131–2139 (2018).
Google Scholar
Baiguera, S. et al. Electrospun gelatin scaffolds incorporating rat decellularized brain extracellular matrix for neural tissue engineering. Biomaterials 35, 1205–1214 (2014).
Google Scholar
Liang, Y., Walczak, P. & Bulte, J. W. The survival of engrafted neural stem cells within hyaluronic acid hydrogels. Biomaterials 34, 5521–5529 (2013).
Google Scholar
Sufan, W. et al. Sciatic nerve regeneration through alginate with tubulation or nontubulation repair in cat. J. Neurotrauma 18, 329–338 (2001).
Google Scholar
Chong, E. J. et al. Evaluation of electrospun PCL/gelatin nanofibrous scaffold for wound healing and layered dermal reconstitution. Acta Biomaterialia 3, 321–330 (2007).
Google Scholar
Cui, W. et al. Neuroprotective and neurotherapeutic effects of tetrahedral framework nucleic acids on Parkinson’s disease in vitro. ACS Appl. Mater. Interfaces 11, 32787–32797 (2019).
Google Scholar
Li, J. et al. Ternary polyplex micelles with PEG shells and intermediate barrier to complexed DNA cores for efficient systemic gene delivery. J. Control. Release 209, 77–87 (2015).
Google Scholar
Feng, G. et al. Gene therapy for nucleus pulposus regeneration by heme oxygenase-1 plasmid DNA carried by mixed polyplex micelles with thermo-responsive heterogeneous coronas. Biomaterials 52, 1–13 (2015).
Google Scholar
Houchin-Ray, T., Swift, L. A., Jang, J. H. & Shea, L. D. Patterned PLG substrates for localized DNA delivery and directed neurite extension. Biomaterials 28, 2603–2611 (2007).
Google Scholar
Li, J., Zha, Z. & Ge, Z. Thermo-responsive polyplex micelles with PEG shells and PNIPAM layer to protect DNA cores for systemic gene therapy. Methods Mol. Biol. 1445, 269–276 (2016).
Google Scholar
Arkenbout, E. K. et al. Protective function of transcription factor TR3 orphan receptor in atherogenesis: decreased lesion formation in carotid artery ligation model in TR3 transgenic mice. Circulation 106, 1530–1535 (2002).
Google Scholar
Pires, N. M. et al. Activation of nuclear receptor Nur77 by 6-mercaptopurine protects against neointima formation. Circulation 115, 493–500 (2007).
Google Scholar
Fassett, M. S., Jiang, W., D’Alise, A. M., Mathis, D. & Benoist, C. Nuclear receptor Nr4a1 modulates both regulatory T-cell (Treg) differentiation and clonal deletion. Proc. Natl Acad. Sci. USA 109, 3891–3896 (2012).
Google Scholar
Hanna, R. N. et al. The transcription factor NR4A1 (Nur77) controls bone marrow differentiation and the survival of Ly6C- monocytes. Nat. Immunol. 12, 778–785 (2011).
Google Scholar
Maxwell, M. A. et al. Nur77 regulates lipolysis in skeletal muscle cells. Evidence for cross-talk between the beta-adrenergic and an orphan nuclear hormone receptor pathway. J. Biol. Chem. 280, 12573–12584 (2005).
Google Scholar
Myers, S. A., Eriksson, N., Burow, R., Wang, S. C. & Muscat, G. E. Beta-adrenergic signaling regulates NR4A nuclear receptor and metabolic gene expression in multiple tissues. Mol. Cell. Endocrinol. 309, 101–108 (2009).
Google Scholar
Pei, L. et al. NR4A orphan nuclear receptors are transcriptional regulators of hepatic glucose metabolism. Nat. Med. 12, 1048–1055 (2006).
Google Scholar
Taniguchi, J. et al. A synthetic DNA-binding inhibitor of SOX2 guides human induced pluripotent stem cells to differentiate into mesoderm. Nucleic Acids Res. 45, 9219–9228 (2017).
Google Scholar
Wang, L. et al. Imaging of Neurite Network with an Anti-L1CAM Aptamer Generated by Neurite-SELEX. J. Am. Chem. Soc. 140, 18066–18073 (2018).
Google Scholar
Shah, B., Yin, P. T., Ghoshal, S. & Lee, K. B. Multimodal magnetic core-shell nanoparticles for effective stem-cell differentiation and imaging. Angew. Chem. Int. Ed. Engl. 52, 6190–6195 (2013).
Google Scholar
Shan, J. & Tenhu, H. Recent advances in polymer protected gold nanoparticles: synthesis, properties and applications. Chem. Commun. (Camb.) 28, 4580–4598 (2007).
Google Scholar
Ghosh Chaudhuri, R. & Paria, S. Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chem. Rev. 112, 2373–2433 (2012).
Google Scholar
Balasubramanian, B. et al. Synthesis of monodisperse TiO2-paraffin core-shell nanoparticles for improved dielectric properties. ACS Nano 4, 1893–1900 (2010).
Google Scholar
Zhang, H., Lee, M. Y., Hogg, M. G., Dordick, J. S. & Sharfstein, S. T. Gene delivery in three-dimensional cell cultures by superparamagnetic nanoparticles. ACS Nano 4, 4733–4743 (2010).
Google Scholar
Shao, X. et al. Treatment of Alzheimer’s disease with framework nucleic acids. Cell Prolif. 53, e12787 (2020).
Google Scholar
Wackerhage, H., Del, Re,D. P., Judson, R. N., Sudol, M. & Sadoshima, J. The Hippo signal transduction network in skeletal and cardiac muscle. Sci. Signal. 7, re4 (2014).
Google Scholar
Lin, K. C. et al. Regulation of Hippo pathway transcription factor TEAD by p38 MAPK-induced cytoplasmic translocation. Nat. Cell Biol. 19, 996–1002 (2017).
Google Scholar
Xin, M., Olson, E. N. & Bassel-Duby, R. Mending broken hearts: cardiac development as a basis for adult heart regeneration and repair. Nat. Rev. Mol. Cell Biol. 14, 529–541 (2013).
Google Scholar
Addis, R. C. & Epstein, J. A. Induced regeneration–the progress and promise of direct reprogramming for heart repair. Nat. Med. 19, 829–836 (2013).
Google Scholar
Qian, L. et al. In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes. Nature 485, 593–598 (2012).
Google Scholar
Collins, C. A. et al. Stem cell function, self-renewal, and behavioral heterogeneity of cells from the adult muscle satellite cell niche. Cell 122, 289–301 (2005).
Google Scholar
Dumont, N. A., Wang, Y. X. & Rudnicki, M. A. Intrinsic and extrinsic mechanisms regulating satellite cell function. Development 142, 1572–1581 (2015).
Google Scholar
Day, K., Shefer, G., Richardson, J. B., Enikolopov, G. & Yablonka-Reuveni, Z. Nestin-GFP reporter expression defines the quiescent state of skeletal muscle satellite cells. Dev. Biol. 304, 246–259 (2007).
Google Scholar
Kim, J. H. et al. Neural cell integration into 3D bioprinted skeletal muscle constructs accelerates restoration of muscle function. Nat. Commun. 11, 1025 (2020).
Google Scholar
Qazi, T. H., Mooney, D. J., Pumberger, M., Geissler, S. & Duda, G. N. Biomaterials based strategies for skeletal muscle tissue engineering: existing technologies and future trends. Biomaterials 53, 502–521 (2015).
Google Scholar
Del Carmen Ortuno-Costela, M., Garcia-Lopez, M., Cerrada, V. & Gallardo, M. E. iPSCs: a powerful tool for skeletal muscle tissue engineering. J. Cell. Mol. Med. 23, 3784–3794 (2019).
Google Scholar
Singh, V. K., Kumar, N., Kalsan, M., Saini, A. & Chandra, R. Mechanism of induction: induced pluripotent stem cells (iPSCs). J. Stem Cells 10, 43–62 (2015).
Google Scholar
Gorecka, A. et al. Autologous transplantation of adipose-derived stem cells improves functional recovery of skeletal muscle without direct participation in new myofiber formation. Stem Cell Res. Ther. 9, 195 (2018).
Google Scholar
Beldjilali-Labro, M. et al. Biomaterials in tendon and skeletal muscle tissue engineering: current trends and challenges. Materials 11, 4580–98 (2018).
Google Scholar
Blumenfeld, C. M. et al. Drug capture materials based on genomic DNA-functionalized magnetic nanoparticles. Nat. Commun. 9, 2870 (2018).
Google Scholar
Ueki, R. et al. A chemically unmodified agonistic DNA with growth factor functionality for in vivo therapeutic application. Sci. Adv. 6, eaay2801 (2020).
Google Scholar
Zhang, M. et al. Cardioprotection of tetrahedral DNA nanostructures in myocardial ischemia-reperfusion injury. ACS Appl. Mater. interfaces 11, 30631–30639 (2019).
Google Scholar
Zhang, X. et al. The Nrf-2/HO-1 signaling axis: a ray of hope in cardiovascular diseases. Cardiol. Res. Pract. 2020, 5695723 (2020).
Google Scholar
Shen, Y., Liu, X., Shi, J. & Wu, X. Involvement of Nrf2 in myocardial ischemia and reperfusion injury. Int. J. Biol. Macromol. 125, 496–502 (2019).
Google Scholar
Seifert, A. W. et al. Skin shedding and tissue regeneration in African spiny mice (Acomys). Nature 489, 561–565 (2012).
Google Scholar
Metcalfe, A. D. & Ferguson, M. W. Tissue engineering of replacement skin: the crossroads of biomaterials, wound healing, embryonic development, stem cells and regeneration. J. R. Soc. Interface 4, 413–437 (2007).
Google Scholar
Fuchs, E. Epithelial skin biology: three decades of developmental biology, a hundred questions answered and a thousand new ones to address. Curr. Top. Dev. Biol. 116, 357–374 (2016).
Google Scholar
Roger, M. et al. Bioengineering the microanatomy of human skin. J. Anat. 234, 438–455 (2019).
Google Scholar
Driskell, R. R. et al. Distinct fibroblast lineages determine dermal architecture in skin development and repair. Nature 504, 277–281 (2013).
Google Scholar
Kim, B. S., Gao, G., Kim, J. Y. & Cho, D. W. 3D cell printing of perfusable vascularized human skin equivalent composed of epidermis, dermis, and hypodermis for better structural recapitulation of native skin. Adv. Healthc. Mater. 8, e1801019 (2019).
Google Scholar
Jiang, Y. & Lu, S. Three-dimensional insights into dermal tissue as a cue for cellular behavior. Burns 40, 191–199 (2014).
Google Scholar
Hurtley, S., Hines, P. J., Mueller, K. L., & Culotta, E. Skin. From bench to bedside. Introduction. Science 346, 932–933 (2014).
Google Scholar
Khavkin, J. & Ellis, D. A. Aging skin: histology, physiology, and pathology. Facial Plast. Surg. Clin. North Am. 19, 229–234 (2011).
Google Scholar
Parna, E., Aluoja, A. & Kingo, K. Quality of life and emotional state in chronic skin disease. Acta Derm. Venereol. 95, 312–316 (2015).
Google Scholar
Mendes, A. L., Miot, H. A. & Haddad, V. J. Diabetes mellitus and the skin. Bras. Dermatol. 92, 8–20 (2017).
Google Scholar
Robinson, K. P. & Chan, J. J. Colchicine in dermatology: a review. Australas. J. Dermatol. 59, 278–285 (2018).
Google Scholar
Morton, L. M. & Phillips, T. J. Wound healing and treating wounds: differential diagnosis and evaluation of chronic wounds. J. Am. Acad. Dermatol. 74, 589–605 (2016). quiz 605-586.
Google Scholar
Tottoli, E. M. et al. Skin wound healing process and new emerging technologies for skin wound care and regeneration. Pharmaceutics 12, 735 (2020).
Google Scholar
Chouhan, D., Dey, N., Bhardwaj, N. & Mandal, B. B. Emerging and innovative approaches for wound healing and skin regeneration: current status and advances. Biomaterials 216, 119267 (2019).
Google Scholar
Wang, C. et al. Engineering bioactive self-healing antibacterial exosomes hydrogel for promoting chronic diabetic wound healing and complete skin regeneration. Theranostics 9, 65–76 (2019).
Google Scholar
Chouhan, D. & Mandal, B. B. Silk biomaterials in wound healing and skin regeneration therapeutics: from bench to bedside. Acta Biomaterialia 103, 24–51 (2020).
Google Scholar
Sapru, S., Das, S., Mandal, M., Ghosh, A. K. & Kundu, S. C. Prospects of nonmulberry silk protein sericin-based nanofibrous matrices for wound healing-In vitro and in vivo investigations. Acta Biomaterialia 78, 137–150 (2018).
Google Scholar
Chouhan, D. et al. Recombinant spider silk functionalized silkworm silk matrices as potential bioactive wound dressings and skin grafts. ACS Appl. Mater. Interfaces 10, 23560–23572 (2018).
Google Scholar
Guo, R., Xu, S., Ma, L., Huang, A. & Gao, C. The healing of full-thickness burns treated by using plasmid DNA encoding VEGF-165 activated collagen-chitosan dermal equivalents. Biomaterials 32, 1019–1031 (2011).
Google Scholar
Guo, R., Xu, S., Ma, L., Huang, A. & Gao, C. Enhanced angiogenesis of gene-activated dermal equivalent for treatment of full thickness incisional wounds in a porcine model. Biomaterials 31, 7308–7320 (2010).
Google Scholar
Yang, Y. et al. Electrospun fibers with plasmid bFGF polyplex loadings promote skin wound healing in diabetic rats. Mol. Pharm. 9, 48–58 (2012).
Google Scholar
Lou, D., Luo, Y., Pang, Q., Tan, W. Q. & Ma, L. Gene-activated dermal equivalents to accelerate healing of diabetic chronic wounds by regulating inflammation and promoting angiogenesis. Bioact. Mater. 5, 667–679 (2020).
Google Scholar
Bao, P. et al. The role of vascular endothelial growth factor in wound healing. J. Surg. Res. 153, 347–358 (2009).
Google Scholar
Wang, P. et al. In situ formed anti-inflammatory hydrogel loading plasmid DNA encoding VEGF for burn wound healing. Acta Biomaterialia 100, 191–201 (2019).
Google Scholar
Yang, Y. et al. Promotion of skin regeneration in diabetic rats by electrospun core-sheath fibers loaded with basic fibroblast growth factor. Biomaterials 32, 4243–4254 (2011).
Google Scholar
He, S. et al. Multiple release of polyplexes of plasmids VEGF and bFGF from electrospun fibrous scaffolds towards regeneration of mature blood vessels. Acta Biomaterialia 8, 2659–2669 (2012).
Google Scholar
Losi, P. et al. Fibrin-based scaffold incorporating VEGF- and bFGF-loaded nanoparticles stimulates wound healing in diabetic mice. Acta Biomaterialia 9, 7814–7821 (2013).
Google Scholar
Mo, Y. et al. Controlled dual delivery of angiogenin and curcumin by electrospun nanofibers for skin regeneration. Tissue Eng. Part A 23, 597–608 (2017).
Google Scholar
Szczesny, G. et al. Bacteriology of callus of closed fractures of tibia and femur. J. Trauma 65, 837–842 (2008).
Google Scholar
Wiraja, C. et al. Framework nucleic acids as programmable carrier for transdermal drug delivery. Nat. Commun. 10, 1147 (2019).
Google Scholar
Son, J. et al. DNA aptamer immobilized hydroxyapatite for enhancing angiogenesis and bone regeneration. Acta Biomaterialia 99, 469–478 (2019).
Google Scholar
Mao, Z. et al. Enhanced angiogenesis of porous collagen scaffolds by incorporation of TMC/DNA complexes encoding vascular endothelial growth factor. Acta Biomaterialia 5, 2983–2994 (2009).
Google Scholar
Nillesen, S. T. et al. Increased angiogenesis and blood vessel maturation in acellular collagen-heparin scaffolds containing both FGF2 and VEGF. Biomaterials 28, 1123–1131 (2007).
Google Scholar
Nillesen, S. T. et al. Increased angiogenesis in acellular scaffolds by combined release of FGF2 and VEGF. J. Control. Release 116, e88–e90 (2006).
Google Scholar
Qin, X. et al. Tetrahedral framework nucleic acids prevent retina ischemia-reperfusion injury from oxidative stress via activating the Akt/Nrf2 pathway. Nanoscale 11, 20667–20675 (2019).
Google Scholar
Zhao, D. et al. Tetrahedral DNA nanostructure promotes endothelial cell proliferation, migration, and angiogenesis via Notch signaling pathway. ACS Appl. Mater. Interfaces 10, 37911–37918 (2018).
Google Scholar
Zhao, D. et al. Tetrahedral framework nucleic acid promotes the treatment of bisphosphonate-related osteonecrosis of the jaws by promoting angiogenesis and M2 polarization. ACS Appl. Mater. interfaces 12, 44508–44522 (2020).
Google Scholar
Cui, W. et al. Preventive effect of tetrahedral framework nucleic acids on bisphosphonate-related osteonecrosis of the jaw. Nanoscale 12, 17196–17202 (2020).
Google Scholar
Willem de Vries, J. et al. DNA nanoparticles for ophthalmic drug delivery. Biomaterials 157, 98–106 (2018).
Google Scholar
Rodier, J. T. et al. Linear polyethylenimine-DNA nanoconstruct for corneal gene delivery. J. Ocul. Pharmacol. Ther. 35, 23–31 (2019).
Google Scholar
Trigueros, S., Domenech, E. B., Toulis, V. & Marfany, G. In vitro gene delivery in retinal pigment epithelium cells by plasmid dna-wrapped gold nanoparticles. Genes 10, 289 (2019).
Google Scholar
Gao, S. et al. Tetrahedral framework nucleic acids induce immune tolerance and prevent the onset of type 1 diabetes. Nano Lett. 21, 4437–4446 (2021).
Google Scholar
Xia, K. et al. Systematic study in mammalian cells showing no adverse response to tetrahedral DNA nanostructure. ACS Appl. Mater. Interfaces 10, 15442–15448 (2018).
Google Scholar
Pei, H., Zuo, X., Zhu, D., Huang, Q. & Fan, C. Functional DNA nanostructures for theranostic applications. Acc. Chem. Res. 47, 550–559 (2014).
Google Scholar
Liang, L. et al. Single-particle tracking and modulation of cell entry pathways of a tetrahedral DNA nanostructure in live cells. Angew. Chem. Int. Ed. Engl. 53, 7745–7750 (2014).
Google Scholar
Yang, D., Tan, Z., Mi, Y. & Wei, B. DNA nanostructures constructed with multi-stranded motifs. Nucleic Acids Res. 45, 3606–3611 (2017).
Google Scholar
Bagalkot, V., Farokhzad, O. C., Langer, R. & Jon, S. An aptamer-doxorubicin physical conjugate as a novel targeted drug-delivery platform. Angew. Chem. Int. Ed. Engl. 45, 8149–8152 (2006).
Google Scholar
Erben, C. M., Goodman, R. P. & Turberfield, A. J. Single-molecule protein encapsulation in a rigid DNA cage. Angew. Chem. Int. Ed. 45, 7414–7417 (2006).
Google Scholar
Chou, L. Y., Zagorovsky, K. & Chan, W. C. DNA assembly of nanoparticle superstructures for controlled biological delivery and elimination. Nat. Nanotechnol. 9, 148–155 (2014).
Google Scholar
He, Y. et al. Hierarchical self-assembly of DNA into symmetric supramolecular polyhedra. Nature 452, 198–201 (2008).
Google Scholar
Iinuma, R. et al. Polyhedra self-assembled from DNA tripods and characterized with 3D DNA-paint. Science 344, 65–69 (2014).
Google Scholar
Peng, R. et al. Facile assembly/disassembly of DNA nanostructures anchored on cell-mimicking giant vesicles. J. Am. Chem. Soc. 139, 12410–12413 (2017).
Google Scholar
Liu, X., Yan, H., Liu, Y. & Chang, Y. Targeted cell-cell interactions by DNA nanoscaffold-templated multivalent bispecific aptamers. Small 7, 1673–1682 (2011).
Google Scholar
Shi, P. et al. In situ synthesis of an aptamer-based polyvalent antibody mimic on the cell surface for enhanced interactions between immune and cancer cells. Angew. Chem. Int. Ed. Engl. 59, 11892–11897 (2020).
Google Scholar
Yong-Xing, Z. et al. DNA origami delivery system for cancer therapy with tunable release properties. ACS Nano 6, 8684–8691 (2012).
Google Scholar
Qian, Z. et al. DNA origami as an in vivo drug delivery vehicle for cancer therapy. ACS Nano 8, 6633–6643 (2014).
Google Scholar
Zhang, G., Zhang, Z. & Yang., J. DNA tetrahedron delivery enhances doxorubicin-induced apoptosis of HT-29 colon cancer cells. Nanoscale Res. Lett. 12, 495 (2017).
Google Scholar
Li, S. et al. A DNA nanorobot functions as a cancer therapeutic in response to a molecular trigger in vivo. Nat. Biotechnol. 36, 258–264 (2018).
Google Scholar
Vindigni, G. et al. Receptor-mediated entry of pristine octahedral DNA nanocages in mammalian cells. ACS Nano 10, 5971–5979 (2016).
Google Scholar
Chang, M., Yang, C.-S. & Huang., D.-M. Aptamer-conjugated DNA icosahedral nanoparticles as a carrier of doxorubicin for cancer therapy. ACS Nano 5, 6156–6163 (2011).
Google Scholar
Taghdisi, S. M. et al. Double targeting and aptamer-assisted controlled release delivery of epirubicin to cancer cells by aptamers-based dendrimer in vitro and in vivo. Eur. J. Pharm. Biopharm. 102, 152–158 (2016).
Google Scholar
Lee, H. et al. Molecularly self-assembled nucleic acid nanoparticles for targeted in vivo siRNA delivery. Nat. Nanotechnol. 7, 389–393 (2012).
Google Scholar
Liu, X. et al. A DNA nanostructure platform for directed assembly of synthetic vaccines. Nano Lett. 12, 4254–4259 (2012).
Google Scholar
Yang, J. et al. Self-assembled double-bundle DNA tetrahedron for efficient antisense delivery. ACS Appl Mater. Interfaces 10, 23693–23699 (2018).
Google Scholar
Kim, K.-R. et al. Sentinel lymph node imaging by a fluorescently labeled DNA tetrahedron. Biomaterials 34, 5226–5235 (2013).
Google Scholar
Goodman, R. P., Berry, R. M. & Turberfield, A. J. The single-step synthesis of a DNA tetrahedron. Chem. Commun. (Camb) 21, 1372–1373 (2004).
Google Scholar
Li, Z. et al. A replicable tetrahedral nanostructure self-assembled from a single DNA strand. J. Am. Chem. Soc. 131, 13093–13098 (2009).
Google Scholar
Zhang, Y. et al. DNA-affibody nanoparticles for inhibiting breast cancer cells overexpressing HER2. Chem. Commun. (Camb.) 53, 573–576 (2017).
Google Scholar
Sun, P. et al. SL2B aptamer and folic acid dual-targeting DNA nanostructures for synergic biological effect with chemotherapy to combat colorectal cancer. Int. J. Nanomed. 12, 2657–2672 (2017).
Google Scholar
Ma, W. et al. An intelligent DNA nanorobot with in vitro enhanced protein lysosomal degradation of HER2. Nano Lett. 19, 4505–4517 (2019).
Google Scholar
Loibl, S. & Gianni, L. HER2-positive breast cancer. Lancet 389, 2415–2429 (2017).
Google Scholar
Hyojin Lee, D. et al. Enhanced human epidermal growth factor receptor 2 degradation in breast cancer cells by lysosome-targeting gold nanoconstructs. ACS Nano 9, 9859–9867 (2015).
Google Scholar
Mahlknecht, G. et al. Aptamer to ErbB-2/HER2 enhances degradation of the target and inhibits tumorigenic growth. Proc. Natl Acad. Sci. USA 110, 8170–8175 (2013).
Google Scholar
Bates, P. J., Laber, D. A., Miller, D. M., Thomas, S. D. & Trent, J. O. Discovery and development of the G-rich oligonucleotide AS1411 as a novel treatment for cancer. Exp. Mol. Pathol. 86, 151–164 (2009).
Google Scholar
Reyes-Reyes, E. M., Salipur, F. R., Shams, M., Forsthoefel, M. K. & Bates, P. J. Mechanistic studies of anticancer aptamer AS1411 reveal a novel role for nucleolin in regulating Rac1 activation. Mol. Oncol. 9, 1392–1405 (2015).
Google Scholar
Charoenphol, P. & Bermudez, H. Aptamer-targeted DNA nanostructures for therapeutic delivery. Mol. Pharm. 11, 1721–1725 (2014).
Google Scholar
Xia, Z. et al. Tumor-penetrating peptide-modified DNA tetrahedron for targeting drug delivery. Biochemistry 55, 1326–1331 (2016).
Google Scholar
Setyawati, M. I., Kutty, R. V. & Leong, D. T. DNA nanostructures carrying stoichiometrically definable antibodies. Small 12, 5601–5611 (2016).
Google Scholar
Miao, P., Wang, B., Chen, X., Li, X. & Tang, Y. Tetrahedral DNA nanostructure-based microRNA biosensor coupled with catalytic recycling of the analyte. ACS Appl Mater. Interfaces 7, 6238–6243 (2015).
Google Scholar
Liu, X., Wu, L., Wang, L. & Jiang, W. A dual-targeting DNA tetrahedron nanocarrier for breast cancer cell imaging and drug delivery. Talanta 179, 356–363 (2018).
Google Scholar
Fu, W. et al. Enhanced efficacy of temozolomide loaded by a tetrahedral framework DNA nanoparticle in the therapy for glioblastoma. ACS Appl Mater. Interfaces 11, 39525–39533 (2019).
Google Scholar
Chen, C. H. et al. Aptamer-based endocytosis of a lysosomal enzyme. Proc. Natl Acad. Sci. USA 105, 15908–15913 (2008).
Google Scholar
Tian, Y., Huang, Y., Gao, P. & Chen, T. Nucleus-targeted DNA tetrahedron as a nanocarrier of metal complexes for enhanced glioma therapy. Chem. Commun. (Camb.) 54, 9394–9397 (2018).
Google Scholar
Bugaj, A. M. Targeted photodynamic therapy–a promising strategy of tumor treatment. Photochem Photobio. Sci. 10, 1097–1109 (2011).
Google Scholar
Kim, K.-R., Bangb, D. & Ahn., D.-R. Nano-formulation of a photosensitizer using a DNA tetrahedron and its potential for in vivo photodynamic therapy. Biomater. Sci. 4, 605–609 (2016).
Google Scholar
Zhuang, X. et al. A photosensitizer-loaded DNA origami nanosystem for photodynamic therapy. ACS Nano 10, 3486–3495 (2016).
Google Scholar
Bujold, K. E., Hsu, J. C. C. & Sleiman, H. F. Optimized DNA “nanosuitcases” for encapsulation and conditional release of siRNA. J. Am. Chem. Soc. 138, 14030–14038 (2016).
Google Scholar
Ren, K. et al. A DNA dual lock-and-key strategy for cell-subtype-specific siRNA delivery. Nat. Commun. 7, 13580 (2016).
Google Scholar
Zhang, Q. et al. Anti-inflammatory and antioxidative effects of tetrahedral dna nanostructures via the modulation of macrophage responses. ACS Appl. Mater. interfaces 10, 3421–3430 (2018).
Google Scholar
Zhang, Y. et al. Inhibiting methicillin-resistant Staphylococcus aureus by tetrahedral DNA nanostructure-enabled antisense peptide nucleic acid delivery. Nano Lett. 18, 5652–5659 (2018).
Google Scholar
Zhang, Y. et al. Multi-targeted antisense oligonucleotide delivery by a framework nucleic acid for inhibiting biofilm formation and virulence. Nano-Micro Lett 12, 74 (2020).
Google Scholar
Gerling, T., Wagenbauer, K. F., Neuner, A. M. & Dietz, H. Dynamic DNA devices and assemblies formed by shape-complementary, non-base pairing 3D components. Science 347, 1446–1452 (2015).
Google Scholar
Wu, C. et al. Building a multifunctional aptamer-based DNA nanoassembly for targeted cancer therapy. J. Am. Chem. Soc. 135, 18644–18650 (2013).
Google Scholar
Zhu, G. et al. Self-assembled, aptamer-tethered DNA nanotrains for targeted transport of molecular drugs in cancer theranostics. Proc. Natl Acad. Sci. USA 110, 7998–8003 (2013).
Google Scholar
Lv, Y. et al. Preparation and biomedical applications of programmable and multifunctional DNA nanoflowers. Nat. Protoc. 10, 1508–1524 (2015).
Google Scholar
Da, H. et al. Engineering a cell-surface aptamer circuit for targeted and amplified photodynamic cancer therapy. ACS Nano 7, 2312–2319 (2013).
Google Scholar
Li, W. et al. Self-assembled DNA nanocentipede as multivalent drug carrier for targeted delivery. ACS Appl. Mater. Interfaces 8, 25733–25740 (2016).
Google Scholar
Zadegan, R. M. et al. Construction of a 4 zeptoliters switchable 3D DNA box origami. ACS Nano 6, 10050–10053 (2012).
Google Scholar
Douglas, S. M., Bachelet, I. & Church., G. M. A logic-gated nanorobot for targeted transport of molecular payloads. Science 335, 831–834 (2012).
Google Scholar
Wang, Y., Jiang, L. P., Zhou, S., Bi, S. & Zhu, J. J. DNA polymerase-directed hairpin assembly for targeted drug delivery and amplified biosensing. ACS Appl Mater. Interfaces 8, 26532–26540 (2016).
Google Scholar
Bi, S., Xiu, B., Ye, J. & Dong, Y. Target-catalyzed DNA four-way junctions for cret imaging of microrna, concatenated logic operations, and self-assembly of DNA nanohydrogels for targeted drug delivery. ACS Appl Mater. Interfaces 7, 23310–23319 (2015).
Google Scholar
Li, J. et al. Self-assembly of DNA nanohydrogels with controllable size and stimuli-responsive property for targeted gene regulation therapy. J. Am. Chem. Soc. 137, 1412–1415 (2015).
Google Scholar
Daljit Singh, J. K., Luu, M. T., Abbas, A. & Wickham, S. F. J. Switchable DNA-origami nanostructures that respond to their environment and their applications. Biophys. Rev. 10, 1283–1293 (2018).
Google Scholar
Endo, M. & Sugiyama, H. DNA origami nanomachines. Molecules 23, 1766 (2018).
Google Scholar
Kuzuya, A., Sakai, Y., Yamazaki, T., Xu, Y. & Komiyama, M. Nanomechanical DNA origami ‘single-molecule beacons’ directly imaged by atomic force microscopy. Nat. Commun. 2, 449 (2011).
Google Scholar
Bernard, Y. et al. A DNA-fuelled molecular machine made of DNA. nature 406, 605–608 (2000).
Google Scholar
Kuzuya, A. et al. Nanomechanical DNA Origami pH. Sens. Sens. 14, 19329–19335 (2014).
Google Scholar
Zadegan, R. M., Jepsen, M. D., Hildebrandt, L. L., Birkedal, V. & Kjems, J. Construction of a fuzzy and Boolean logic gates based on DNA. Small 11, 1811–1817 (2015).
Google Scholar
Amir, Y. et al. Universal computing by DNA origami robots in a living animal. Nat. Nanotechnol. 9, 353–357 (2014).
Google Scholar
Bao-an, C. et al. Reversal of multidrug resistance by magnetic Fe3O4 nanoparticle copolymerizating daunorubicin and MDr1 shrNA expression vector in leukemia cells. Int. J. Nanomed. 5, 437–444 (2010).
Mariagrazia, M. et al. P-glycoprotein (PGP), lung resistance-related protein (LRP) and multidrug resistance-associated protein (MRP) expression in acute promyelocytic leukaemia. Br. J. Haematol. 108, 703–709 (2000).
Google Scholar
Morris, S. A., Farrell, D. & Grodzinski, P. Nanotechnologies in cancer treatment and diagnosis. J. Natl Compr. Cancer Netw. 12, 1727–1733 (2014).
Google Scholar
Qiao, J. et al. DNA origami as a carrier for circumvention of drug resistance. J. Am. Chem. Soc. 134, 13396–13403 (2012).
Google Scholar
Liu, J. et al. Multifunctional aptamer-based nanoparticles for targeted drug delivery to circumvent cancer resistance. Biomaterials 91, 44–56 (2016).
Google Scholar
Mei, L. et al. Self-assembled multifunctional DNA nanoflowers for the circumvention of multidrug resistance in targeted anticancer drug delivery. Nano Res. 8, 3447–3460 (2015).
Google Scholar
Fu, J. et al. DNA-scaffolded proximity assembly and confinement of multienzyme reactions. Top. Curr. Chem. (Cham) 378, 38 (2020).
Google Scholar
Hiroaki, H. et al. A Toll-like receptor recognizes bacterial DNA. Nature 408, 740–745 (2000).
Google Scholar
Arthur, M. K. et al. CpG motifs in bacterial DNA trigger direct B-cell activation. Nature 374, 546–549 (1995).
Google Scholar
Gupta, G. K. & Agrawal, D. K. CpG oligodeoxynucleotides as TLR9 agonists therapeutic application in allergy and asthma. Biodrugs 24, 225–235 (2010).
Google Scholar
Vollmer, J. & Krieg, A. M. Immunotherapeutic applications of CpG oligodeoxynucleotide TLR9 agonists. Adv. Drug Deliv. Rev. 61, 195–204 (2009).
Google Scholar
Schu ̈ ller, V. J. et al. Cellular immunostimulation by CpG-sequence-coated DNA origami structures. ACS Nano 5, 9696–9702 (2011).
Google Scholar
Sellner, S. et al. DNA nanotubes as intracellular delivery vehicles in vivo. Biomaterials 53, 453–463 (2015).
Google Scholar
Rattanakiat, S., Nishikawa, M., Funabashi, H., Luo, D. & Takakura, Y. The assembly of a short linear natural cytosine-phosphate-guanine DNA into dendritic structures and its effect on immunostimulatory activity. Biomaterials 30, 5701–5706 (2009).
Google Scholar
Mohri, K. et al. Self-assembling DNA dendrimer for effective delivery of immunostimulatory CpG DNA to immune cells. Biomacromolecules 16, 1095–1101 (2015).
Google Scholar
Jiang, L. I. et al. Self-assembled multivalent DNA nanostructures for noninvasive intracellular delivery of immunostimulatory CpG oligonucleotides. ACS Nano 5, 8783–8789 (2011).
Google Scholar
Ouyang, X. et al. Rolling circle amplification-based DNA origami nanostructrures for intracellular delivery of immunostimulatory drugs. Small 9, 3082–3087 (2013).
Google Scholar
de Vries, J. W., Zhang, F. & Herrmann, A. Drug delivery systems based on nucleic acid nanostructures. J. Control Release 172, 467–483 (2013).
Google Scholar
Nishikawa, M., Matono, M., Rattanakiat, S., Matsuoka, N. & Takakura, Y. Enhanced immunostimulatory activity of oligodeoxynucleotides by Y-shape formation. Immunology 124, 247–255 (2008).
Google Scholar
Kohta, M. et al. Design and development of nanosized DNA assemblies in polypod-like structures as efficient vehicles for immunostimulatory CpG motifs to immune cells. ACS Nano 6, 5931–5940 (2012).
Google Scholar
Hu, J., Liu, M. H. & Zhang, C. Y. Construction of tetrahedral DNA-quantum dot nanostructure with the integration of multistep forster resonance energy transfer for multiplex enzymes assay. ACS Nano 13, 7191–7201 (2019).
Google Scholar
Ma, F., Zhang, Q. & Zhang, C. Y. Catalytic self-assembly of quantum-dot-based MicroRNA nanosensor directed by toehold-mediated strand displacement cascade. Nano Lett. 19, 6370–6376 (2019).
Google Scholar
Shiu, S. C., Fraser, L. A., Ding, Y. & Tanner, J. A. Aptamer display on diverse DNA polyhedron supports. Molecules 23, 1695 (2018).
Google Scholar
Tian, T. et al. Targeted imaging of brain tumors with a framework nucleic acid probe. ACS Appl. Mater. Interfaces 10, 3414–3420 (2018).
Google Scholar
Zhang, K. et al. DNA tetrahedron based biosensor for argonaute2 assay in single cells and human immunodeficiency virus type-1 related ribonuclease H detection in vitro. Anal. Chem. 91, 7086–7096 (2019).
Google Scholar
Li, N. et al. A DNA tetrahedron nanoprobe with controlled distance of dyes for multiple detection in living cells and in vivo. Anal. Chem. 89, 6670–6677 (2017).
Google Scholar
Li, C. et al. Design of DNA nanostructure-based interfacial probes for the electrochemical detection of nucleic acids directly in whole blood. Chem. Sci. 9, 979–984 (2018).
Google Scholar
Jiang, D. et al. Multiple-armed tetrahedral DNA nanostructures for tumor-targeting, dual-modality in vivo imaging. ACS Appl Mater. Interfaces 8, 4378–4384 (2016).
Google Scholar
Feng, Q. M., Zhu, M. J., Zhang, T. T., Xu, J. J. & Chen, H. Y. A novel DNA tetrahedron-hairpin probe for in situ“off-on” fluorescence imaging of intracellular telomerase activity. Analyst 141, 2474–2480 (2016).
Google Scholar
Bi, X., Yin, J., Chen Guanbang, A. & Liu, C. F. Chemical and enzymatic strategies for bacterial and mammalian cell surface engineering. Chemistry (Easton) 24, 8042–8050 (2018).
Google Scholar
Aghebat Rafat, A., Sagredo, S., Thalhammer, M. & Simmel, F. C. Barcoded DNA origami structures for multiplexed optimization and enrichment of DNA-based protein-binding cavities. Nat. Chem. 12, 852–859 (2020).
Google Scholar
Gartner, Z. J. & Bertozzi, C. R. Programmed assembly of 3-dimensional microtissues with defined cellular connectivity. Proc. Natl Acad. Sci. USA 106, 4606–4610 (2009).
Google Scholar
Akbari, E. et al. Engineering cell surface function with DNA origami. Adv. Mater. 29, https://doi.org/10.1002/adma.201703632 (2017).
Sacca, B. et al. Orthogonal protein decoration of DNA origami. Angew. Chem. Int. Ed. Engl. 49, 9378–9383 (2010).
Google Scholar
Li, H., Han, M., Weng, X., Zhang, Y. & Li, J. DNA-tetrahedral-nanostructure-based entropy-driven amplifier for high-performance photoelectrochemical biosensing. ACS Nano 15, 1710–1717 (2021).
Google Scholar
Kizer, M. E., Linhardt, R. J., Chandrasekaran, A. R. & Wang, X. A Molecular hero suit for in vitro and in vivo dna nanostructures. Small 15, e1805386 (2019).
Google Scholar
Tian, T. et al. Proteomic exploration of endocytosis of framework nucleic acids. Small 17, e2100837 (2021).
Google Scholar
Li, J., Fan, C., Pei, H., Shi, J. & Huang, Q. Smart drug delivery nanocarriers with self-assembled DNA nanostructures. Adv. Mater. 25, 4386–4396 (2013).
Google Scholar
Walsh, A. S., Yin, H., Erben, C. M., Wood, M. J. & Turberfield, A. J. DNA cage delivery to mammalian cells. ACS Nano 5, 5427–5432 (2011).
Google Scholar
Yuan, Y., Gu, Z., Yao, C., Luo, D. & Yang, D. Nucleic acid-based functional nanomaterials as advanced cancer therapeutics. Small 15, e1900172 (2019).
Google Scholar
Sun, Y. et al. Erythromycin loaded by tetrahedral framework nucleic acids are more antimicrobial sensitive against Escherichia coli (E. coli). Bioact. Mater. 6, 2281–2290 (2021).
Google Scholar
Birkholz, O. et al. Multi-functional DNA nanostructures that puncture and remodel lipid membranes into hybrid materials. Nat. Commun. 9, 1521 (2018).
Google Scholar
De Leo, V., Milano, F., Agostiano, A. & Catucci, L. Recent advancements in polymer/liposome assembly for drug delivery: from surface modifications to hybrid vesicles. Polymers 13, 1027 (2021).
Google Scholar
Bhalla, N., Pan, Y., Yang, Z. & Payam, A. F. Opportunities and challenges for biosensors and nanoscale analytical tools for pandemics: COVID-19. ACS Nano 14, 7783–7807 (2020).
Google Scholar
Shen, Q., Grome, M. W., Yang, Y. & Lin, C. Engineering lipid membranes with programmable DNA nanostructures. Adv. Biosyst. 4, 1900215 (2020).
Google Scholar
Ji, X. et al. Epigenetic remodeling hydrogel patches for multidrug-resistant triple-negative breast cancer. Adv. Mater. 33, e2100949 (2021).
Google Scholar
Zhou, Y. et al. An organelle-specific nanozyme for diabetes care in genetically or diet-induced models. Adv. Mater. 32, e2003708 (2020).
Google Scholar
Han, J., Cui, Y., Li, F., Gu, Z. & Yang, D. Responsive disassembly of nucleic acid nanocomplex in cells for precision medicine. Nano Today 39, 101160 (2021).
Google Scholar

