Pretty, J. & Bharucha, Z. P. Integrated pest management for sustainable intensification of agriculture in Asia and Africa. Insects 6, 152–182. https://doi.org/10.3390/insects6010152 (2015).
Google Scholar
Klassen, W. & Curtis, C. F. History of the sterile insect technique. In Sterile Insect Technique: Principles and Practice in Area-Wide Integrated Pest Management (eds Dyck, V. A. et al.) 3–36 (Springer, 2005).
Google Scholar
Papathanos, P. A. et al. Sex separation strategies: Past experience and new approaches. Malar. J. https://doi.org/10.1186/1475-2875-8-s2-s5 (2009).
Google Scholar
Benedict, M. Q. & Robinson, A. S. The first releases of transgenic mosquitoes: An argument for the sterile insect technique. Trends Parasitol. 19, 349–355. https://doi.org/10.1016/s1471-4922(03)00144-2 (2003).
Google Scholar
Alphey, L. et al. Sterile-insect methods for control of mosquito-borne diseases: An analysis. Vector-Borne Zoonotic Dis. 10, 295–311. https://doi.org/10.1089/vbz.2009.0014 (2010).
Google Scholar
Kandul, N. P. et al. Transforming insect population control with precision guided sterile males with demonstration in flies. Nat. Commun. https://doi.org/10.1038/s41467-018-07964-7 (2019).
Google Scholar
Ahmed, H. M. M., Hildebrand, L. & Wimmer, E. A. Improvement and use of CRISPR/Cas9 to engineer a sperm-marking strain for the invasive fruit pest Drosophila suzukii. BMC Biotechnol. https://doi.org/10.1186/s12896-019-0588-5 (2019).
Google Scholar
Yan, Y. & Scott, M. J. A transgenic embryonic sexing system for the Australian sheep blow fly Lucilia cuprina. Sci. Rep. https://doi.org/10.1038/srep16090 (2015).
Google Scholar
Papathanos, P. A., Windbichler, N., Menichelli, M., Burt, A. & Crisanti, A. The vasa regulatory region mediates germline expression and maternal transmission of proteins in the malaria mosquito Anopheles gambiae: A versatile tool for genetic control strategies. Bmc Mol. Biol. https://doi.org/10.1186/1471-2199-10-65 (2009).
Google Scholar
Schroder, R. vasa mRNA accumulates at the posterior pole during blastoderm formation in the flour beetle Tribolium castaneum. Dev. Genes Evol. 216, 277–283. https://doi.org/10.1007/s00427-005-0054-3 (2006).
Google Scholar
Michiels, F., Gasch, A., Kaltschmidt, B. & Renkawitzpohl, R. A 14-bp promoter element directs the testis specificity of the Drosophila-beta-2 tubulin gene. Embo J. 8, 1559–1565. https://doi.org/10.1002/j.1460-2075.1989.tb03540.x (1989).
Google Scholar
Smith, R. C., Walter, M. F., Hice, R. H., O’Brochta, D. A. & Atkinson, P. W. Testis-specific expression of the beta 2 tubulin promoter of Aedes aegypti and its application as a genetic sex-separation marker. Insect Mol. Biol. 16, 61–71. https://doi.org/10.1111/j.1365-2583.2006.00701.x (2007).
Google Scholar
Xu, J. et al. Transgenic characterization of two testis-specific promoters in the silkworm, Bombyx mori. Insect Mol. Biol. 24, 183–190. https://doi.org/10.1111/imb.12144 (2015).
Google Scholar
Schetelig, M. F. & Handler, A. M. A transgenic embryonic sexing system for Anastrepha suspensa (Diptera: Tephritidae). Insect Biochem. Mol. 42, 790–795. https://doi.org/10.1016/j.ibmb.2012.07.007 (2012).
Google Scholar
Kemphues, K. J., Kaufman, T. C., Raff, R. A. & Raff, E. C. The testis specific beta tubulin subunit I Drosophila melanogaster has multiple functions in spermatogenesis. Cell 31, 655–670. https://doi.org/10.1016/0092-8674(82)90321-x (1982).
Google Scholar
Fackenthal, J. D., Turner, F. R. & Raff, E. C. Tissue-specific microtubule functions in Drosophila spermatogenesis require the β2-tubulin isotype-specific carboxy terminus. Dev. Biol. 158, 213–227 (1983).
Google Scholar
Kemphues, K. J., Raff, E. C., Raff, R. A. & Kaufman, T. C. Mutation in a testis-specific β-tubulin in Drosophila: Analysis of its effects on meiosis and map location of the gene. Cell 21, 445–451. https://doi.org/10.1016/0092-8674(80)90481-x (1980).
Google Scholar
Whitworth, C., Jimenez, E. & Van Doren, M. Development of sexual dimorphism in the Drosophila testis. Spermatogenesis 2, 129–136 (2012).
Google Scholar
Carroll, S. B. Evo-devo and an expanding evolutionary synthesis: A genetic theory of morphological evolution. Cell 134, 25–36. https://doi.org/10.1016/j.cell.2008.06.030 (2008).
Google Scholar
Yamamoto, D. S. et al. A synthetic male-specific sterilization system using the mammalian pro-apoptotic factor in a malaria vector mosquito. Sci. Rep. https://doi.org/10.1038/s41598-019-44480-0 (2019).
Google Scholar
Harvey-Samuel, T., Ant, T. & Alphey, L. Towards the genetic control of invasive species. Biol. Invas. 19, 1683–1703. https://doi.org/10.1007/s10530-017-1384-6 (2017).
Google Scholar
Scott, M. J., Concha, C., Welch, J. B., Phillips, P. L. & Skoda, S. R. Review of research advances in the screwworm eradication program over the past 25 years. Entomol. Exp. Appl. 164, 226–236. https://doi.org/10.1111/eea.12607 (2017).
Google Scholar
Scolari, F. et al. Fluorescent sperm marking to improve the fight against the pest insect Ceratitis capitata (Wiedemann; Diptera: Tephritidae). New Biotechnol. 25, 76–84. https://doi.org/10.1016/j.nbt.2008.02.001 (2008).
Google Scholar
Scolari, F. et al. Polyandry in the medfly—Shifts in paternity mediated by sperm stratification and mixing. BMC Genet. 15, S10. https://doi.org/10.1186/1471-2156-15-s2-s10 (2014).
Google Scholar
Hunt, T. et al. A comprehensive phylogeny of beetles reveals the evolutionary origins of a superradiation. Science 318, 1913–1916. https://doi.org/10.1126/science.1146954 (2007).
Google Scholar
Slipinski, S. A., Leschen, R. A. B. & Lawrence, J. F. Animal biodiversity: An outline of higher-level classification and survey of taxonomic richness. Zootaxa 3148, 1–237 (2011).
Google Scholar
Herndon, N. et al. Enhanced genome assembly and a new official gene set for Tribolium castaneum. BMC Genomics. https://doi.org/10.1186/s12864-019-6394-6 (2020).
Google Scholar
Richards, S. et al. The genome of the model beetle and pest Tribolium castaneum. Nature 452, 949–955. https://doi.org/10.1038/nature06784 (2008).
Google Scholar
Doenitz, J., Gerischer, L., Hahnke, S., Pfeiffer, S. & Bucher, G. Expanded and updated data and a query pipeline for iBeetle-Base. Nucleic Acids Res. 46, D831–D835. https://doi.org/10.1093/nar/gkx984 (2018).
Google Scholar
Schmitt-Engel, C. et al. The iBeetle large-scale RNAi screen reveals gene functions for insect development and physiology. Nat. Commun. https://doi.org/10.1038/ncomms8822 (2015).
Google Scholar
Johnathan, C. et al. Expanding the genetic toolkit of Tribolium castaneum. PLoS ONE 13, e0195977. https://doi.org/10.1371/journal.pone.0195977 (2018).
Google Scholar
Lai, Y. T. et al. Enhancer identification and activity evaluation in the red flour beetle, Tribolium castaneum. Development. https://doi.org/10.1242/dev.160663 (2018).
Google Scholar
Gilles, A. F., Schinko, J. B. & Averof, M. Efficient CRISPR-mediated gene targeting and transgene replacement in the beetle Tribolium castaneum. Development 142, 2832. https://doi.org/10.1242/dev.125054 (2015).
Google Scholar
Brown, S. J. et al. The red flour beetle, Tribolium castaneum (Coleoptera): a model for studies of development and pest biology. Cold Spring Harb. Protoc. 2009(8), pdb.emo126. https://doi.org/10.1101/pdb.emo126 (2009).
Gibson, D. G. et al. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods 6, 343. https://doi.org/10.1038/nmeth.1318 (2009).
Google Scholar
Horn, C. & Wimmer, E. A. A versatile vector set for animal transgenesis. Dev. Genes. Evol. 210, 630–637. https://doi.org/10.1007/s004270000110 (2000).
Google Scholar
Handler, A. M. & Harrell, R. A. Germline transformation of Drosophila melanogaster with the piggyBac transposon vector. Insect Mol. Biol. 8, 449–457. https://doi.org/10.1046/j.1365-2583.1999.00139.x (1999).
Google Scholar
Ochman, H., Gerber, A. S. & Hartl, D. L. Genetic applications of an inverse polymerase chain reaction. Genetics 120, 621–623 (1988).
Google Scholar
Khan, S. A., Eggleston, H., Myles, K. M. & Adelman, Z. N. Differentially and co-expressed genes in embryo, germ-line and somatic tissues of Tribolium castaneum. G3: Genes Genomes Genet. 9, 2363. https://doi.org/10.1534/g3.119.400340 (2019).
Google Scholar
Williams, G. J. et al. ABC ATPase signature helices in Rad50 link nucleotide state to Mre11 interface for DNA repair. Nat. Struct. Mol. Biol. 18, 423–431 (2011).
Google Scholar
Gerlt, J. A., Babbitt, P. C. & Rayment, I. Divergent evolution in the enolase superfamily: The interplay of mechanism and specificity. Arch. Biochem. Biophys. 433, 59–70. https://doi.org/10.1016/j.abb.2004.07.034 (2005).
Google Scholar
Lorenzen, M. D. et al. piggyBac-mediated germline transformation in the beetle Tribolium castaneum. Insect Mol. Biol. 12, 433–440. https://doi.org/10.1046/j.1365-2583.2003.00427.x (2003).
Google Scholar
Beeman, R. W., Haas, S. & Friesen, K. Stored Product Insect and Engineering Research (2019). http://www.ars.usda.gov/Research/docs.htm?docid=12892. Accessed 15 May 2021.
Catteruccia, F., Benton, J. P. & Crisanti, A. An Anopheles transgenic sexing strain for vector control. Nat. Biotechnol. 23, 1414–1417. https://doi.org/10.1038/nbt1152 (2005).
Google Scholar
Salazar, K., Dias, G., Boucher, S., Lino-Neto, J. & Serrao, J. E. Morpho-anatomy of the male reproductive tract and spermatogenesis of the South American Spasalus silvarum Kuwert (Coleoptera: Passalidae). Zoomorphology 135, 487–497. https://doi.org/10.1007/s00435-016-0321-z (2016).
Google Scholar
Handel, K., Basal, A., Fan, X. & Roth, S. Tribolium castaneum twist: Gastrulation and mesoderm formation in a short-germ beetle. Dev. Genes Evol. 215, 13–31. https://doi.org/10.1007/s00427-004-0446-9 (2005).
Google Scholar
Wolff, C., Schroder, R., Schulz, C., Tautz, D. & Klingler, M. Regulation of the Tribolium homologues of caudal and hunchback in Drosophila: Evidence for maternal gradient systems in a short germ embryo. Development 125, 3645–3654 (1998).
Google Scholar
Eckert, C., Aranda, M., Wolff, C. & Tautz, D. Separable stripe enhancer elements for the pair-rule gene hairy in the beetle Tribolium. Embo Rep. 5, 638–642. https://doi.org/10.1038/sj.embor.7400148 (2004).
Google Scholar
Schroder, R., Eckert, C., Wolff, C. & Tautz, D. Conserved and divergent aspects of terminal patterning in the beetle Tribolium castaneum. Proc. Natl. Acad. Sci. U.S.A. 97, 6591–6596. https://doi.org/10.1073/pnas.100005497 (2000).
Google Scholar
Schinko, J. B., Hillebrand, K. & Bucher, G. Heat shock-mediated misexpression of genes in the beetle Tribolium castaneum. Dev. Genes Evol. 222, 287–298. https://doi.org/10.1007/s00427-012-0412-x (2012).
Google Scholar
Siebert, K. S., Lorenzen, M. D., Brown, S. J., Park, Y. & Beeman, R. W. Tubulin superfamily genes in Tribolium castaneum and the use of a Tubulin promoter to drive transgene expression. Insect Biochem. Mol. 38, 749–755. https://doi.org/10.1016/j.ibmb.2008.04.007 (2008).
Google Scholar
Lorenzen, M. D., Brown, S. J., Denell, R. E. & Beeman, R. W. Transgene expression from the Tribolium castaneum Polyubiquitin promoter. Insect Mol. Biol. 11, 399–407. https://doi.org/10.1046/j.1365-2583.2002.00349.x (2002).
Google Scholar
Kemphues, K. J., Raff, E. C., Raff, R. A. & Kaufman, T. C. Mutation in a Testis-specific beta tubulin in Drosophila analysis of its effect of meiosis and map location of gene. Cell 21, 445–451. https://doi.org/10.1016/0092-8674(80)90481-x (1980).
Google Scholar
Kemphues, K. J., Kaufman, T. C., Raff, R. A. & Raff, E. C. The testis specific beta tubulin subunit in Drosophila melanogaster has multiple functions in spermatogenesis. Cell 31, 655–670. https://doi.org/10.1016/0092-8674(82)90321-x (1982).
Google Scholar
Gelbart, W. M. & Emmert, D. B. FlyBase High Throughput Expression Pattern Data (2013).
Hopfner, K. P. et al. Structural biology of Rad50 ATPase: ATP-driven conformational control in DNA double-strand break repair and the ABC-ATPase superfamily. Cell 101, 789–800. https://doi.org/10.1016/s0092-8674(00)80890-9 (2000).
Google Scholar
Hu, M. H. et al. Decreased expression of MRE11 and RAD50 in testes from humans with spermatogenic failure. J. Assist. Reprod. Genet. 37, 331–340. https://doi.org/10.1007/s10815-019-01686-5 (2020).
Google Scholar
Lange, J. et al. The landscape of mouse meiotic double-strand break formation, processing, and repair. Cell 167, 695. https://doi.org/10.1016/j.cell.2016.09.035 (2016).
Google Scholar
Gunes, S., Al-Sadaan, M. & Agarwal, A. Spermatogenesis, DNA damage and DNA repair mechanisms in male infertility. Reprod. Biomed. Online 31, 309–319. https://doi.org/10.1016/j.rbmo.2015.06.010 (2015).
Google Scholar
Sun, C., Xu, B., Liu, X., Zhang, Z. & Su, Z. Crystal structure of enolase from Drosophila melanogaster. Acta Crystallogr. Sect. F Struct. Biol. Commun. 73, 228–234. https://doi.org/10.1107/s2053230x17004022 (2017).
Google Scholar
Kikuchi, A. et al. Identification of functional enolase genes of the silkworm Bombyx mori from public databases with a combination of dry and wet bench processes. BMC Genomics. https://doi.org/10.1186/s12864-016-3455-y (2017).
Google Scholar
Yan, Y., Schwirz, J. & Schetelig, M. F. Characterization of the Drosophila suzukii β2-tubulin gene and the utilization of its promoter to monitor sex separation and insemination. Gene 771, 145366. https://doi.org/10.1016/j.gene.2020.145366 (2021).
Google Scholar

