Preloader

Taxonomic bias in AMP prediction of invertebrate peptides

  • 1.

    Lazzaro, B. P., Zasloff, M. & Rolff, J. Antimicrobial peptides: Application informed by evolution. Science 368, eaau5480 (2020).

    CAS 
    Article 

    Google Scholar 

  • 2.

    León-Buitimea, A., Garza-Cárdenas, C. R., Garza-Cervantes, J. A., Lerma-Escalera, J. A. & Morones-Ramírez, J. R. The demand for new antibiotics: antimicrobial peptides, nanoparticles, and combinatorial therapies as future strategies in antibacterial agent design. Front. Microbiol. 11, 1699 (2020).

    Article 

    Google Scholar 

  • 3.

    Toke, O. Antimicrobial peptides: New candidates in the fight against bacterial infections. Pept. Sci. 80, 717–735 (2005).

    CAS 
    Article 

    Google Scholar 

  • 4.

    Mylonakis, E., Podsiadlowski, L., Muhammed, M. & Vilcinskas, A. Diversity, evolution and medical applications of insect antimicrobial peptides. Philos. Trans. R. Soc. B Biol. Sci. 371, 20150290 (2016).

    Article 

    Google Scholar 

  • 5.

    Vizioli, J. & Salzet, M. Antimicrobial peptides from animals: Focus on invertebrates. Trends Pharmacol. Sci. 23, 494–496 (2002).

    CAS 
    Article 

    Google Scholar 

  • 6.

    Lee, E. Y., Wong, G. C. L. & Ferguson, A. L. Machine learning-enabled discovery and design of membrane-active peptides. Bioorg. Med. Chem. 26, 2708–2718 (2018).

    CAS 
    Article 

    Google Scholar 

  • 7.

    Porto, W. F., Pires, A. S. & Franco, O. L. Computational tools for exploring sequence databases as a resource for antimicrobial peptides. Biotechnol. Adv. 35, 337–349 (2017).

    CAS 
    Article 

    Google Scholar 

  • 8.

    Wu, Q. et al. Recent progress in machine learning-based prediction of peptide activity for drug discovery. Curr. Topics Med. Chem. 19, 4–16 (2018).

    Article 

    Google Scholar 

  • 9.

    Lei, J. et al. The antimicrobial peptides and their potential clinical applications. Am. J. Transl. Res. 11, 3919–3931 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 10.

    Porto, W. F., Pires, Á. S. & Franco, O. L. CS-AMPPred: An updated SVM model for antimicrobial activity prediction in cysteine-stabilized peptides. PLoS ONE 7, e51444 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 11.

    Xiao, X., Wang, P., Lin, W.-Z., Jia, J.-H. & Chou, K.-C. iAMP-2L: A two-level multi-label classifier for identifying antimicrobial peptides and their functional types. Anal. Biochem. 436, 168–177 (2013).

    CAS 
    Article 

    Google Scholar 

  • 12.

    Porto, W., Ferreira, K. C. V., Ribeiro, S. M. & Franco, O. L. Sense the moment: A highly sensitive antimicrobial activity predictor based on hydrophobic moment. bioRxiv https://doi.org/10.1101/2020.07.15.205419 (2020).

    Article 

    Google Scholar 

  • 13.

    Gabere, M. N. & Noble, W. S. Empirical comparison of web-based antimicrobial peptide prediction tools. Bioinformatics 33, 1921–1929 (2017).

    CAS 
    Article 

    Google Scholar 

  • 14.

    Hollox, E. J. & Abujaber, R. Evolution and diversity of defensins in vertebrates. In Evolutionary Biology: Self/Nonself Evolution, Species and Complex Traits Evolution, Methods and Concepts (ed. Pontarotti, P.) 27–50 (Springer International Publishing, 2017). https://doi.org/10.1007/978-3-319-61569-1_2.

    Chapter 

    Google Scholar 

  • 15.

    Montero-Alejo, V. et al. Panusin represents a new family of β-defensin-like peptides in invertebrates. Dev. Comp. Immunol. 67, 310–321 (2017).

    CAS 
    Article 

    Google Scholar 

  • 16.

    Patil, A., Hughes, A. L. & Zhang, G. Rapid evolution and diversification of mammalian α-defensins as revealed by comparative analysis of rodent and primate genes. Physiol. Genom. 20, 1–11 (2004).

    CAS 
    Article 

    Google Scholar 

  • 17.

    Patil, A. A., Cai, Y., Sang, Y., Blecha, F. & Zhang, G. Cross-species analysis of the mammalian β-defensin gene family: Presence of syntenic gene clusters and preferential expression in the male reproductive tract. Physiol. Genom. 23, 5–17 (2005).

    CAS 
    Article 

    Google Scholar 

  • 18.

    Tassanakajon, A., Somboonwiwat, K. & Amparyup, P. Sequence diversity and evolution of antimicrobial peptides in invertebrates. Dev. Comp. Immunol. 48, 324–341 (2015).

    CAS 
    Article 

    Google Scholar 

  • 19.

    Shelomi, M., Jacobs, C., Vilcinskas, A. & Vogel, H. The unique antimicrobial peptide repertoire of stick insects. Dev. Comp. Immunol. 103, 103471 (2020).

    CAS 
    Article 

    Google Scholar 

  • 20.

    NCBI Protein database. Bethesda (MD): National Library of Medicine (US), National Center for Biotechnology Information https://www.ncbi.nlm.nih.gov/protein/ (2020).

  • 21.

    NCBI Resource Coordinators. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 46, D8–D13 (2018).

    Article 

    Google Scholar 

  • 22.

    Wang, G., Li, X. & Wang, Z. APD3: The antimicrobial peptide database as a tool for research and education. Nucleic Acids Res. 44, D1087–D1093 (2016).

    CAS 
    Article 

    Google Scholar 

  • 23.

    The UniProt Consortium. UniProt: A worldwide hub of protein knowledge. Nucleic Acids Res. 47, D506–D515 (2019).

    Article 

    Google Scholar 

  • 24.

    Juretić, D. et al. Knowledge-based computational methods for identifyingor designing novel, non-homologous antimicrobial peptides. Eur. Biophys. J. 40, 371–385 (2011).

    Article 

    Google Scholar 

  • 25.

    Ahmed, T. A. E. & Hammami, R. Recent insights into structure–function relationships of antimicrobial peptides. J. Food Biochem. 43, e12546 (2019).

    Article 

    Google Scholar 

  • 26.

    Torres, M. D. T. et al. Structure-function-guided exploration of the antimicrobial peptide polybia-CP identifies activity determinants and generates synthetic therapeutic candidates. Commun. Biol. 1, 1–16 (2018).

    Article 

    Google Scholar 

  • 27.

    Starr, T. N., Picton, L. K. & Thornton, J. W. Alternative evolutionary histories in the sequence space of an ancient protein. Nature 549, 409–413 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 28.

    Cytryńska, M., Mak, P., Zdybicka-Barabas, A., Suder, P. & Jakubowicz, T. Purification and characterization of eight peptides from Galleria mellonella immune hemolymph. Peptides 28, 533–546 (2007).

    Article 

    Google Scholar 

  • 29.

    Mercer, D. K. et al. Antimicrobial susceptibility testing of antimicrobial peptides to better predict efficacy. Front. Cell. Infect. Microbiol. 10, 326 (2020).

    CAS 
    Article 

    Google Scholar 

  • 30.

    Meurer, M. et al. Antimicrobial susceptibility testing of antimicrobial peptides requires new and standardized testing structures. ACS Infect. Dis. https://doi.org/10.1021/acsinfecdis.1c00210 (2021).

    Article 
    PubMed 

    Google Scholar 

  • 31.

    Kang, X. et al. DRAMP 2.0, an updated data repository of antimicrobial peptides. Sci. Data 6, 148 (2019).

    Article 

    Google Scholar 

  • 32.

    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021).

    Google Scholar 

  • 33.

    Lee, H.-T., Lee, C.-C., Yang, J.-R., Lai, J. Z. C. & Chang, K. Y. A large-scale structural classification of antimicrobial peptides. BioMed. Res. Int. 2015, e475062 (2015).

    Google Scholar 

  • 34.

    Burdukiewicz, M. et al. Proteomic screening for prediction and design of antimicrobial peptides with AmpGram. Int. J. Mol. Sci. 21, 4310 (2020).

    CAS 
    Article 

    Google Scholar 

  • 35.

    Veltri, D., Kamath, U. & Shehu, A. Deep learning improves antimicrobial peptide recognition. Bioinformatics 34, 2740–2747 (2018).

    CAS 
    Article 

    Google Scholar 

  • 36.

    Waghu, F. H., Barai, R. S., Gurung, P. & Idicula-Thomas, S. CAMPR3: A database on sequences, structures and signatures of antimicrobial peptides. Nucleic Acids Res. 44, D1094-1097 (2016).

    CAS 
    Article 

    Google Scholar 

  • 37.

    Joseph, S., Karnik, S., Nilawe, P., Jayaraman, V. K. & Idicula-Thomas, S. ClassAMP: A prediction tool for classification of antimicrobial peptides. IEEE/ACM Trans. Comput. Biol. Bioinform. 9, 1535–1538 (2012).

    Article 

    Google Scholar 

  • 38.

    Meher, P. K., Sahu, T. K., Saini, V. & Rao, A. R. Predicting antimicrobial peptides with improved accuracy by incorporating the compositional, physico-chemical and structural features into Chou’s general PseAAC. Sci. Rep. 7, 42362 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 39.

    Kavousi, K. et al. IAMPE: NMR-assisted computational prediction of antimicrobial peptides. J. Chem. Inf. Model. 60, 4691–4701 (2020).

    CAS 
    Article 

    Google Scholar 

  • 40.

    Powers, D. M. W. Evaluation: From precision, recall and F-measure to ROC, informedness, markedness & correlation. J. Mach. Learn. Technol. 2(1), 37–63 (2011).

    MathSciNet 

    Google Scholar 

  • 41.

    Gorman, B. mltools: Machine Learning Tools. R package version 0.3.5. https://CRAN.R-project.org/package=mltools (2018).

  • 42.

    Chicco, D. & Jurman, G. The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation. BMC Genom. 21, 6 (2020).

    Article 

    Google Scholar 

  • Source link