Sung, H. et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA. Cancer J. Clin. 71, 209–249 (2021).
Google Scholar
Rawal, S. & Patel, M. Bio-nanocarriers for lung cancer management: Befriending the barriers. Nano-Micro Lett. 13, 142. https://doi.org/10.1007/s40820-021-00630-6 (2021).
Google Scholar
Wang, W. et al. Nanomedicine in lung cancer: Current states of overcoming drug resistance and improving cancer immunotherapy. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 13, e1654. https://doi.org/10.1002/wnan.1654 (2021).
Google Scholar
Suster, D. I. & Mino-Kenudson, M. Molecular pathology of primary non-small cell lung cancer. Arch. Med. Res. 51, 784–798 (2020).
Google Scholar
Ye, Z. et al. Breakthrough in targeted therapy for non-small cell lung cancer. Biomed. Pharmacother. 133, 111079. https://doi.org/10.1016/j.biopha.2020.111079 (2021).
Google Scholar
Kumari, P., Ghosh, B. & Biswas, S. Nanocarriers for cancer-targeted drug delivery. J. Drug Target. 24, 179–191 (2016).
Google Scholar
Yildiz, T., Gu, R., Zauscher, S. & Betancourt, T. Doxorubicin-loaded protease-activated near-infrared fluorescent polymeric nanoparticles for imaging and therapy of cancer. Int. J. Nanomed. 13, 6961–6986 (2018).
Google Scholar
Senapati, S., Mahanta, A. K., Kumar, S. & Maiti, P. Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduct. Target. Ther. 3, 7 (2018).
Google Scholar
Yadav, K. S., Upadhya, A. & Misra, A. Targeted drug therapy in nonsmall cell lung cancer: Clinical significance and possible solutions-part II (role of nanocarriers). Expert Opin. Drug Deliv. 18, 103–118 (2021).
Google Scholar
Razavi, H., Darvishi, M. H. & Janfaza, S. Silver sulfadiazine encapsulated in lipid-based nanocarriers for burn treatment. J. Burn Care Res. 39, 319–325 (2018).
Google Scholar
Mu, W., Chu, Q., Liu, Y. & Zhang, N. A review on nano-based drug delivery system for cancer chemoimmunotherapy. Nano-Micro Lett. 12, 142. https://doi.org/10.1007/s40820-020-00482-6 (2020).
Google Scholar
Man, D. K. W. et al. Oleanolic acid loaded PEGylated PLA and PLGA nanoparticles with enhanced cytotoxic activity against cancer cells. Mol. Pharm. 12, 2112–2125 (2015).
Google Scholar
Singhvi, M. S., Zinjarde, S. S. & Gokhale, D. V. Polylactic acid: Synthesis and biomedical applications. J. Appl. Microbiol. 127, 1612–1626 (2019).
Google Scholar
Khaledian, M., Nourbakhsh, M. S., Saber, R., Hashemzadeh, H. & Darvishi, M. H. Preparation and evaluation of doxorubicin-loaded pla–peg–fa copolymer containing superparamagnetic iron oxide nanoparticles (Spions) for cancer treatment: Combination therapy with hyperthermia and chemotherapy. Int. J. Nanomed. 15, 6167–6182 (2020).
Google Scholar
Tyler, B., Gullotti, D., Mangraviti, A., Utsuki, T. & Brem, H. Polylactic acid (PLA) controlled delivery carriers for biomedical applications. Adv. Drug Deliv. Rev. 107, 163–175 (2016).
Google Scholar
Mosafer, J., Teymouri, M., Abnous, K., Tafaghodi, M. & Ramezani, M. Study and evaluation of nucleolin-targeted delivery of magnetic PLGA-PEG nanospheres loaded with doxorubicin to C6 glioma cells compared with low nucleolin-expressing L929 cells. Mater. Sci. Eng. C 72, 123–133 (2017).
Google Scholar
Zhang, X., Zhao, L., Zhai, G., Ji, J. & Liu, A. Multifunctional polyethylene glycol (PEG)-Poly (lactic-co-glycolic acid) (PLGA)-based nanoparticles loading doxorubicin and tetrahydrocurcumin for combined chemoradiotherapy of glioma. Med. Sci. Monit. 25, 9737–9751 (2019).
Google Scholar
Li, F. et al. Preparation and characterization novel polymer-coated magnetic nanoparticles as carriers for doxorubicin. Colloids Surfaces B Biointerfaces 88, 58–62 (2011).
Google Scholar
Li, X., Zhu, X. & Qiu, L. Constructing aptamer anchored nanovesicles for enhanced tumor penetration and cellular uptake of water soluble chemotherapeutics. Acta Biomater. 35, 269–279 (2016).
Google Scholar
Prados, J. et al. Enhanced antitumoral activity of doxorubicin against lung cancer cells using biodegradable poly(butylcyanoacrylate) nanoparticles. Drug Des. Devel. Ther. 9, 6433 (2015).
Google Scholar
Tang, L. et al. Targeting tumor vasculature with aptamer-functionalized doxorubicin-polylactide nanoconjugates for enhanced cancer therapy. ACS Nano 9, 5072–5081 (2015).
Google Scholar
Wakharde, A. A., Awad, A. H., Bhagat, A. & Karuppayil, S. Synergistic activation of doxorubicin against cancer: A review OPEN ACCESS. Am. J. Clin. Microbiol. Antimicrob. 1, 1009 (2018).
Liu, Y. et al. Sustained and controlled delivery of doxorubicin from an in-situ setting biphasic hydroxyapatite carrier for local treatment of a highly proliferative human osteosarcoma. Acta Biomater. 131, 555–571 (2021).
Google Scholar
Mao, J. N. et al. PEG-PLGA nanoparticles entrapping doxorubicin reduced doxorubicin-induced cardiotoxicity in rats. Adv. Mater. Res. 912–914, 263–268 (2014).
Gomari, H., Moghadam, M. F., Soleimani, M., Ghavami, M. & Khodashenas, S. Targeted delivery of doxorubicin to HER2 positive tumor models. Int. J. Nanomed. 14, 5679–5690 (2019).
Google Scholar
Din, F. U. et al. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int. J. Nanomed. 12, 7291–7309 (2017).
Liu, Z. et al. Aptamer density dependent cellular uptake of lipid-capped polymer nanoparticles for polyvalent targeted delivery of vinorelbine to cancer cells. RSC Adv. 5, 16931–16939 (2015).
Google Scholar
Kennedy, P. J., Oliveira, C., Granja, P. L. & Sarmento, B. Antibodies and associates: Partners in targeted drug delivery. Pharmacol. Ther. 177, 129–145 (2017).
Google Scholar
Jiang, Z., Guan, J., Qian, J. & Zhan, C. Peptide ligand-mediated targeted drug delivery of nanomedicines. Biomater. Sci. 7, 461–471 (2019).
Google Scholar
Cerchia, L. & de Franciscis, V. Targeting cancer cells with nucleic acid aptamers. Trends Biotechnol. 28, 517–525 (2010).
Google Scholar
Darvishi, M. H. et al. Targeted DNA delivery to cancer cells using a biotinylated chitosan carrier. Biotechnol. Appl. Biochem. 64, 423–432 (2017).
Google Scholar
Darvishi, M. H., Nomani, A., Amini, M., Shokrgozar, M. A. & Dinarvand, R. Novel biotinylated chitosan-graft-polyethyleneimine copolymer as a targeted non-viral vector for anti-EGF receptor siRNA delivery in cancer cells. Int. J. Pharm. 456, 408–416 (2013).
Google Scholar
Elsewedy, H. S., Al Dhubiab, B. E., Mahdy, M. A. & Elnahas, H. M. A review article on the basic concepts of drug delivery systems as targeting agents. Int. J. Pharma Med. Biol. Sci. 10, 23–29 (2021).
Google Scholar
Gagliardi, A. et al. Biodegradable polymeric nanoparticles for drug delivery to solid tumors. Front. Pharmacol. 12, 601626. https://doi.org/10.3389/fphar.2021.601626 (2021).
Google Scholar
Raj, S. et al. Specific targeting cancer cells with nanoparticles and drug delivery in cancer therapy. Semin. Cancer Biol. 69, 166–177 (2021).
Google Scholar
Mokhtarzadeh, A. et al. Aptamers as smart ligands for nano-carriers targeting. TrAC Trends Anal. Chem. 82, 316–327 (2016).
Google Scholar
Bertrand, N., Wu, J., Xu, X., Kamaly, N. & Farokhzad, O. C. Cancer nanotechnology: The impact of passive and active targeting in the era of modern cancer biology. Adv. Drug Deliv. Rev. 66, 2–25 (2014).
Google Scholar
Vandghanooni, S., Eskandani, M., Barar, J. & Omidi, Y. Bispecific therapeutic aptamers for targeted therapy of cancer: A review on cellular perspective. J. Mol. Med. 96, 885–902 (2018).
Google Scholar
Alshaer, W., Hillaireau, H. & Fattal, E. Aptamer-guided nanomedicines for anticancer drug delivery. Adv. Drug Deliv. Rev. 134, 122–137 (2018).
Google Scholar
de Franciscis, V. Challenging cancer targets for aptamer delivery. Biochimie 145, 45–52 (2018).
Google Scholar
Wang, T., Chen, C., Larcher, L. M., Barrero, R. A. & Veedu, R. N. Three decades of nucleic acid aptamer technologies: Lessons learned, progress and opportunities on aptamer development. Biotechnol. Adv. 37, 28–50 (2019).
Google Scholar
Zhou, G. et al. Aptamers as targeting ligands and therapeutic molecules for overcoming drug resistance in cancers. Adv. Drug Deliv. Rev. 134, 107–121 (2018).
Google Scholar
Xuan, W. et al. A basic insight into aptamer-drug conjugates (ApDCs). Biomaterials 182, 216–226 (2018).
Google Scholar
Fattal, E., Hillaireau, H. & Ismail, S. I. Aptamers in therapeutics and drug delivery. Adv. Drug Deliv. Rev. 134, 1–2 (2018).
Google Scholar
Zhu, G. & Chen, X. Aptamer-based targeted therapy. Adv. Drug Deliv. Rev. 134, 65–78 (2018).
Google Scholar
Röthlisberger, P. & Hollenstein, M. Aptamer chemistry. Adv. Drug Deliv. Rev. 134, 3–21 (2018).
Google Scholar
Panchamoorthy, G. et al. Targeting the human MUC1-C oncoprotein with an antibody-drug conjugate. JCI Insight. 3, e99880. https://doi.org/10.1172/jci.insight.99880 (2018).
Google Scholar
Yu, C. et al. Novel aptamer-nanoparticle bioconjugates enhances delivery of anticancer drug to MUC1-positive cancer cells in vitro. PLoS ONE 6, e24077. https://doi.org/10.1371/journal.pone.0024077 (2011).
Google Scholar
Ferreira, C. S. M., Matthews, C. S. & Missailidis, S. DNA aptamers that bind to MUC1 tumour marker: Design and characterization of MUC1-binding single-stranded DNA aptamers. Tumor Biol. 27, 289–301 (2006).
Google Scholar
Yousefi, M. et al. Aptasensors as a new sensing technology developed for the detection of MUC1 mucin: A review. Biosens. Bioelectron. 130, 1–19 (2019).
Google Scholar
Dai, B., Hu, Y., Duan, J. H. & Yang, X. D. Aptamer-guided DNA tetrahedron as a novel targeted drug delivery system for MUC1-expressing breast cancer cells in vitro. Oncotarget 7, 38257–38269 (2016).
Google Scholar
Nabavinia, M. S. et al. Anti-MUC1 aptamer: A potential opportunity for cancer treatment. Med. Res. Rev. 37, 1518–1539 (2017).
Google Scholar
Hu, Y. et al. Novel muc1 aptamer selectively delivers cytotoxic agent to cancer cells in vitro. PLoS ONE 7, e31970. https://doi.org/10.1371/journal.pone.0031970 (2012).
Google Scholar
Sacko, K., Thangavel, K. & Shoyele, S. A. Codelivery of genistein and miRNA-29b to a549 cells using aptamer-hybrid nanoparticle bioconjugates. Nanomaterials 9, 1052. https://doi.org/10.3390/nano9071052 (2019).
Google Scholar
Hami, Z., Amini, M., Ghazi-Khansari, M., Rezayat, S. M. & Gilani, K. Synthesis and in vitro evaluation of a pH-sensitive PLA-PEG-folate based polymeric micelle for controlled delivery of docetaxel. Colloids Surfaces B Biointerfaces 116, 309–317 (2014).
Google Scholar
Farokhzad, O. C. et al. Nanoparticle-aptamer bioconjugates: A new approach for targeting prostate cancer cells. Cancer Res. 64, 7668–7672 (2004).
Google Scholar
Ghasemi, R. et al. MPEG-PLA and PLA-PEG-PLA nanoparticles as new carriers for delivery of recombinant human Growth Hormone (rhGH). Sci. Rep. 8, 9854. https://doi.org/10.1038/s41598-018-28092-8 (2018).
Google Scholar
Pachauri, M., Gupta, E. D. & Ghosh, P. C. Piperine loaded PEG-PLGA nanoparticles: Preparation, characterization and targeted delivery for adjuvant breast cancer chemotherapy. J. Drug Deliv. Sci. Technol. 29, 269–282 (2015).
Google Scholar
Sayari, E. et al. MUC1 aptamer conjugated to chitosan nanoparticles, an efficient targeted carrier designed for anticancer SN38 delivery. Int. J. Pharm. 473, 304–315 (2014).
Google Scholar
Taghavi, S. et al. Preparation and evaluation of polyethylenimine-functionalized carbon nanotubes tagged with 5TR1 aptamer for targeted delivery of Bcl-xL shRNA into breast cancer cells. Colloids Surfaces B Biointerfaces 140, 28–39 (2016).
Google Scholar
Fu, Y. & Kao, W. J. Drug release kinetics and transport mechanisms of non-degradable and degradable polymeric delivery systems. Expert Opin. Drug Deliv. 7, 429–444 (2010).
Google Scholar
Yeo, Y. & Park, K. Control of encapsulation efficiency and initial burst in polymeric microparticle systems. Arch. Pharm. Res. 27, 1–12 (2004).
Google Scholar

