Preloader

Targeting lung cancer cells with MUC1 aptamer-functionalized PLA-PEG nanocarriers

  • Sung, H. et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA. Cancer J. Clin. 71, 209–249 (2021).

    PubMed 

    Google Scholar 

  • Rawal, S. & Patel, M. Bio-nanocarriers for lung cancer management: Befriending the barriers. Nano-Micro Lett. 13, 142. https://doi.org/10.1007/s40820-021-00630-6 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Wang, W. et al. Nanomedicine in lung cancer: Current states of overcoming drug resistance and improving cancer immunotherapy. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 13, e1654. https://doi.org/10.1002/wnan.1654 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Suster, D. I. & Mino-Kenudson, M. Molecular pathology of primary non-small cell lung cancer. Arch. Med. Res. 51, 784–798 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Ye, Z. et al. Breakthrough in targeted therapy for non-small cell lung cancer. Biomed. Pharmacother. 133, 111079. https://doi.org/10.1016/j.biopha.2020.111079 (2021).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Kumari, P., Ghosh, B. & Biswas, S. Nanocarriers for cancer-targeted drug delivery. J. Drug Target. 24, 179–191 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Yildiz, T., Gu, R., Zauscher, S. & Betancourt, T. Doxorubicin-loaded protease-activated near-infrared fluorescent polymeric nanoparticles for imaging and therapy of cancer. Int. J. Nanomed. 13, 6961–6986 (2018).

    CAS 

    Google Scholar 

  • Senapati, S., Mahanta, A. K., Kumar, S. & Maiti, P. Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduct. Target. Ther. 3, 7 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Yadav, K. S., Upadhya, A. & Misra, A. Targeted drug therapy in nonsmall cell lung cancer: Clinical significance and possible solutions-part II (role of nanocarriers). Expert Opin. Drug Deliv. 18, 103–118 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Razavi, H., Darvishi, M. H. & Janfaza, S. Silver sulfadiazine encapsulated in lipid-based nanocarriers for burn treatment. J. Burn Care Res. 39, 319–325 (2018).

    PubMed 

    Google Scholar 

  • Mu, W., Chu, Q., Liu, Y. & Zhang, N. A review on nano-based drug delivery system for cancer chemoimmunotherapy. Nano-Micro Lett. 12, 142. https://doi.org/10.1007/s40820-020-00482-6 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Man, D. K. W. et al. Oleanolic acid loaded PEGylated PLA and PLGA nanoparticles with enhanced cytotoxic activity against cancer cells. Mol. Pharm. 12, 2112–2125 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Singhvi, M. S., Zinjarde, S. S. & Gokhale, D. V. Polylactic acid: Synthesis and biomedical applications. J. Appl. Microbiol. 127, 1612–1626 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Khaledian, M., Nourbakhsh, M. S., Saber, R., Hashemzadeh, H. & Darvishi, M. H. Preparation and evaluation of doxorubicin-loaded pla–peg–fa copolymer containing superparamagnetic iron oxide nanoparticles (Spions) for cancer treatment: Combination therapy with hyperthermia and chemotherapy. Int. J. Nanomed. 15, 6167–6182 (2020).

    CAS 

    Google Scholar 

  • Tyler, B., Gullotti, D., Mangraviti, A., Utsuki, T. & Brem, H. Polylactic acid (PLA) controlled delivery carriers for biomedical applications. Adv. Drug Deliv. Rev. 107, 163–175 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Mosafer, J., Teymouri, M., Abnous, K., Tafaghodi, M. & Ramezani, M. Study and evaluation of nucleolin-targeted delivery of magnetic PLGA-PEG nanospheres loaded with doxorubicin to C6 glioma cells compared with low nucleolin-expressing L929 cells. Mater. Sci. Eng. C 72, 123–133 (2017).

    CAS 

    Google Scholar 

  • Zhang, X., Zhao, L., Zhai, G., Ji, J. & Liu, A. Multifunctional polyethylene glycol (PEG)-Poly (lactic-co-glycolic acid) (PLGA)-based nanoparticles loading doxorubicin and tetrahydrocurcumin for combined chemoradiotherapy of glioma. Med. Sci. Monit. 25, 9737–9751 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, F. et al. Preparation and characterization novel polymer-coated magnetic nanoparticles as carriers for doxorubicin. Colloids Surfaces B Biointerfaces 88, 58–62 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • Li, X., Zhu, X. & Qiu, L. Constructing aptamer anchored nanovesicles for enhanced tumor penetration and cellular uptake of water soluble chemotherapeutics. Acta Biomater. 35, 269–279 (2016).

    PubMed 

    Google Scholar 

  • Prados, J. et al. Enhanced antitumoral activity of doxorubicin against lung cancer cells using biodegradable poly(butylcyanoacrylate) nanoparticles. Drug Des. Devel. Ther. 9, 6433 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Tang, L. et al. Targeting tumor vasculature with aptamer-functionalized doxorubicin-polylactide nanoconjugates for enhanced cancer therapy. ACS Nano 9, 5072–5081 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Wakharde, A. A., Awad, A. H., Bhagat, A. & Karuppayil, S. Synergistic activation of doxorubicin against cancer: A review OPEN ACCESS. Am. J. Clin. Microbiol. Antimicrob. 1, 1009 (2018).

    Google Scholar 

  • Liu, Y. et al. Sustained and controlled delivery of doxorubicin from an in-situ setting biphasic hydroxyapatite carrier for local treatment of a highly proliferative human osteosarcoma. Acta Biomater. 131, 555–571 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Mao, J. N. et al. PEG-PLGA nanoparticles entrapping doxorubicin reduced doxorubicin-induced cardiotoxicity in rats. Adv. Mater. Res. 912–914, 263–268 (2014).

    Google Scholar 

  • Gomari, H., Moghadam, M. F., Soleimani, M., Ghavami, M. & Khodashenas, S. Targeted delivery of doxorubicin to HER2 positive tumor models. Int. J. Nanomed. 14, 5679–5690 (2019).

    CAS 

    Google Scholar 

  • Din, F. U. et al. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int. J. Nanomed. 12, 7291–7309 (2017).

    Google Scholar 

  • Liu, Z. et al. Aptamer density dependent cellular uptake of lipid-capped polymer nanoparticles for polyvalent targeted delivery of vinorelbine to cancer cells. RSC Adv. 5, 16931–16939 (2015).

    ADS 
    CAS 

    Google Scholar 

  • Kennedy, P. J., Oliveira, C., Granja, P. L. & Sarmento, B. Antibodies and associates: Partners in targeted drug delivery. Pharmacol. Ther. 177, 129–145 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Jiang, Z., Guan, J., Qian, J. & Zhan, C. Peptide ligand-mediated targeted drug delivery of nanomedicines. Biomater. Sci. 7, 461–471 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Cerchia, L. & de Franciscis, V. Targeting cancer cells with nucleic acid aptamers. Trends Biotechnol. 28, 517–525 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • Darvishi, M. H. et al. Targeted DNA delivery to cancer cells using a biotinylated chitosan carrier. Biotechnol. Appl. Biochem. 64, 423–432 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Darvishi, M. H., Nomani, A., Amini, M., Shokrgozar, M. A. & Dinarvand, R. Novel biotinylated chitosan-graft-polyethyleneimine copolymer as a targeted non-viral vector for anti-EGF receptor siRNA delivery in cancer cells. Int. J. Pharm. 456, 408–416 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Elsewedy, H. S., Al Dhubiab, B. E., Mahdy, M. A. & Elnahas, H. M. A review article on the basic concepts of drug delivery systems as targeting agents. Int. J. Pharma Med. Biol. Sci. 10, 23–29 (2021).

    CAS 

    Google Scholar 

  • Gagliardi, A. et al. Biodegradable polymeric nanoparticles for drug delivery to solid tumors. Front. Pharmacol. 12, 601626. https://doi.org/10.3389/fphar.2021.601626 (2021).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Raj, S. et al. Specific targeting cancer cells with nanoparticles and drug delivery in cancer therapy. Semin. Cancer Biol. 69, 166–177 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Mokhtarzadeh, A. et al. Aptamers as smart ligands for nano-carriers targeting. TrAC Trends Anal. Chem. 82, 316–327 (2016).

    CAS 

    Google Scholar 

  • Bertrand, N., Wu, J., Xu, X., Kamaly, N. & Farokhzad, O. C. Cancer nanotechnology: The impact of passive and active targeting in the era of modern cancer biology. Adv. Drug Deliv. Rev. 66, 2–25 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Vandghanooni, S., Eskandani, M., Barar, J. & Omidi, Y. Bispecific therapeutic aptamers for targeted therapy of cancer: A review on cellular perspective. J. Mol. Med. 96, 885–902 (2018).

    PubMed 

    Google Scholar 

  • Alshaer, W., Hillaireau, H. & Fattal, E. Aptamer-guided nanomedicines for anticancer drug delivery. Adv. Drug Deliv. Rev. 134, 122–137 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • de Franciscis, V. Challenging cancer targets for aptamer delivery. Biochimie 145, 45–52 (2018).

    PubMed 

    Google Scholar 

  • Wang, T., Chen, C., Larcher, L. M., Barrero, R. A. & Veedu, R. N. Three decades of nucleic acid aptamer technologies: Lessons learned, progress and opportunities on aptamer development. Biotechnol. Adv. 37, 28–50 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Zhou, G. et al. Aptamers as targeting ligands and therapeutic molecules for overcoming drug resistance in cancers. Adv. Drug Deliv. Rev. 134, 107–121 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Xuan, W. et al. A basic insight into aptamer-drug conjugates (ApDCs). Biomaterials 182, 216–226 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Fattal, E., Hillaireau, H. & Ismail, S. I. Aptamers in therapeutics and drug delivery. Adv. Drug Deliv. Rev. 134, 1–2 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Zhu, G. & Chen, X. Aptamer-based targeted therapy. Adv. Drug Deliv. Rev. 134, 65–78 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Röthlisberger, P. & Hollenstein, M. Aptamer chemistry. Adv. Drug Deliv. Rev. 134, 3–21 (2018).

    PubMed 

    Google Scholar 

  • Panchamoorthy, G. et al. Targeting the human MUC1-C oncoprotein with an antibody-drug conjugate. JCI Insight. 3, e99880. https://doi.org/10.1172/jci.insight.99880 (2018).

    Article 
    PubMed Central 

    Google Scholar 

  • Yu, C. et al. Novel aptamer-nanoparticle bioconjugates enhances delivery of anticancer drug to MUC1-positive cancer cells in vitro. PLoS ONE 6, e24077. https://doi.org/10.1371/journal.pone.0024077 (2011).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ferreira, C. S. M., Matthews, C. S. & Missailidis, S. DNA aptamers that bind to MUC1 tumour marker: Design and characterization of MUC1-binding single-stranded DNA aptamers. Tumor Biol. 27, 289–301 (2006).

    CAS 

    Google Scholar 

  • Yousefi, M. et al. Aptasensors as a new sensing technology developed for the detection of MUC1 mucin: A review. Biosens. Bioelectron. 130, 1–19 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Dai, B., Hu, Y., Duan, J. H. & Yang, X. D. Aptamer-guided DNA tetrahedron as a novel targeted drug delivery system for MUC1-expressing breast cancer cells in vitro. Oncotarget 7, 38257–38269 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Nabavinia, M. S. et al. Anti-MUC1 aptamer: A potential opportunity for cancer treatment. Med. Res. Rev. 37, 1518–1539 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Hu, Y. et al. Novel muc1 aptamer selectively delivers cytotoxic agent to cancer cells in vitro. PLoS ONE 7, e31970. https://doi.org/10.1371/journal.pone.0031970 (2012).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sacko, K., Thangavel, K. & Shoyele, S. A. Codelivery of genistein and miRNA-29b to a549 cells using aptamer-hybrid nanoparticle bioconjugates. Nanomaterials 9, 1052. https://doi.org/10.3390/nano9071052 (2019).

    CAS 
    Article 
    PubMed Central 

    Google Scholar 

  • Hami, Z., Amini, M., Ghazi-Khansari, M., Rezayat, S. M. & Gilani, K. Synthesis and in vitro evaluation of a pH-sensitive PLA-PEG-folate based polymeric micelle for controlled delivery of docetaxel. Colloids Surfaces B Biointerfaces 116, 309–317 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Farokhzad, O. C. et al. Nanoparticle-aptamer bioconjugates: A new approach for targeting prostate cancer cells. Cancer Res. 64, 7668–7672 (2004).

    CAS 
    PubMed 

    Google Scholar 

  • Ghasemi, R. et al. MPEG-PLA and PLA-PEG-PLA nanoparticles as new carriers for delivery of recombinant human Growth Hormone (rhGH). Sci. Rep. 8, 9854. https://doi.org/10.1038/s41598-018-28092-8 (2018).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pachauri, M., Gupta, E. D. & Ghosh, P. C. Piperine loaded PEG-PLGA nanoparticles: Preparation, characterization and targeted delivery for adjuvant breast cancer chemotherapy. J. Drug Deliv. Sci. Technol. 29, 269–282 (2015).

    CAS 

    Google Scholar 

  • Sayari, E. et al. MUC1 aptamer conjugated to chitosan nanoparticles, an efficient targeted carrier designed for anticancer SN38 delivery. Int. J. Pharm. 473, 304–315 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Taghavi, S. et al. Preparation and evaluation of polyethylenimine-functionalized carbon nanotubes tagged with 5TR1 aptamer for targeted delivery of Bcl-xL shRNA into breast cancer cells. Colloids Surfaces B Biointerfaces 140, 28–39 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Fu, Y. & Kao, W. J. Drug release kinetics and transport mechanisms of non-degradable and degradable polymeric delivery systems. Expert Opin. Drug Deliv. 7, 429–444 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yeo, Y. & Park, K. Control of encapsulation efficiency and initial burst in polymeric microparticle systems. Arch. Pharm. Res. 27, 1–12 (2004).

    CAS 
    PubMed 

    Google Scholar 

  • Source link