Preloader

Targeting IFN activity to both B cells and plasmacytoid dendritic cells induces a robust tolerogenic response and protection against EAE

  • 1.

    Baecher-Allan, C., Kaskow, B. J. & Weiner, H. L. Multiple sclerosis: Mechanisms and immunotherapy. Neuron 97, 742–768 (2018).

    CAS 
    Article 

    Google Scholar 

  • 2.

    Rosati, G. The prevalence of multiple sclerosis in the world: An update. Neurol. Sci. 22, 117–139 (2001).

    CAS 
    Article 

    Google Scholar 

  • 3.

    Urru, S. A., Antonelli, A., Sechi, G. M. & Group, M. S. W. Prevalence of multiple sclerosis in Sardinia: A systematic cross-sectional multi-source survey. Mult. Scler. 26, 372–380 (2020).

    Article 

    Google Scholar 

  • 4.

    Tintore, M., Vidal-Jordana, A. & Sastre-Garriga, J. Treatment of multiple sclerosis—Success from bench to bedside. Nat. Rev. Neurol. 15, 53–58 (2019).

    CAS 
    Article 

    Google Scholar 

  • 5.

    Daclizumab withdrawn from the market worldwide. Drug Ther. Bull. 56, 38 (2018).

  • 6.

    Negron, A., Robinson, R. R., Stuve, O. & Forsthuber, T. G. The role of B cells in multiple sclerosis: Current and future therapies. Cell Immunol. 339, 10–23 (2019).

    CAS 
    Article 

    Google Scholar 

  • 7.

    Ceronie, B. et al. Cladribine treatment of multiple sclerosis is associated with depletion of memory B cells. J. Neurol. 265, 1199–1209 (2018).

    CAS 
    Article 

    Google Scholar 

  • 8.

    Baker, D., Marta, M., Pryce, G., Giovannoni, G. & Schmierer, K. Memory B cells are major targets for effective immunotherapy in relapsing multiple sclerosis. EBioMedicine 16, 41–50 (2017).

    Article 

    Google Scholar 

  • 9.

    Rizzo, F. et al. Interferon-beta therapy specifically reduces pathogenic memory B cells in multiple sclerosis patients by inducing a FAS-mediated apoptosis. Immunol. Cell Biol. 94, 886–894 (2016).

    CAS 
    Article 

    Google Scholar 

  • 10.

    Fucikova, J., Palova-Jelinkova, L., Bartunkova, J. & Spisek, R. Induction of tolerance and immunity by dendritic cells: Mechanisms and clinical applications. Front. Immunol. 10, 2393 (2019).

    CAS 
    Article 

    Google Scholar 

  • 11.

    Mosanya, C. H. & Isaacs, J. D. Tolerising cellular therapies: What is their promise for autoimmune disease?. Ann. Rheum. Dis. 78, 297–310 (2019).

    CAS 
    Article 

    Google Scholar 

  • 12.

    Cauwels, A. & Tavernier, J. Tolerizing strategies for the treatment of autoimmune diseases: From ex vivo to in vivo strategies. Front. Immunol. 11, 674 (2020).

    CAS 
    Article 

    Google Scholar 

  • 13.

    Svajger, U. & Rozman, P. Induction of tolerogenic dendritic cells by endogenous biomolecules: An update. Front. Immunol. 9, 2482 (2018).

    Article 

    Google Scholar 

  • 14.

    Durelli, L. et al. Independent comparison of interferon trial study G: Every-other-day interferon beta-1b versus once-weekly interferon beta-1a for multiple sclerosis: Results of a 2-year prospective randomised multicentre study (INCOMIN). Lancet 359, 1453–1460 (2002).

    CAS 
    Article 

    Google Scholar 

  • 15.

    Lugaresi, A. et al. Risk-benefit considerations in the treatment of relapsing-remitting multiple sclerosis. Neuropsychiatr. Dis. Treat. 9, 893–914 (2013).

    Article 

    Google Scholar 

  • 16.

    Axtell, R. C. & Raman, C. Janus-like effects of type I interferon in autoimmune diseases. Immunol. Rev. 248, 23–35 (2012).

    Article 

    Google Scholar 

  • 17.

    Verweij, C. L. & Vosslamber, S. Relevance of the type I interferon signature in multiple sclerosis towards a personalized medicine approach for interferon-beta therapy. Discov. Med. 15, 51–60 (2013).

    PubMed 

    Google Scholar 

  • 18.

    Cauwels, A. et al. Targeting interferon activity to dendritic cells enables in vivo tolerization and protection against EAE in mice. J. Autoimmun. 97, 70–76 (2019).

    CAS 
    Article 

    Google Scholar 

  • 19.

    Garcin, G. et al. High efficiency cell-specific targeting of cytokine activity. Nat. Commun. 5, 3016 (2014).

    ADS 
    Article 

    Google Scholar 

  • 20.

    Schubert, R. D. et al. IFN-beta treatment requires B cells for efficacy in neuroautoimmunity. J. Immunol. 194, 2110–2116 (2015).

    CAS 
    Article 

    Google Scholar 

  • 21.

    Robinson, A. P., Harp, C. T., Noronha, A. & Miller, S. D. The experimental autoimmune encephalomyelitis (EAE) model of MS: Utility for understanding disease pathophysiology and treatment. Handb. Clin. Neurol. 122, 173–189 (2014).

    Article 

    Google Scholar 

  • 22.

    Blasius, A. L. & Colonna, M. Sampling and signaling in plasmacytoid dendritic cells: The potential roles of Siglec-H. Trends Immunol. 27, 255–260 (2006).

    CAS 
    Article 

    Google Scholar 

  • 23.

    Cauwels, A. et al. A safe and highly efficient tumor-targeted type I interferon immunotherapy depends on the tumor microenvironment. Oncoimmunology 7, e1398876 (2018).

    Article 

    Google Scholar 

  • 24.

    Zhang, J. et al. Characterization of Siglec-H as a novel endocytic receptor expressed on murine plasmacytoid dendritic cell precursors. Blood 107, 3600–3608 (2006).

    CAS 
    Article 

    Google Scholar 

  • 25.

    Matsushita, T., Yanaba, K., Bouaziz, J. D., Fujimoto, M. & Tedder, T. F. Regulatory B cells inhibit EAE initiation in mice while other B cells promote disease progression. J. Clin. Investig. 118, 3420–3430 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 26.

    Harden, J. L. & Egilmez, N. K. Indoleamine 2,3-dioxygenase and dendritic cell tolerogenicity. Immunol. Investig. 41, 738–764 (2012).

    CAS 
    Article 

    Google Scholar 

  • 27.

    Bettelli, E. et al. IL-10 is critical in the regulation of autoimmune encephalomyelitis as demonstrated by studies of IL-10- and IL-4-deficient and transgenic mice. J. Immunol. 161, 3299–3306 (1998).

    CAS 
    PubMed 

    Google Scholar 

  • 28.

    Yan, Y. et al. IDO upregulates regulatory T cells via tryptophan catabolite and suppresses encephalitogenic T cell responses in experimental autoimmune encephalomyelitis. J. Immunol. 185, 5953–5961 (2010).

    CAS 
    Article 

    Google Scholar 

  • 29.

    Lippens, C. et al. IDO-orchestrated crosstalk between pDCs and Tregs inhibits autoimmunity. J. Autoimmun. 75, 39–49 (2016).

    CAS 
    Article 

    Google Scholar 

  • 30.

    Wu, H., Gong, J. & Liu, Y. Indoleamine 2,3-dioxygenase regulation of immune response (review). Mol. Med. Rep. 17, 4867–4873 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 31.

    Chen, W. IDO: More than an enzyme. Nat. Immunol. 12, 809–811 (2011).

    CAS 
    Article 

    Google Scholar 

  • 32.

    Pallotta, M. T. et al. Indoleamine 2,3-dioxygenase is a signaling protein in long-term tolerance by dendritic cells. Nat. Immunol. 12, 870–878 (2011).

    CAS 
    Article 

    Google Scholar 

  • 33.

    Lukas, D. et al. TGF-beta inhibitor Smad7 regulates dendritic cell-induced autoimmunity. Proc. Natl. Acad. Sci. U. S. A. 114, E1480–E1489 (2017).

    CAS 
    Article 

    Google Scholar 

  • 34.

    Matysiak, M. et al. Stem cells ameliorate EAE via an indoleamine 2,3-dioxygenase (IDO) mechanism. J. Neuroimmunol. 193, 12–23 (2008).

    CAS 
    Article 

    Google Scholar 

  • 35.

    Munn, D. H. & Mellor, A. L. Indoleamine 2,3 dioxygenase and metabolic control of immune responses. Trends Immunol. 34, 137–143 (2013).

    CAS 
    Article 

    Google Scholar 

  • 36.

    Li, Q., Harden, J. L., Anderson, C. D. & Egilmez, N. K. Tolerogenic phenotype of IFN-gamma-induced IDO+ dendritic cells is maintained via an autocrine IDO-kynurenine/AhR-IDO loop. J. Immunol. 197, 962–970 (2016).

    CAS 
    Article 

    Google Scholar 

  • 37.

    Rothhammer, V. et al. Type I interferons and microbial metabolites of tryptophan modulate astrocyte activity and central nervous system inflammation via the aryl hydrocarbon receptor. Nat. Med. 22, 586–597 (2016).

    CAS 
    Article 

    Google Scholar 

  • 38.

    Yanagawa, Y., Iwabuchi, K. & Onoe, K. Co-operative action of interleukin-10 and interferon-gamma to regulate dendritic cell functions. Immunology 127, 345–353 (2009).

    CAS 
    Article 

    Google Scholar 

  • 39.

    Arellano, G., Ottum, P. A., Reyes, L. I., Burgos, P. I. & Naves, R. Stage-specific role of interferon-gamma in experimental autoimmune encephalomyelitis and multiple sclerosis. Front. Immunol. 6, 492 (2015).

    Article 

    Google Scholar 

  • 40.

    Ottum, P. A., Arellano, G., Reyes, L. I., Iruretagoyena, M. & Naves, R. Opposing roles of interferon-gamma on cells of the central nervous system in autoimmune neuroinflammation. Front. Immunol. 6, 539 (2015).

    Article 

    Google Scholar 

  • 41.

    Cauwels, A. et al. Delivering type I interferon to dendritic cells empowers tumor eradication and immune combination treatments. Cancer Res. 78, 463–474 (2018).

    CAS 
    Article 

    Google Scholar 

  • Source link