Preloader

Target enrichment long-read sequencing with adaptive sampling can determine the structure of the small supernumerary marker chromosomes

  • 1.

    Mahmoud M, Gobet N, Cruz-Dávalos DI, Mounier N, Dessimoz C, Sedlazeck FJ. Structural variant calling: the long and the short of it. Genome Biol. 2019;20:246.

    Article 

    Google Scholar 

  • 2.

    Ho SS, Urban AE, Mills RE. Structural variation in the sequencing era. Nat Rev Genet. 2020;21:171–89.

    CAS 
    Article 

    Google Scholar 

  • 3.

    Zepeda-Mendoza CJ, Morton CC. The Iceberg under Water: Unexplored Complexity of Chromoanagenesis in Congenital Disorders. Am J Hum Genet. 2019;104:565–77.

    CAS 
    Article 

    Google Scholar 

  • 4.

    Koltsova AS, Pendina AA, Efimova OA, Chiryaeva OG, Kuznetzova TV, Baranov VS. On the Complexity of Mechanisms and Consequences of Chromothripsis: An Update. Front Genet. 2019;10:393.

    CAS 
    Article 

    Google Scholar 

  • 5.

    Liehr T, Claussen U, Starke H. Small supernumerary marker chromosomes (sSMC) in humans. Cytogenet Genome Res. 2004;107:55–67.

    CAS 
    Article 

    Google Scholar 

  • 6.

    Malvestiti F, De Toffol S, Grimi B, Chinetti S, Marcato L, Agrati C, et al. De novo small supernumerary marker chromosomes detected on 143,000 consecutive prenatal diagnoses: chromosomal distribution, frequencies, and characterization combining molecular cytogenetics approaches. Prenat Diagn. 2014;34:460–8.

    Article 

    Google Scholar 

  • 7.

    Liehr T, Weise A. Frequency of small supernumerary marker chromosomes in prenatal, newborn, developmentally retarded and infertility diagnostics. Int J Mol Med. 2007;19:719–31.

    PubMed 

    Google Scholar 

  • 8.

    Liehr T. Characterization of prenatally assessed de novo small supernumerary marker chromosomes by molecular cytogenetics. Methods Mol Biol. 2008;444:27–38.

    CAS 
    Article 

    Google Scholar 

  • 9.

    Kotzot D. Complex and segmental uniparental disomy (UPD): review and lessons from rare chromosomal complements. J Med Genet. 2001;38:497–507.

    CAS 
    Article 

    Google Scholar 

  • 10.

    Liehr T, Ewers E, Hamid AB, Kosyakova N, Voigt M, Weise A, et al. Small supernumerary marker chromosomes and uniparental disomy have a story to tell. J Histochem Cytochem. 2011;59:842–8.

    CAS 
    Article 

    Google Scholar 

  • 11.

    Kurtas NE, Xumerle L, Leonardelli L, Delledonne M, Brusco A, Chrzanowska K, et al. Small supernumerary marker chromosomes: a legacy of trisomy rescue? Hum Mutat. 2019;40:193–200.

    CAS 
    Article 

    Google Scholar 

  • 12.

    Matsubara K, Yanagida K, Nagai T, Kagami M, Fukami M. De novo small supernumerary marker chromosomes arising from partial trisomy rescue. Front Genet. 2020;11:132.

    CAS 
    Article 

    Google Scholar 

  • 13.

    Jafari-Ghahfarokhi H, Moradi-Chaleshtori M, Liehr T, Hashemzadeh-Chaleshtori M, Teimori H, Ghasemi-Dehkordi P. Small supernumerary marker chromosomes and their correlation with specific syndromes. Adv Biomed Res. 2015;4:140.

    Article 

    Google Scholar 

  • 14.

    O’Connell J, Schulz-Trieglaff O, Carlson E, Hims MM, Gormley NA, Cox AJ. NxTrim: optimized trimming of Illumina mate pair reads. Bioinformatics. 2015;31:2035–7.

    Article 

    Google Scholar 

  • 15.

    Li H, Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics. 2010;26:589–95.

    Article 

    Google Scholar 

  • 16.

    Fan X, Abbott TE, Larson D, Chen K. BreakDancer: Identification of Genomic Structural Variation from Paired-End Read Mapping. Curr Protoc Bioinforma. 2014;45(1-11):15.6.

    Google Scholar 

  • 17.

    Thorvaldsdóttir H, Robinson JT, Mesirov JP. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform. 2013;14:178–92.

    Article 

    Google Scholar 

  • 18.

    Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. 2018;34:3094–100.

    CAS 
    Article 

    Google Scholar 

  • 19.

    Jiang T, Liu Y, Jiang Y, Li J, Gao Y, Cui Z, et al. Long-read-based human genomic structural variation detection with cuteSV. Genome Biol. 2020;21:189.

    CAS 
    Article 

    Google Scholar 

  • 20.

    Kato T, Inagaki H, Miyai S, Suzuki F, Naru Y, Shinkai Y, et al. The involvement of U-type dicentric chromosomes in the formation of terminal deletions with or without adjacent inverted duplications. Hum Genet. 2020;139:1417–27.

    CAS 
    Article 

    Google Scholar 

  • 21.

    Nurk S, Koren S, Rhie A, Rautiainen M, Bzikadze AV, Mikheenko A, et al. The complete sequence of a human genome. bioRxiv. 2021:2021.05.26.445798.

  • 22.

    Zhou L, Zheng Z, Wu L, Xu C, Wu H, Xu X, et al. Molecular delineation of small supernumerary marker chromosomes using a single nucleotide polymorphism array. Mol Cytogenet. 2020;13:19.

    CAS 
    Article 

    Google Scholar 

  • 23.

    Kato T, Ouchi Y, Inagaki H, Makita Y, Mizuno S, Kajita M, et al. Genomic characterization of chromosomal insertions: insights into the mechanisms underlying chromothripsis. Cytogenet Genome Res. 2017;153:1–9.

    Article 

    Google Scholar 

  • 24.

    Bonaglia MC, Kurtas NE, Errichiello E, Bertuzzo S, Beri S, Mehrjouy MM, et al. De novo unbalanced translocations have a complex history/aetiology. Hum Genet. 2018;137:817–29.

    CAS 
    Article 

    Google Scholar 

  • 25.

    Hermetz KE, Newman S, Conneely KN, Martin CL, Ballif BC, Shaffer LG, et al. Large inverted duplications in the human genome form via a fold-back mechanism. PLoS Genet. 2014;10:e1004139.

    Article 

    Google Scholar 

  • 26.

    Crasta K, Ganem NJ, Dagher R, Lantermann AB, Ivanova EV, Pan Y, et al. DNA breaks and chromosome pulverization from errors in mitosis. Nature. 2012;482:53–8.

    CAS 
    Article 

    Google Scholar 

  • 27.

    Zhang CZ, Spektor A, Cornils H, Francis JM, Jackson EK, Liu S, et al. Chromothripsis from DNA damage in micronuclei. Nature. 2015;522:179–84.

    CAS 
    Article 

    Google Scholar 

  • Source link