Preloader

T lymphocyte membrane-decorated epigenetic nanoinducer of interferons for cancer immunotherapy

  • 1.

    Dunn, G. P., Koebel, C. M. & Schreiber, R. D. Interferons, immunity and cancer immunoediting. Nat. Rev. Immunol. 6, 836–848 (2006).

    CAS 
    Article 

    Google Scholar 

  • 2.

    Minn, A. J. & Wherry, E. J. Combination cancer therapies with immune checkpoint blockade: convergence on interferon signaling. Cell 165, 272–275 (2016).

    CAS 
    Article 

    Google Scholar 

  • 3.

    Parker, B. S., Rautela, J. & Hertzog, P. J. Antitumour actions of interferons: implications for cancer therapy. Nat. Rev. Cancer 16, 131–144 (2016).

    Article 
    CAS 

    Google Scholar 

  • 4.

    Zitvogel, L., Galluzzi, L., Kepp, O., Smyth, M. J. & Kroemer, G. Type I interferons in anticancer immunity. Nat. Rev. Immunol. 15, 405–414 (2015).

    CAS 
    Article 

    Google Scholar 

  • 5.

    Sceneay, J. et al. Interferon signaling is diminished with age and is associated with immune checkpoint blockade efficacy in triple-negative breast cancer. Cancer Discov. 9, 1208–1227 (2019).

    CAS 
    Article 

    Google Scholar 

  • 6.

    Critchley-Thorne, R. J. et al. Impaired interferon signaling is a common immune defect in human cancer. Proc. Natl Acad. Sci. USA 106, 9010–9015 (2009).

    CAS 
    Article 

    Google Scholar 

  • 7.

    Sisirak, V. et al. Impaired IFN-alpha production by plasmacytoid dendritic cells favors regulatory T-cell expansion that may contribute to breast cancer progression. Cancer Res. 72, 5188–5197 (2012).

    CAS 
    Article 

    Google Scholar 

  • 8.

    Domschke, C. et al. Intratumoral cytokines and tumor cell biology determine spontaneous breast cancer-specific immune responses and their correlation to prognosis. Cancer Res. 69, 8420–8428 (2009).

    CAS 
    Article 

    Google Scholar 

  • 9.

    Bidwell, B. N. et al. Silencing of Irf7 pathways in breast cancer cells promotes bone metastasis through immune escape. Nat. Med. 18, 1224–1231 (2012).

    CAS 
    Article 

    Google Scholar 

  • 10.

    Salvagno, C. et al. Therapeutic targeting of macrophages enhances chemotherapy efficacy by unleashing type I interferon response. Nat. Cell Biol. 21, 511–521 (2019).

    CAS 
    Article 

    Google Scholar 

  • 11.

    Sistigu, A. et al. Cancer cell-autonomous contribution of type I interferon signaling to the efficacy of chemotherapy. Nat. Med. 20, 1301–1309 (2014).

    CAS 
    Article 

    Google Scholar 

  • 12.

    Benci, J. L. et al. Tumor interferon signaling regulates a multigenic resistance program to immune checkpoint blockade. Cell 167, 1540–1554 (2016).

    CAS 
    Article 

    Google Scholar 

  • 13.

    Demaria, O. et al. Harnessing innate immunity in cancer therapy. Nature 574, 45–56 (2019).

    CAS 
    Article 

    Google Scholar 

  • 14.

    Cauwels, A. et al. Delivering type I interferon to dendritic cells empowers tumor eradication and immune combination treatments. Cancer Res. 78, 463–474 (2018).

    CAS 
    Article 

    Google Scholar 

  • 15.

    De Palma, M. et al. Tumor-targeted interferon-alpha delivery by Tie2-expressing monocytes inhibits tumor growth and metastasis. Cancer Cell 14, 299–311 (2008).

    Article 
    CAS 

    Google Scholar 

  • 16.

    Escobar, G. et al. Genetic engineering of hematopoiesis for targeted IFN-α delivery inhibits breast cancer progression. Sci. Transl. Med. 6, 217ra213 (2014).

    Article 
    CAS 

    Google Scholar 

  • 17.

    Topper, M. J., Vaz, M., Marrone, K. A., Brahmer, J. R. & Baylin, S. B. The emerging role of epigenetic therapeutics in immuno-oncology. Nat. Rev. Clin. Oncol. 17, 75–90 (2020).

    Article 

    Google Scholar 

  • 18.

    Sheng, W. Q. et al. LSD1 ablation stimulates anti-tumor immunity and enables checkpoint blockade. Cell 174, 549–563 (2018).

    CAS 
    Article 

    Google Scholar 

  • 19.

    Maes, T. et al. ORY-1001, a potent and selective covalent KDM1A inhibitor, for the treatment of acute leukemia. Cancer Cell 33, 495–511 (2018).

    CAS 
    Article 

    Google Scholar 

  • 20.

    Poggio, M. et al. Suppression of exosomal PD-L1 induces systemic anti-tumor immunity and memory. Cell 177, 414–427 (2019).

    CAS 
    Article 

    Google Scholar 

  • 21.

    Hu, C. M. J. et al. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proc. Natl Acad. Sci. USA 108, 10980–10985 (2011).

    CAS 
    Article 

    Google Scholar 

  • 22.

    Hu, C. M. J., Fang, R. H., Luk, B. T. & Zhang, L. F. Nanoparticle-detained toxins for safe and effective vaccination. Nat. Nanotechnol. 8, 933–938 (2013).

    CAS 
    Article 

    Google Scholar 

  • 23.

    Hu, C. M. J. et al. Nanoparticle biointerfacing by platelet membrane cloaking. Nature 526, 118–121 (2015).

    CAS 
    Article 

    Google Scholar 

  • 24.

    Wang, C. et al. In situ activation of platelets with checkpoint inhibitors for post-surgical cancer immunotherapy. Nat. Biomed. Eng. 1, 0011 (2017).

    CAS 
    Article 

    Google Scholar 

  • 25.

    Hu, Q. Y. et al. Anticancer platelet-mimicking nanovehicles. Adv. Mater. 27, 7043–7050 (2015).

    CAS 
    Article 

    Google Scholar 

  • 26.

    Ciriello, G. et al. Comprehensive molecular portraits of invasive lobular breast cancer. Cell 163, 506–519 (2015).

    CAS 
    Article 

    Google Scholar 

  • 27.

    Rueda, O. M. et al. Dynamics of breast-cancer relapse reveal late-recurring ER-positive genomic subgroups. Nature 567, 399–404 (2019).

    CAS 
    Article 

    Google Scholar 

  • 28.

    Tokuyama, M. et al. ERVmap analysis reveals genome-wide transcription of human endogenous retroviruses. Proc. Natl Acad. Sci. USA 115, 12565–12572 (2018).

    CAS 
    Article 

    Google Scholar 

  • 29.

    Kinter, A. L. et al. The common gamma-chain cytokines IL-2, IL-7, IL-15, and IL-21 induce the expression of programmed death-1 and its ligands. J. Immunol. 181, 6738–6746 (2008).

    CAS 
    Article 

    Google Scholar 

  • 30.

    Parry, R. V. et al. CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms. Mol. Cell. Biol. 25, 9543–9553 (2005).

    CAS 
    Article 

    Google Scholar 

  • 31.

    Jiang, W., Kim, B. Y. S., Rutka, J. T. & Chan, W. C. W. Nanoparticle-mediated cellular response is size-dependent. Nat. Nanotechnol. 3, 145–150 (2008).

    CAS 
    Article 

    Google Scholar 

  • 32.

    Gillis, S. & Smith, K. A. Long term culture of tumour-specific cytotoxic T cells. Nature 268, 154–156 (1977).

    CAS 
    Article 

    Google Scholar 

  • 33.

    Li, C. W. et al. Eradication of triple-negative breast cancer cells by targeting glycosylated PD-L1. Cancer Cell 33, 187–201 (2018).

    CAS 
    Article 

    Google Scholar 

  • 34.

    Kalbasi, A. et al. Uncoupling interferon signaling and antigen presentation to overcome immunotherapy resistance due to JAK1 loss in melanoma. Sci. Transl. Med. 12, eabb0152 (2020).

    CAS 
    Article 

    Google Scholar 

  • 35.

    Seliger, B., Wollscheid, U., Momburg, F., Blankenstein, T. & Huber, C. Characterization of the major histocompatibility complex class I deficiencies in B16 melanoma cells. Cancer Res. 61, 1095–1099 (2001).

    CAS 

    Google Scholar 

  • 36.

    Tang, L. et al. Enhancing T cell therapy through TCR-signaling-responsive nanoparticle drug delivery. Nat. Biotechnol. 36, 707–716 (2018).

    CAS 
    Article 

    Google Scholar 

  • 37.

    Schmidt-Arras, D. & Rose-John, S. IL-6 pathway in the liver: from physiopathology to therapy. J. Hepatol. 64, 1403–1415 (2016).

    CAS 
    Article 

    Google Scholar 

  • 38.

    Garrido-Castro, A. C., Lin, N. U. & Polyak, K. Insights into molecular classifications of triple-negative breast cancer: improving patient selection for treatment. Cancer Discov. 9, 176–198 (2019).

    CAS 
    Article 

    Google Scholar 

  • 39.

    Bareche, Y. et al. Unraveling triple-negative breast cancer tumor microenvironment heterogeneity: towards an optimized treatment approach. J. Natl Cancer Inst. 112, 708–719 (2020).

    Article 
    CAS 

    Google Scholar 

  • 40.

    Savas, P. et al. Clinical relevance of host immunity in breast cancer: from TILs to the clinic. Nat. Rev. Clin. Oncol. 13, 228–241 (2016).

    CAS 
    Article 

    Google Scholar 

  • 41.

    Gruosso, T. et al. Spatially distinct tumor immune microenvironments stratify triple-negative breast cancers. J. Clin. Invest. 129, 1785–1800 (2019).

    Article 

    Google Scholar 

  • 42.

    Zhang, X. et al. PD-1 blockade cellular vesicles for cancer immunotherapy. Adv. Mater. 30, 1707112 (2018).

    Article 
    CAS 

    Google Scholar 

  • 43.

    Zhang, X. et al. Engineering PD-1-presenting platelets for cancer immunotherapy. Nano Lett. 18, 5716–5725 (2018).

    CAS 
    Article 

    Google Scholar 

  • 44.

    Ferguson, S. S. Evolving concepts in G protein-coupled receptor endocytosis: the role in receptor desensitization and signaling. Pharmacol. Rev. 53, 1–24 (2001).

    CAS 

    Google Scholar 

  • 45.

    Sagiv-Barfi, I. et al. Therapeutic antitumor immunity by checkpoint blockade is enhanced by ibrutinib, an inhibitor of both BTK and ITK. Proc. Natl Acad. Sci. USA 112, E966–E972 (2015).

    CAS 
    Article 

    Google Scholar 

  • 46.

    de Graauw, M. et al. Annexin A1 regulates TGF-beta signaling and promotes metastasis formation of basal-like breast cancer cells. Proc. Natl Acad. Sci. USA 107, 6340–6345 (2010).

    Article 

    Google Scholar 

  • 47.

    Spranger, S., Bao, R. Y. & Gajewski, T. F. Melanoma-intrinsic β-catenin signalling prevents anti-tumour immunity. Nature 523, 231–235 (2015).

    CAS 
    Article 

    Google Scholar 

  • 48.

    Bald, T. et al. Immune cell-poor melanomas benefit from PD-1 blockade after targeted type I IFN activation. Cancer Discov. 4, 674–687 (2014).

    CAS 
    Article 

    Google Scholar 

  • 49.

    Rafiq, S., Hackett, C. S. & Brentjens, R. J. Engineering strategies to overcome the current roadblocks in CAR T cell therapy. Nat. Rev. Clin. Oncol. 17, 147–167 (2020).

    Article 

    Google Scholar 

  • Source link