Preloader

T cell characteristics associated with toxicity to immune checkpoint blockade in patients with melanoma

  • 1.

    Kumar, V. et al. Current diagnosis and management of immune related adverse events (irAEs) induced by immune checkpoint inhibitor therapy. Front. Pharmacol. 8, 49 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 2.

    Larkin, J. et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N. Engl. J. Med. 373, 23–34 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 3.

    Hodi, F. S. et al. Nivolumab plus ipilimumab or nivolumab alone versus ipilimumab alone in advanced melanoma (CheckMate 067): 4-year outcomes of a multicentre, randomised, phase 3 trial. Lancet Oncol. 19, 1480–1492 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 4.

    Postow, M. A., Sidlow, R. & Hellmann, M. D. Immune-related adverse events associated with immune checkpoint blockade. N. Engl. J. Med. 378, 158–168 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 5.

    Wolchok, J. D. et al. Overall survival with combined nivolumab and ipilimumab in advanced melanoma. N. Engl. J. Med. 377, 1345–1356 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 6.

    Hamid, O. et al. Five-year survival outcomes for patients with advanced melanoma treated with pembrolizumab in KEYNOTE-001. Ann. Oncol. 30, 582–588 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 7.

    Robert, C. et al. Pembrolizumab versus ipilimumab in advanced melanoma (KEYNOTE-006): post-hoc 5-year results from an open-label, multicentre, randomised, controlled, phase 3 study. Lancet Oncol. 20, 1239–1251 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 8.

    Robert, C. et al. Pembrolizumab versus ipilimumab in advanced melanoma. N. Engl. J. Med. 372, 2521–2532 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 9.

    Schachter, J. et al. Pembrolizumab versus ipilimumab for advanced melanoma: final overall survival results of a multicentre, randomised, open-label phase 3 study (KEYNOTE-006). Lancet 390, 1853–1862 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • 10.

    Johnson, D. B. et al. Fulminant myocarditis with combination immune checkpoint blockade. N. Engl. J. Med. 375, 1749–1755 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 11.

    Wang, D. Y. et al. Fatal toxic effects associated with immune checkpoint inhibitors: a systematic review and meta-analysis. JAMA Oncol. 4, 1721–1728 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 12.

    Haanen, J. B. A. G. et al. Management of toxicities from immunotherapy: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 28, iv119–iv142 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • 13.

    Das, S. & Johnson, D. B. Immune-related adverse events and anti-tumor efficacy of immune checkpoint inhibitors. J. Immunother. Cancer 7, 306 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 14.

    Johnson, D. B. et al. A case report of clonal EBV-like memory CD4+ T cell activation in fatal checkpoint inhibitor-induced encephalitis. Nat. Med. 25, 1243–1250 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 15.

    Tahir, S. A. et al. Autoimmune antibodies correlate with immune checkpoint therapy-induced toxicities. Proc. Natl Acad. Sci. USA 116, 22246–22251 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 16.

    Shahabi, V. et al. Gene expression profiling of whole blood in ipilimumab-treated patients for identification of potential biomarkers of immune-related gastrointestinal adverse events. J. Transl. Med. 11, 75 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 17.

    Tarhini, A. A. et al. Baseline circulating IL-17 predicts toxicity while TGF-β1 and IL-10 are prognostic of relapse in ipilimumab neoadjuvant therapy of melanoma. J. Immunother. Cancer 3, 39 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 18.

    Fujimura, T. et al. Serum levels of soluble CD163 and CXCL5 may be predictive markers for immune-related adverse events in patients with advanced melanoma treated with nivolumab: a pilot study. Oncotarget 9, 15542–15551 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 19.

    Das, R. et al. Early B cell changes predict autoimmunity following combination immune checkpoint blockade. J. Clin. Invest. 128, 715–720 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 20.

    Subudhi, S. K. et al. Clonal expansion of CD8 T cells in the systemic circulation precedes development of ipilimumab-induced toxicities. Proc. Natl Acad. Sci. USA 113, 11919–11924 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 21.

    Chaput, N. et al. Baseline gut microbiota predicts clinical response and colitis in metastatic melanoma patients treated with ipilimumab. Ann. Oncol. 30, 2012 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 22.

    Dubin, K. et al. Intestinal microbiome analyses identify melanoma patients at risk for checkpoint-blockade-induced colitis. Nat. Commun. 7, 10391 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 23.

    Jing, Y. et al. Multi-omics prediction of immune-related adverse events during checkpoint immunotherapy. Nat. Commun. 11, 4946 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 24.

    Lim, S. Y. et al. Circulating cytokines predict immune-related toxicity in melanoma patients receiving anti-PD-1-based immunotherapy. Clin. Cancer Res. 25, 1557–1563 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 25.

    Pavan, A. et al. Peripheral blood markers identify risk of immune-related toxicity in advanced non-small cell lung cancer treated with immune-checkpoint inhibitors. Oncologist 24, 1128–1136 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 26.

    Andrews, M. C. et al. Gut microbiota signatures are associated with toxicity to combined CTLA-4 and PD-1 blockade. Nat. Med. 27, 1432–1441 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • 27.

    Hutchinson, J. A. et al. Virus-specific memory T cell responses unmasked by immune checkpoint blockade cause hepatitis. Nat. Commun. 12, 1439 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 28.

    Yasuda, Y. et al. CD4+ T cells are essential for the development of destructive thyroiditis induced by anti-PD-1 antibody in thyroglobulin-immunized mice. Sci. Transl. Med. 13, eabb7495 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • 29.

    Morad, G., Helmink, B. A., Sharma, P. & Wargo, J. A. Hallmarks of response, resistance, and toxicity to immune checkpoint blockade. Cell 184, 5309–5337 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • 30.

    Marschner, D. et al. MicroRNA-146a regulates immune-related adverse events caused by immune checkpoint inhibitors. JCI Insight 5, e132334 (2020).

    PubMed Central 

    Google Scholar 

  • 31.

    Auslander, N. et al. Robust prediction of response to immune checkpoint blockade therapy in metastatic melanoma. Nat. Med. 24, 1545–1549 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 32.

    Krieg, C. et al. High-dimensional single-cell analysis predicts response to anti-PD-1 immunotherapy. Nat. Med. 24, 144–153 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 33.

    Liu, D. et al. Integrative molecular and clinical modeling of clinical outcomes to PD1 blockade in patients with metastatic melanoma. Nat. Med. 25, 1916–1927 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 34.

    Jacquelot, N. et al. Predictors of responses to immune checkpoint blockade in advanced melanoma. Nat. Commun. 8, 592 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 35.

    Riaz, N. et al. Tumor and microenvironment evolution during immunotherapy with nivolumab. Cell 171, 934–949.e16 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 36.

    Huang, A. C. et al. T-cell invigoration to tumour burden ratio associated with anti-PD-1 response. Nature 545, 60–65 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 37.

    Fairfax, B. P. et al. Peripheral CD8+ T cell characteristics associated with durable responses to immune checkpoint blockade in patients with metastatic melanoma. Nat. Med. 26, 193–199 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 38.

    Bieber, A. K., Yin, L. & Lo Sicco, K. Pruritus and tense bullae after discontinuation of pembrolizumab in a patient with renal cell carcinoma. JAMA 324, 1453–1454 (2020).

    PubMed 

    Google Scholar 

  • 39.

    Lopez, A. T. & Geskin, L. A case of nivolumab-induced bullous pemphigoid: review of dermatologic toxicity associated with programmed cell death protein-1/programmed death ligand-1 inhibitors and recommendations for diagnosis and management. Oncologist 23, 1119–1126 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 40.

    Singer, S., Nelson, C. A., Lian, C. G., Dewan, A. K. & LeBoeuf, N. R. Nonbullous pemphigoid secondary to PD-1 inhibition. JAAD Case Rep. 5, 898–903 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 41.

    Croft, M., So, T., Duan, W. & Soroosh, P. The significance of OX40 and OX40L to T-cell biology and immune disease. Immunol. Rev. 229, 173–191 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 42.

    Campbell, J. J. et al. CCR7 expression and memory T cell diversity in humans. J. Immunol. 166, 877–884 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • 43.

    Shifrut, E. et al. Genome-wide CRISPR screens in primary human T cells reveal key regulators of immune function. Cell 175, 1958–1971.e15 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 44.

    Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587.e29 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 45.

    Chiffelle, J. et al. T-cell repertoire analysis and metrics of diversity and clonality. Curr. Opin. Biotechnol. 65, 284–295 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • 46.

    Rényi, A. On the foundations of information theory. Rev. Int. Stat. Inst. 33, 1–14 (1965).

    Google Scholar 

  • 47.

    Robert, L. et al. CTLA4 blockade broadens the peripheral T-cell receptor repertoire. Clin. Cancer Res. 20, 2424–2432 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 48.

    Sims, J. S. et al. Diversity and divergence of the glioma-infiltrating T-cell receptor repertoire. Proc. Natl Acad. Sci. USA 113, E3529–E3537 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 49.

    Newman, A. M. et al. Determining cell type abundance and expression from bulk tissues with digital cytometry. Nat. Biotechnol. 37, 773–782 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 50.

    Gentles, A. J. et al. The prognostic landscape of genes and infiltrating immune cells across human cancers. Nat. Med. 21, 938–945 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 51.

    Newman, A. M. et al. Robust enumeration of cell subsets from tissue expression profiles. Nat. Methods 12, 453–457 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 52.

    Thorsson, V. et al. The immune landscape of cancer. Immunity 48, 812–830.e14 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 53.

    Bolotin, D. A. et al. MiXCR: software for comprehensive adaptive immunity profiling. Nat. Methods 12, 380–381 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 54.

    Eggermont, A. M. M., Crittenden, M. & Wargo, J. Combination immunotherapy development in melanoma. Am. Soc. Clin. Oncol. Educ. Book 38, 197–207 (2018).

    PubMed 

    Google Scholar 

  • 55.

    Boutros, C. et al. Safety profiles of anti-CTLA-4 and anti-PD-1 antibodies alone and in combination. Nat. Rev. Clin. Oncol. 13, 473–486 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 56.

    Burczynski, M. E. et al. Molecular classification of Crohn’s disease and ulcerative colitis patients using transcriptional profiles in peripheral blood mononuclear cells. J. Mol. Diagn. 8, 51–61 (2006).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 57.

    Carpintero, M. F. et al. Diagnosis and risk stratification in patients with anti-RNP autoimmunity. Lupus 24, 1057–1066 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 58.

    Hung, T. et al. The Ro60 autoantigen binds endogenous retroelements and regulates inflammatory gene expression. Science 350, 455–459 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 59.

    Kennedy, W. P. et al. Association of the interferon signature metric with serological disease manifestations but not global activity scores in multiple cohorts of patients with SLE. Lupus Sci. Med. 2, e000080 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 60.

    Palmer, N. P. et al. Concordance between gene expression in peripheral whole blood and colonic tissue in children with inflammatory bowel disease. PLoS ONE 14, e0222952 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 61.

    Peters, L. A. et al. A functional genomics predictive network model identifies regulators of inflammatory bowel disease. Nat. Genet. 49, 1437–1449 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 62.

    Menzies, A. M. et al. Anti-PD-1 therapy in patients with advanced melanoma and preexisting autoimmune disorders or major toxicity with ipilimumab. Ann. Oncol. 28, 368–376 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • 63.

    Brown, L. J. et al. Combination anti-PD1 and ipilimumab therapy in patients with advanced melanoma and pre-existing autoimmune disorders. J. Immunother. Cancer 9, e002121 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 64.

    Johnson, D. B. et al. Ipilimumab therapy in patients with advanced melanoma and preexisting autoimmune disorders. JAMA Oncol. 2, 234–240 (2016).

    PubMed 

    Google Scholar 

  • 65.

    Tang, S.-Q. et al. The pattern of time to onset and resolution of immune-related adverse events caused by immune checkpoint inhibitors in cancer: a pooled analysis of 23 clinical trials and 8,436 patients. Cancer Res. Treat. 53, 339–354 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • 66.

    Nabet, B. Y. et al. Noninvasive early identification of therapeutic benefit from immune checkpoint inhibition. Cell 183, 363–376.e13 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 67.

    Rizvi, N. A. et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 348, 124–128 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 68.

    Steele, N. G. et al. Multimodal mapping of the tumor and peripheral blood immune landscape in human pancreatic cancer. Nat. Cancer 1, 1097–1112 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 69.

    Amir, E. D. et al. viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia. Nat. Biotechnol. 31, 545–552 (2013).

    CAS 
    PubMed Central 

    Google Scholar 

  • 70.

    Van Gassen, S. et al. FlowSOM: using self-organizing maps for visualization and interpretation of cytometry data. Cytometry A 87, 636–645 (2015).

    PubMed 

    Google Scholar 

  • 71.

    Amir, E. D. et al. Development of a comprehensive antibody staining database using a standardized analytics pipeline. Front. Immunol. 10, 1315 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 72.

    Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902.e21 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 73.

    Soneson, C., Love, M. I. & Robinson, M. D. Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences. F1000Res 4, 1521 (2015).

    PubMed 

    Google Scholar 

  • 74.

    Chen, G. M. et al. Integrative bulk and single-cell profiling of pre-manufacture T-cell populations reveals factors mediating long-term persistence of CAR T-cell therapy. Cancer Discov. 11, 2186–2199 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • 75.

    Kaech, S. M., Wherry, E. J. & Ahmed, R. Effector and memory T-cell differentiation: implications for vaccine development. Nat. Rev. Immunol. 2, 251–262 (2002).

    CAS 
    PubMed 

    Google Scholar 

  • 76.

    Sprent, J. & Surh, C. D. T cell memory. Annu. Rev. Immunol. 20, 551–579 (2002).

    CAS 
    PubMed 

    Google Scholar 

  • 77.

    van den Broek, T., Borghans, J. A. M. & van Wijk, F. The full spectrum of human naive T cells. Nat. Rev. Immunol. 18, 363–373 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 78.

    Dixon, P. VEGAN, a package of R functions for community ecology. J. Veg. Sci. 14, 927–930 (2003).

    Google Scholar 

  • 79.

    Jiang, H., Lei, R., Ding, S.-W. & Zhu, S. Skewer: a fast and accurate adapter trimmer for next-generation sequencing paired-end reads. BMC Bioinformatics 15, 182 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 80.

    Borcherding, N. et al. Mapping the immune environment in clear cell renal carcinoma by single-cell genomics. Commun. Biol. 4, 122 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 81.

    Motulsky, H. J. & Brown, R. E. Detecting outliers when fitting data with nonlinear regression—a new method based on robust nonlinear regression and the false discovery rate. BMC Bioinformatics 7, 123 (2006).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 82.

    Gautier, L., Cope, L., Bolstad, B. M. & Irizarry, R. A. affy—analysis of Affymetrix GeneChip data at the probe level. Bioinformatics 20, 307–315 (2004).

    CAS 
    PubMed 

    Google Scholar 

  • 83.

    Lipták, T. On the combination of independent tests. Magyar Tud. Akad. Mat. Kutató Int. Közl. 3, 171–197 (1958).

    Google Scholar 

  • 84.

    Stouffer, S. A., Suchman, E. A., Devinney, L. C., Star, S. A., & Williams, R. M., Jr. in Studies in Social Psychology in World War II (Princeton Univ. Press, 82–154 1949).

  • 85.

    Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 86.

    Cohen, J. Statistical Power Analysis for the Behavioral Sciences (L. Erlbaum Associates, 1988).

  • Source link