CDC. Emerging Variants. https://www.cdc.gov/coronavirus/2019-ncov/more/science-and-research/scientific-brief-emerging-variants.html (2020).
Huang, Y., Xiao, S., Song, D. & Yuan, Z. Evaluating the virucidal activity of four disinfectants against SARS-CoV-2. Am. J. Infect. Control 50, 319 (2022).
Google Scholar
Kratzel, A. et al. Inactivation of severe acute respiratory syndrome coronavirus 2 by WHO-recommended hand rub formulations and alcohols. Emerg. Infect. Dis. 26, 1592–1595 (2020).
Google Scholar
Ochowiak, M. et al. Spray curtains as devices for surface spraying during the SARS-CoV-2 pandemic. Environ. Res. 206, 112562 (2022).
Google Scholar
Raventós, J. & Sabate, R. Air curtains equipped with hydroalcoholic aerosol sprayers for massive COVID-19 disinfection. Front. Public Health 8, 582782 (2021).
Google Scholar
Christie-Holmes, N. et al. Vapourized hydrogen peroxide decontamination in a hospital setting inactivates SARS-CoV-2 and HCoV-229E without compromising filtration efficiency of unexpired N95 respirators. Am. J. Infect. Control 49, 1227–1231 (2021).
Google Scholar
Khaiboullina, S., Uppal, T., Dhabarde, N., Subramanian, V. R. & Verma, S. C. Inactivation of human coronavirus by titania nanoparticle coatings and UVC radiation: throwing light on SARS-CoV-2. Viruses 13, 19 (2020).
Google Scholar
Calfee, M. W. et al. Virucidal efficacy of antimicrobial surface coatings against the enveloped bacteriophage Φ6. J. Appl. Microbiol. 132, 1813–1824 (2022).
Google Scholar
Kim, M. J., Linstadt, R. T. H., Ahn Ando, K. & Ahn, J. Gemini-mediated self-disinfecting surfaces to address the contact transmission of infectious diseases. Langmuir ACS J. Surf. Colloids 38, 2162–2173 (2022).
Google Scholar
Sadani, K. et al. Polyphenol stabilized copper nanoparticle formulations for rapid disinfection of bacteria and virus on diverse surfaces. Nanotechnology 33, 5648 (2021).
Lore, M. B., Heimbuch, B. K., Brown, T. L., Wander, J. D. & Hinrichs, S. H. Effectiveness of three decontamination treatments against influenza virus applied to filtering facepiece respirators. Ann. Occup. Hyg. 56, 92–101 (2012).
Google Scholar
Duan, S.-M. et al. Stability of SARS coronavirus in human specimens and environment and its sensitivity to heating and UV irradiation. Biomed. Environ. Sci. BES 16, 246–255 (2003).
Google Scholar
Buonanno, M., Welch, D., Shuryak, I. & Brenner, D. J. Far-UVC light (222 nm) efficiently and safely inactivates airborne human coronaviruses. Sci. Rep. 10, 10285 (2020).
Google Scholar
Inagaki, H., Saito, A., Sugiyama, H., Okabayashi, T. & Fujimoto, S. Rapid inactivation of SARS-CoV-2 with deep-UV LED irradiation. Emerg. Microbes Infect 9, 1744–1747 (2020).
Google Scholar
Kitagawa, H. et al. Effectiveness of 222-nm ultraviolet light on disinfecting SARS-CoV-2 surface contamination. Am. J. Infect. Control 49, 299–301 (2021).
Google Scholar
Fischer, R. J. et al. Assessment of N95 respirator decontamination and re-use for SARS-CoV-2. medRxiv Preprint Server Health Sci. https://doi.org/10.1101/2020.04.11.20062018 (2020).
Google Scholar
Hadi, J., Dunowska, M., Wu, S. & Brightwell, G. Control measures for SARS-CoV-2: A review on light-based inactivation of single-stranded RNA viruses. Pathogens (Basel, Switzerland) 9 (2020).
Marra, A. R., Schweizer, M. L. & Edmond, M. B. No-touch disinfection methods to decrease multidrug-resistant organism infections: a systematic review and meta-analysis. Infect. Control Hosp. Epidemiol. 39, 20–31 (2018).
Google Scholar
Beck, S. E., Hull, N. M., Poepping, C. & Linden, K. G. Wavelength-dependent damage to adenoviral proteins across the germicidal UV spectrum. Environ. Sci. Technol. 52, 223–229 (2018).
Google Scholar
Narita, K., Asano, K., Morimoto, Y., Igarashi, T. & Nakane, A. Chronic irradiation with 222-nm UVC light induces neither DNA damage nor epidermal lesions in mouse skin, even at high doses. PLoS ONE 13, e0201259 (2018).
Google Scholar
Narita, K. et al. Disinfection and healing effects of 222-nm UVC light on methicillin-resistant Staphylococcus aureus infection in mouse wounds. J. Photochem. Photobiol. B 178, 10–18 (2018).
Google Scholar
Buonanno, M. et al. Germicidal efficacy and mammalian skin safety of 222-nm UV light. Radiat. Res. 187, 483–491 (2017).
Google Scholar
el Haddad, L. et al. Evaluation of a pulsed xenon ultraviolet disinfection system to decrease bacterial contamination in operating rooms. BMC Infect. Dis. 17 (2017).
Ali, S., Yui, S., Muzslay, M. & Wilson, A. P. R. Comparison of two whole-room ultraviolet irradiation systems for enhanced disinfection of contaminated hospital patient rooms. J. Hosp. Infect. 97, 180–184 (2017).
Google Scholar
Lindsley, W. G. et al. Effects of ultraviolet germicidal irradiation (UVGI) on N95 respirator filtration performance and structural integrity. J. Occup. Environ. Hyg. 12, 509–517 (2015).
Google Scholar
Tande, B. M., Pringle, T. A., Rutala, W. A., Gergen, M. F. & Weber, D. J. Understanding the effect of ultraviolet light intensity on disinfection performance through the use of ultraviolet measurements and simulation. Infect. Control Hosp. Epidemiol. 39, 1122–1124 (2018).
Google Scholar
Li, G. Q., Wang, W. L., Huo, Z. Y., Lu, Y. & Hu, H. Y. Comparison of UV-LED and low pressure UV for water disinfection: Photoreactivation and dark repair of Escherichia coli. Water Res. 126, 134–143 (2017).
Google Scholar
Rattanakul, S. & Oguma, K. Inactivation kinetics and efficiencies of UV-LEDs against Pseudomonas aeruginosa, Legionella pneumophila, and surrogate microorganisms. Water Res. 130, 31–37 (2018).
Google Scholar
Oguma, K., Kanazawa, K., Kasuga, I. & Takizawa, S. Effects of UV irradiation by light emitting diodes on heterotrophic bacteria in tap water. Photochem. Photobiol. 94, 570–576 (2018).
Google Scholar
Song, K., Taghipour, F. & Mohseni, M. Microorganisms inactivation by wavelength combinations of ultraviolet light-emitting diodes (UV-LEDs). Sci. Total Environ. 665, 1103–1110 (2019).
Google Scholar
Trevisan, A. et al. Unusual high exposure to ultraviolet-C radiation. Photochem. Photobiol. 82, 1077–1079 (2017).
Setlow, R. B., Grist, E., Thompson, K. & Woodhead, A. D. Wavelengths effective in induction of malignant melanoma. Proc. Natl. Acad. Sci. USA 90, 6666–6670 (1993).
Google Scholar
Balasubramanian, D. Ultraviolet radiation and cataract. J. Ocular Pharmacol. Therap. 16, 285–297 (2000).
Google Scholar
Heßling, M., Hönes, K., Vatter, P. & Lingenfelder, C. Ultraviolet irradiation doses for coronavirus inactivation – review and analysis of coronavirus photoinactivation studies. GMS Hygiene Infect. Control 15, Doc08 (2020).
Kim, S.-J., Kim, D.-K. & Kang, D.-H. Using UVC light-emitting diodes at wavelengths of 266 to 279 nanometers to inactivate foodborne pathogens and pasteurize sliced cheese. Appl. Environ. Microbiol. 82, 11–17 (2016).
Google Scholar
Narita, K. et al. Ultraviolet C light with wavelength of 222 nm inactivates a wide spectrum of microbial pathogens. J. Hosp. Infect. 105, 459–467 (2020).
Yamano, N. et al. Long-term effects of 222-nm ultraviolet radiation C sterilizing lamps on mice susceptible to ultraviolet radiation. Photochem. Photobiol. 96, 853–862 (2020).
Google Scholar
Lipsky, Z. W. & German, G. K. Ultraviolet light degrades the mechanical and structural properties of human stratum corneum. J. Mech. Behav. Biomed. Mater. 100, 103391 (2019).
Google Scholar
Panich, U., Sittithumcharee, G., Rathviboon, N. & Jirawatnotai, S. Ultraviolet radiation-induced skin aging: the role of DNA damage and oxidative stress in epidermal stem cell damage mediated skin Aging. Stem Cells Int. 2016, (2016).
D’Orazio, J., Jarrett, S., Amaro-Ortiz, A. & Scott, T. UV radiation and the skin. Int. J. Mol. Sci. 14, 12222 (2013).
Google Scholar
Böni, R., Schuster, C., Nehrhoff, B. & Burg, G. Epidemiology of skin cancer. Neuro Endocrinol. Lett. 23(Suppl 2), 48–51 (2002).
Google Scholar
Pfeifer, G. P. & Besaratinia, A. UV wavelength-dependent DNA damage and human non-melanoma and melanoma skin cancer. Photochem. Photobiol. Sci. 11, 90–97 (2012).
Google Scholar
Besaratinia, A. et al. Wavelength dependence of ultraviolet radiation-induced DNA damage as determined by laser irradiation suggests that cyclobutane pyrimidine dimers are the principal DNA lesions produced by terrestrial sunlight. FASEB J. 25, 3079–3091 (2011).
Google Scholar
Pfeifer, G. P. Formation and processing of UV photoproducts: effects of DNA sequence and chromatin environment. Photochem. Photobiol. 65, 270–283 (1997).
Google Scholar
Liang, X. & Boppart, S. A. Biomechanical properties of in vivo human skin from dynamic optical coherence elastography. IEEE Trans. Biomed. Eng. 57, 953–959 (2010).
Google Scholar
Brem, R., Macpherson, P., Guven, M. & Karran, P. Oxidative stress induced by UVA photoactivation of the tryptophan UVB photoproduct 6-formylindolo[3,2-b]carbazole (FICZ) inhibits nucleotide excision repair in human cells. Sci. Rep. 7, 1–9 (2017).
Google Scholar
Schuch, A. P., Moreno, N. C., Schuch, N. J., Menck, C. F. M. & Garcia, C. C. M. Sunlight damage to cellular DNA: Focus on oxidatively generated lesions. Free Radical Biol. Med. 107, 110–124 (2017).
Google Scholar
Sherwood, S. C. et al. Final report for the bioquell hydrogen peroxide vapor (HPV) decontamination for reuse of N95 respirators. J. Phys. Chem. A 4, 25. https://doi.org/10.1016/j.watres.2012.03.036 (2011).
Google Scholar
Narla, S. et al. The importance of the minimum dosage necessary for UVC decontamination of N95 respirators during the COVID-19 pandemic. Photodermatol. Photoimmunol. Photomed. 36, 324–325 (2020).
Google Scholar
Campeau, E. et al. A versatile viral system for expression and depletion of proteins in mammalian cells. PLoS ONE 4, e6529 (2009).
Google Scholar
Ní Annaidh, A., Bruyère, K., Destrade, M., Gilchrist, M. D. & Otténio, M. Characterization of the anisotropic mechanical properties of excised human skin. J. Mech. Behav. Biomed. Mater. 5, 139–148 (2012).
Google Scholar
Forestier, S. Rationale for sunscreen development. J. Am. Acad. Dermatol. 58, S133–S138 (2008).
Google Scholar
Lyons, A. B. et al. Skin and eye protection against ultraviolet C from ultraviolet germicidal irradiation devices during the COVID-19 pandemic. Int. J. Dermatol. 60, 391–393 (2021).
Google Scholar
Li, Y. et al. Saliva is a non-negligible factor in the spread of COVID-19. Mol. Oral Microbiol. 35, 141–145 (2020).
Google Scholar
Dbouk, T. & Drikakis, D. On coughing and airborne droplet transmission to humans. Phys. Fluids (Woodbury, NY: 1994) 32, 053310 (2020).
Google Scholar
Darnell, M. E. R., Subbarao, K., Feinstone, S. M. & Taylor, D. R. Inactivation of the coronavirus that induces severe acute respiratory syndrome, SARS-CoV. J. Virol. Methods 121, 85–91 (2004).
Google Scholar
Ansaldi, F. et al. SARS-CoV, influenza A and syncitial respiratory virus resistance against common disinfectants and ultraviolet irradiation. J. Prev. Med. Hygiene 45, 208 (2004).
Terpstra, F. G. et al. Potential and limitation of UVC irradiation for the inactivation of pathogens in platelet concentrates. Transfusion 48, 304–313 (2008).
Google Scholar
Kariwa, H., Fujii, N. & Takashima, I. Inactivation of SARS coronavirus by means of povidone-iodine, physical conditions and chemical reagents. Dermatology (Basel, Switzerland) 212(Suppl), 119–123 (2006).
Google Scholar
Eickmann, M. et al. Inactivation of Ebola virus and Middle East respiratory syndrome coronavirus in platelet concentrates and plasma by ultraviolet C light and methylene blue plus visible light, respectively. Transfusion 58, 2202–2207 (2018).
Google Scholar
Blázquez, E. et al. Evaluation of the effectiveness of the SurePure Turbulator ultraviolet-C irradiation equipment on inactivation of different enveloped and non-enveloped viruses inoculated in commercially collected liquid animal plasma. PLoS ONE 14, e0212332 (2019).
Google Scholar
Walker, C. M. & Ko, G. Effect of ultraviolet germicidal irradiation on viral aerosols. Environ. Sci. Technol. 41, 5460–5465 (2007).
Google Scholar
Welch, D. et al. Far-UVC light: A new tool to control the spread of airborne-mediated microbial diseases. Sci. Rep. 8, 2752 (2018).
Google Scholar
Woo, H. et al. Efficacy of inactivation of human enteroviruses by dual-wavelength germicidal ultraviolet (UV-C) light emitting diodes (LEDs). Water 11, 1–1131 (2019).
Google Scholar
Beck, S. E. et al. Evaluating UV-C LED disinfection performance and investigating potential dual-wavelength synergy. Water Res. 109, 207–216 (2017).
Google Scholar
Green, A. et al. Inactivation of Escherichia coli, Listeria and Salmonella by single and multiple wavelength ultraviolet-light emitting diodes. Innov. Food Sci. Emerg. Technol. 47, 353–361 (2018).
Google Scholar
Qiao, Y., Chen, D. & Wen, D. Use of coupled wavelength ultraviolet light-emitting diodes for inactivation of bacteria in subsea oil-field injection water. Sci. Total Environ. 640–641, 757–763 (2018).
Google Scholar
Matafonova, G. & Batoev, V. Dual-wavelength light radiation for synergistic water disinfection. Sci. Total Environ. 806, 151233 (2022).
Google Scholar
Coohill, T. P. Virus-cell interactions as probes for vacuum-ultraviolet radiation damage and repair. Photochem. Photobiol. 44, 359–363 (1986).
Google Scholar

