Preloader

Systematic evaluating and modeling of SARS-CoV-2 UVC disinfection

  • CDC. Emerging Variants. https://www.cdc.gov/coronavirus/2019-ncov/more/science-and-research/scientific-brief-emerging-variants.html (2020).

  • Huang, Y., Xiao, S., Song, D. & Yuan, Z. Evaluating the virucidal activity of four disinfectants against SARS-CoV-2. Am. J. Infect. Control 50, 319 (2022).

    PubMed 

    Google Scholar 

  • Kratzel, A. et al. Inactivation of severe acute respiratory syndrome coronavirus 2 by WHO-recommended hand rub formulations and alcohols. Emerg. Infect. Dis. 26, 1592–1595 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ochowiak, M. et al. Spray curtains as devices for surface spraying during the SARS-CoV-2 pandemic. Environ. Res. 206, 112562 (2022).

    CAS 
    PubMed 

    Google Scholar 

  • Raventós, J. & Sabate, R. Air curtains equipped with hydroalcoholic aerosol sprayers for massive COVID-19 disinfection. Front. Public Health 8, 582782 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Christie-Holmes, N. et al. Vapourized hydrogen peroxide decontamination in a hospital setting inactivates SARS-CoV-2 and HCoV-229E without compromising filtration efficiency of unexpired N95 respirators. Am. J. Infect. Control 49, 1227–1231 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Khaiboullina, S., Uppal, T., Dhabarde, N., Subramanian, V. R. & Verma, S. C. Inactivation of human coronavirus by titania nanoparticle coatings and UVC radiation: throwing light on SARS-CoV-2. Viruses 13, 19 (2020).

    PubMed Central 

    Google Scholar 

  • Calfee, M. W. et al. Virucidal efficacy of antimicrobial surface coatings against the enveloped bacteriophage Φ6. J. Appl. Microbiol. 132, 1813–1824 (2022).

    CAS 
    PubMed 

    Google Scholar 

  • Kim, M. J., Linstadt, R. T. H., Ahn Ando, K. & Ahn, J. Gemini-mediated self-disinfecting surfaces to address the contact transmission of infectious diseases. Langmuir ACS J. Surf. Colloids 38, 2162–2173 (2022).

    CAS 

    Google Scholar 

  • Sadani, K. et al. Polyphenol stabilized copper nanoparticle formulations for rapid disinfection of bacteria and virus on diverse surfaces. Nanotechnology 33, 5648 (2021).

    Google Scholar 

  • Lore, M. B., Heimbuch, B. K., Brown, T. L., Wander, J. D. & Hinrichs, S. H. Effectiveness of three decontamination treatments against influenza virus applied to filtering facepiece respirators. Ann. Occup. Hyg. 56, 92–101 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Duan, S.-M. et al. Stability of SARS coronavirus in human specimens and environment and its sensitivity to heating and UV irradiation. Biomed. Environ. Sci. BES 16, 246–255 (2003).

    PubMed 

    Google Scholar 

  • Buonanno, M., Welch, D., Shuryak, I. & Brenner, D. J. Far-UVC light (222 nm) efficiently and safely inactivates airborne human coronaviruses. Sci. Rep. 10, 10285 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Inagaki, H., Saito, A., Sugiyama, H., Okabayashi, T. & Fujimoto, S. Rapid inactivation of SARS-CoV-2 with deep-UV LED irradiation. Emerg. Microbes Infect 9, 1744–1747 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kitagawa, H. et al. Effectiveness of 222-nm ultraviolet light on disinfecting SARS-CoV-2 surface contamination. Am. J. Infect. Control 49, 299–301 (2021).

    PubMed 

    Google Scholar 

  • Fischer, R. J. et al. Assessment of N95 respirator decontamination and re-use for SARS-CoV-2. medRxiv Preprint Server Health Sci. https://doi.org/10.1101/2020.04.11.20062018 (2020).

    Article 

    Google Scholar 

  • Hadi, J., Dunowska, M., Wu, S. & Brightwell, G. Control measures for SARS-CoV-2: A review on light-based inactivation of single-stranded RNA viruses. Pathogens (Basel, Switzerland) 9 (2020).

  • Marra, A. R., Schweizer, M. L. & Edmond, M. B. No-touch disinfection methods to decrease multidrug-resistant organism infections: a systematic review and meta-analysis. Infect. Control Hosp. Epidemiol. 39, 20–31 (2018).

    PubMed 

    Google Scholar 

  • Beck, S. E., Hull, N. M., Poepping, C. & Linden, K. G. Wavelength-dependent damage to adenoviral proteins across the germicidal UV spectrum. Environ. Sci. Technol. 52, 223–229 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Narita, K., Asano, K., Morimoto, Y., Igarashi, T. & Nakane, A. Chronic irradiation with 222-nm UVC light induces neither DNA damage nor epidermal lesions in mouse skin, even at high doses. PLoS ONE 13, e0201259 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Narita, K. et al. Disinfection and healing effects of 222-nm UVC light on methicillin-resistant Staphylococcus aureus infection in mouse wounds. J. Photochem. Photobiol. B 178, 10–18 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Buonanno, M. et al. Germicidal efficacy and mammalian skin safety of 222-nm UV light. Radiat. Res. 187, 483–491 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • el Haddad, L. et al. Evaluation of a pulsed xenon ultraviolet disinfection system to decrease bacterial contamination in operating rooms. BMC Infect. Dis. 17 (2017).

  • Ali, S., Yui, S., Muzslay, M. & Wilson, A. P. R. Comparison of two whole-room ultraviolet irradiation systems for enhanced disinfection of contaminated hospital patient rooms. J. Hosp. Infect. 97, 180–184 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Lindsley, W. G. et al. Effects of ultraviolet germicidal irradiation (UVGI) on N95 respirator filtration performance and structural integrity. J. Occup. Environ. Hyg. 12, 509–517 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tande, B. M., Pringle, T. A., Rutala, W. A., Gergen, M. F. & Weber, D. J. Understanding the effect of ultraviolet light intensity on disinfection performance through the use of ultraviolet measurements and simulation. Infect. Control Hosp. Epidemiol. 39, 1122–1124 (2018).

    PubMed 

    Google Scholar 

  • Li, G. Q., Wang, W. L., Huo, Z. Y., Lu, Y. & Hu, H. Y. Comparison of UV-LED and low pressure UV for water disinfection: Photoreactivation and dark repair of Escherichia coli. Water Res. 126, 134–143 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Rattanakul, S. & Oguma, K. Inactivation kinetics and efficiencies of UV-LEDs against Pseudomonas aeruginosa, Legionella pneumophila, and surrogate microorganisms. Water Res. 130, 31–37 (2018).

    PubMed 

    Google Scholar 

  • Oguma, K., Kanazawa, K., Kasuga, I. & Takizawa, S. Effects of UV irradiation by light emitting diodes on heterotrophic bacteria in tap water. Photochem. Photobiol. 94, 570–576 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Song, K., Taghipour, F. & Mohseni, M. Microorganisms inactivation by wavelength combinations of ultraviolet light-emitting diodes (UV-LEDs). Sci. Total Environ. 665, 1103–1110 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Trevisan, A. et al. Unusual high exposure to ultraviolet-C radiation. Photochem. Photobiol. 82, 1077–1079 (2017).

    Google Scholar 

  • Setlow, R. B., Grist, E., Thompson, K. & Woodhead, A. D. Wavelengths effective in induction of malignant melanoma. Proc. Natl. Acad. Sci. USA 90, 6666–6670 (1993).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Balasubramanian, D. Ultraviolet radiation and cataract. J. Ocular Pharmacol. Therap. 16, 285–297 (2000).

    CAS 

    Google Scholar 

  • Heßling, M., Hönes, K., Vatter, P. & Lingenfelder, C. Ultraviolet irradiation doses for coronavirus inactivation – review and analysis of coronavirus photoinactivation studies. GMS Hygiene Infect. Control 15, Doc08 (2020).

    Google Scholar 

  • Kim, S.-J., Kim, D.-K. & Kang, D.-H. Using UVC light-emitting diodes at wavelengths of 266 to 279 nanometers to inactivate foodborne pathogens and pasteurize sliced cheese. Appl. Environ. Microbiol. 82, 11–17 (2016).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Narita, K. et al. Ultraviolet C light with wavelength of 222 nm inactivates a wide spectrum of microbial pathogens. J. Hosp. Infect. 105, 459–467 (2020).

    Google Scholar 

  • Yamano, N. et al. Long-term effects of 222-nm ultraviolet radiation C sterilizing lamps on mice susceptible to ultraviolet radiation. Photochem. Photobiol. 96, 853–862 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lipsky, Z. W. & German, G. K. Ultraviolet light degrades the mechanical and structural properties of human stratum corneum. J. Mech. Behav. Biomed. Mater. 100, 103391 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Panich, U., Sittithumcharee, G., Rathviboon, N. & Jirawatnotai, S. Ultraviolet radiation-induced skin aging: the role of DNA damage and oxidative stress in epidermal stem cell damage mediated skin Aging. Stem Cells Int. 2016, (2016).

  • D’Orazio, J., Jarrett, S., Amaro-Ortiz, A. & Scott, T. UV radiation and the skin. Int. J. Mol. Sci. 14, 12222 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Böni, R., Schuster, C., Nehrhoff, B. & Burg, G. Epidemiology of skin cancer. Neuro Endocrinol. Lett. 23(Suppl 2), 48–51 (2002).

    PubMed 

    Google Scholar 

  • Pfeifer, G. P. & Besaratinia, A. UV wavelength-dependent DNA damage and human non-melanoma and melanoma skin cancer. Photochem. Photobiol. Sci. 11, 90–97 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Besaratinia, A. et al. Wavelength dependence of ultraviolet radiation-induced DNA damage as determined by laser irradiation suggests that cyclobutane pyrimidine dimers are the principal DNA lesions produced by terrestrial sunlight. FASEB J. 25, 3079–3091 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pfeifer, G. P. Formation and processing of UV photoproducts: effects of DNA sequence and chromatin environment. Photochem. Photobiol. 65, 270–283 (1997).

    CAS 
    PubMed 

    Google Scholar 

  • Liang, X. & Boppart, S. A. Biomechanical properties of in vivo human skin from dynamic optical coherence elastography. IEEE Trans. Biomed. Eng. 57, 953–959 (2010).

    PubMed 

    Google Scholar 

  • Brem, R., Macpherson, P., Guven, M. & Karran, P. Oxidative stress induced by UVA photoactivation of the tryptophan UVB photoproduct 6-formylindolo[3,2-b]carbazole (FICZ) inhibits nucleotide excision repair in human cells. Sci. Rep. 7, 1–9 (2017).

    CAS 

    Google Scholar 

  • Schuch, A. P., Moreno, N. C., Schuch, N. J., Menck, C. F. M. & Garcia, C. C. M. Sunlight damage to cellular DNA: Focus on oxidatively generated lesions. Free Radical Biol. Med. 107, 110–124 (2017).

    CAS 

    Google Scholar 

  • Sherwood, S. C. et al. Final report for the bioquell hydrogen peroxide vapor (HPV) decontamination for reuse of N95 respirators. J. Phys. Chem. A 4, 25. https://doi.org/10.1016/j.watres.2012.03.036 (2011).

    CAS 
    Article 

    Google Scholar 

  • Narla, S. et al. The importance of the minimum dosage necessary for UVC decontamination of N95 respirators during the COVID-19 pandemic. Photodermatol. Photoimmunol. Photomed. 36, 324–325 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Campeau, E. et al. A versatile viral system for expression and depletion of proteins in mammalian cells. PLoS ONE 4, e6529 (2009).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ní Annaidh, A., Bruyère, K., Destrade, M., Gilchrist, M. D. & Otténio, M. Characterization of the anisotropic mechanical properties of excised human skin. J. Mech. Behav. Biomed. Mater. 5, 139–148 (2012).

    PubMed 

    Google Scholar 

  • Forestier, S. Rationale for sunscreen development. J. Am. Acad. Dermatol. 58, S133–S138 (2008).

    PubMed 

    Google Scholar 

  • Lyons, A. B. et al. Skin and eye protection against ultraviolet C from ultraviolet germicidal irradiation devices during the COVID-19 pandemic. Int. J. Dermatol. 60, 391–393 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Li, Y. et al. Saliva is a non-negligible factor in the spread of COVID-19. Mol. Oral Microbiol. 35, 141–145 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Dbouk, T. & Drikakis, D. On coughing and airborne droplet transmission to humans. Phys. Fluids (Woodbury, NY: 1994) 32, 053310 (2020).

    CAS 

    Google Scholar 

  • Darnell, M. E. R., Subbarao, K., Feinstone, S. M. & Taylor, D. R. Inactivation of the coronavirus that induces severe acute respiratory syndrome, SARS-CoV. J. Virol. Methods 121, 85–91 (2004).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ansaldi, F. et al. SARS-CoV, influenza A and syncitial respiratory virus resistance against common disinfectants and ultraviolet irradiation. J. Prev. Med. Hygiene 45, 208 (2004).

    Google Scholar 

  • Terpstra, F. G. et al. Potential and limitation of UVC irradiation for the inactivation of pathogens in platelet concentrates. Transfusion 48, 304–313 (2008).

    PubMed 

    Google Scholar 

  • Kariwa, H., Fujii, N. & Takashima, I. Inactivation of SARS coronavirus by means of povidone-iodine, physical conditions and chemical reagents. Dermatology (Basel, Switzerland) 212(Suppl), 119–123 (2006).

    CAS 

    Google Scholar 

  • Eickmann, M. et al. Inactivation of Ebola virus and Middle East respiratory syndrome coronavirus in platelet concentrates and plasma by ultraviolet C light and methylene blue plus visible light, respectively. Transfusion 58, 2202–2207 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Blázquez, E. et al. Evaluation of the effectiveness of the SurePure Turbulator ultraviolet-C irradiation equipment on inactivation of different enveloped and non-enveloped viruses inoculated in commercially collected liquid animal plasma. PLoS ONE 14, e0212332 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Walker, C. M. & Ko, G. Effect of ultraviolet germicidal irradiation on viral aerosols. Environ. Sci. Technol. 41, 5460–5465 (2007).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Welch, D. et al. Far-UVC light: A new tool to control the spread of airborne-mediated microbial diseases. Sci. Rep. 8, 2752 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Woo, H. et al. Efficacy of inactivation of human enteroviruses by dual-wavelength germicidal ultraviolet (UV-C) light emitting diodes (LEDs). Water 11, 1–1131 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Beck, S. E. et al. Evaluating UV-C LED disinfection performance and investigating potential dual-wavelength synergy. Water Res. 109, 207–216 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Green, A. et al. Inactivation of Escherichia coli, Listeria and Salmonella by single and multiple wavelength ultraviolet-light emitting diodes. Innov. Food Sci. Emerg. Technol. 47, 353–361 (2018).

    CAS 

    Google Scholar 

  • Qiao, Y., Chen, D. & Wen, D. Use of coupled wavelength ultraviolet light-emitting diodes for inactivation of bacteria in subsea oil-field injection water. Sci. Total Environ. 640–641, 757–763 (2018).

    ADS 
    PubMed 

    Google Scholar 

  • Matafonova, G. & Batoev, V. Dual-wavelength light radiation for synergistic water disinfection. Sci. Total Environ. 806, 151233 (2022).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Coohill, T. P. Virus-cell interactions as probes for vacuum-ultraviolet radiation damage and repair. Photochem. Photobiol. 44, 359–363 (1986).

    CAS 
    PubMed 

    Google Scholar 

  • Source link