Preloader

Synthetic introns enable splicing factor mutation-dependent targeting of cancer cells

  • Yoshida, K. et al. Frequent pathway mutations of splicing machinery in myelodysplasia. Nature 478, 64–69 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • Papaemmanuil, E. et al. Somatic SF3B1 mutation in myelodysplasia with ring sideroblasts. New Engl. J. Med. 365, 1384–1395 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • Quesada, V. et al. Exome sequencing identifies recurrent mutations of the splicing factor SF3B1 gene in chronic lymphocytic leukemia. Nat. Genet. https://doi.org/10.1038/ng.1032 (2011).

  • Graubert, T. A. et al. Recurrent mutations in the U2AF1 splicing factor in myelodysplastic syndromes. Nat. Genet. https://doi.org/10.1038/ng.1031 (2011).

  • Dvinge, H., Kim, E., Abdel-Wahab, O. & Bradley, R. K. RNA splicing factors as oncoproteins and tumour suppressors. Nat. Rev. Cancer 16, 413–430 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, L. et al. SF3B1 and other novel cancer genes in chronic lymphocytic leukemia. New Engl. J. Med. 365, 2497–2506 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • Harbour, J. W. et al. Recurrent mutations at codon 625 of the splicing factor SF3B1 in uveal melanoma. Nat. Genet. https://doi.org/10.1038/ng.2523 (2013).

  • Martin, M. et al. Exome sequencing identifies recurrent somatic mutations in EIF1AX and SF3B1 in uveal melanoma with disomy 3. Nat. Genet. https://doi.org/10.1038/ng.2674 (2013).

  • Furney, S. J. et al. SF3B1 mutations are associated with alternative splicing in uveal melanoma. Cancer Disc. https://doi.org/10.1158/2159-8290.cd-13-0330 (2013).

  • Alsafadi, S. et al. Cancer-associated SF3B1 mutations affect alternative splicing by promoting alternative branchpoint usage. Nat. Commun. 7, 10615 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yoshimi, A. et al. Coordinated alterations in RNA splicing and epigenetic regulation drive leukaemogenesis. Nature 574, 273–277 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • The Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature https://doi.org/10.1038/nature11412 (2012).

  • Mian, S. A. et al. SF3B1 mutant MDS-initiating cells may arise from the haematopoietic stem cell compartment. Nat. Commun. 6, 10004 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Lee, S. C.-W. et al. Modulation of splicing catalysis for therapeutic targeting of leukemia with mutations in genes encoding spliceosomal proteins. Nat. Med. https://doi.org/10.1038/nm.4097 (2016).

  • Obeng, E. A. et al. Physiologic expression of Sf3b1(K700E) causes impaired erythropoiesis, aberrant splicing, and sensitivity to therapeutic spliceosome modulation. Cancer Cell 30, 404–417 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shirai, C. L. et al. Mutant U2AF1-expressing cells are sensitive to pharmacological modulation of the spliceosome. Nat. Commun. 8, 14060 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, E. et al. Targeting an RNA-binding protein network in acute myeloid leukemia. Cancer Cell 35, 369–384.e7 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • DeBoever, C. et al. Transcriptome sequencing reveals potential mechanism of cryptic 3′ splice site selection in SF3B1-mutated cancers. PLoS Comput. Biol. 11, e1004105 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Kim, E. et al. SRSF2 mutations contribute to myelodysplasia by mutant-specific effects on exon recognition. Cancer Cell 27, 617–630 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ilagan, J. O. et al. U2AF1 mutations alter splice site recognition in hematological malignancies. Genome Res. 25, 14–26 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brooks, A. N. et al. A pan-cancer analysis of transcriptome changes associated with somatic mutations in U2AF1 reveals commonly altered splicing events. PLoS ONE 9, e87361 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Darman, R. B. et al. Cancer-associated SF3B1 hotspot mutations induce cryptic 3? Splice site selection through use of a different branch point. Cell Rep. 13, 1033–1045 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Zhang, J. et al. Disease-associated mutation in SRSF2 misregulates splicing by altering RNA-binding affinities. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.1514105112 (2015).

  • Inoue, D. et al. Spliceosomal disruption of the non-canonical BAF complex in cancer. Nature 574, 432–436 (2019).

  • Yeo, G. & Burge, C. B. Maximum entropy modeling of short sequence motifs with applications to RNA splicing signals. J. Comput. Biol. 11, 377–394 (2004).

    CAS 
    PubMed 

    Google Scholar 

  • Gozani, O., Potashkin, J. & Reed, R. A potential role for U2AF-SAP 155 interactions in recruiting U2 snRNP to the branch site. Mol. Cell. Biol. 18, 4752–4760 (1998).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Spies, N., Nielsen, C. B., Padgett, R. A. & Burge, C. B. Biased chromatin signatures around polyadenylation sites and exons. Mol. Cell 36, 245–254 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Smith, K. O., Galloway, K. S., Kennell, W. L., Ogilvie, K. K. & Radatus, B. K. A new nucleoside analog, 9-[[2-hydroxy-1-(hydroxymethyl)ethoxyl]methyl]guanine, highly active in vitro against herpes simplex virus types 1 and 2. Antimicrob. Agents 22, 55–61 (1982).

    CAS 

    Google Scholar 

  • Rosenberg, A. B., Patwardhan, R. P., Shendure, J. & Seelig, G. Learning the sequence determinants of alternative splicing from millions of random sequences. Cell 163, 698–711 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Wong, M. S., Kinney, J. B. & Krainer, A. R. Quantitative activity profile and context dependence of all human 5′ splice sites. Mol. Cell https://doi.org/10.1016/j.molcel.2018.07.033 (2018).

  • Liu, B. et al. Mutant SF3B1 promotes AKT and NF-kB driven mammary tumorigenesis. J. Clin. Invest. https://doi.org/10.1172/jci138315 (2020).

  • Dorer, D. E. & Nettelbeck, D. M. Targeting cancer by transcriptional control in cancer gene therapy and viral oncolysis. Adv Drug Deliver. Rev. 61, 554–571 (2009).

    CAS 

    Google Scholar 

  • Lienert, F., Lohmueller, J. J., Garg, A. & Silver, P. A. Synthetic biology in mammalian cells: next generation research tools and therapeutics. Nat. Rev. Mol. Cell Bio. 15, 95–107 (2014).

    CAS 

    Google Scholar 

  • Wu, M.-R., Jusiak, B. & Lu, T. K. Engineering advanced cancer therapies with synthetic biology. Nat. Rev. Cancer 19, 187–195 (2019).

    PubMed 

    Google Scholar 

  • Culler, S. J., Hoff, K. G. & Smolke, C. D. Reprogramming cellular behavior with RNA controllers responsive to endogenous proteins. Science 330, 1251–1255 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Watanabe, T. & Sullenger, B. A. Induction of wild-type p53 activity in human cancer cells by ribozymes that repair mutant p53 transcripts. Proc. Natl Acad. Sci. USA 97, 8490–8494 (2000).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hong, S.-H. et al. In vivo reprogramming of hTERT by trans-splicing ribozyme to target tumor cells. Mol. Ther. 16, 74–80 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • Kim, J. et al. Targeted regression of hepatocellular carcinoma by cancer-specific RNA replacement through microRNA regulation. Sci. Rep. 5, 12315 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lee, S.-J. et al. Phase I trial of intravenous Ad5CRT in patients with liver metastasis of gastrointestinal cancers. Cancer Gene Ther. 26, 174–178 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Chung, H. K. et al. A compact synthetic pathway rewires cancer signaling to therapeutic effector release. Science 364, eaat6982 (2019).

  • Nissim, L. et al. Synthetic RNA-based immunomodulatory gene circuits for cancer immunotherapy. Cell 171, 1138–1150.e15 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dolatshad, H. et al. Disruption of SF3B1 results in deregulated expression and splicing of key genes and pathways in myelodysplastic syndrome hematopoietic stem and progenitor cells. Leukemia https://doi.org/10.1038/leu.2014.331 (2014).

  • Tyner, J. W. et al. Functional genomic landscape of acute myeloid leukaemia. Nature 60, 277–531 (2018).

    Google Scholar 

  • Pangallo, J. et al. Rare and private spliceosomal gene mutations drive partial, complete, and dual phenocopies of hotspot alterations. Blood https://doi.org/10.1182/blood.2019002894 (2020).

  • Lee, S. C.-W. et al. Synthetic lethal and convergent biological effects of cancer-associated spliceosomal gene mutations. Cancer Cell 34, 225–241.e8 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Griewank, K. G. et al. Genetic and molecular characterization of uveal melanoma cell lines. Pigment Cell Melanoma Res. 25, 182–187 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pineda, J. M. B. & Bradley, R. K. Most human introns are recognized via multiple and tissue-specific branchpoints. Genes Dev. 32, 577–591 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Thomas, J. D. et al. RNA isoform screens uncover the essentiality and tumor-suppressor activity of ultraconserved poison exons. Nat. Genet. 52, 84–94 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10–12 (2011).

    Google Scholar 

  • Magoč, T. & Salzberg, S. L. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27, 2957–2963 (2011).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Flicek, P. et al. Ensembl 2013. Nucleic Acids Res. 41, D48–D55 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Meyer, L. R. et al. The UCSC Genome Browser database: extensions and updates 2013. Nucleic Acids Res. 41, D64–D69 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Katz, Y., Wang, E. T., Airoldi, E. M. & Burge, C. B. Analysis and design of RNA sequencing experiments for identifying isoform regulation. Nat. Methods 7, 1009–1015 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, B. & Dewey, C. N. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinf. 12, 323 (2011).

    CAS 

    Google Scholar 

  • Trapnell, C., Pachter, L. & Salzberg, S. L. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25, 1105–1111 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lavallée, V.-P. et al. The transcriptomic landscape and directed chemical interrogation of MLL-rearranged acute myeloid leukemias. Nat. Genet. https://doi.org/10.1038/ng.3371 (2015).

  • Taylor, J. et al. Single-cell genomics reveals the genetic and molecular bases for escape from mutational epistasis in myeloid neoplasms. Blood 136, 1477–1486 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Source link