Preloader

Synthetic dynamic hydrogels promote degradation-independent in vitro organogenesis

  • 1.

    Rossi, G., Manfrin, A. & Lutolf, M. P. Progress and potential in organoid research. Nat. Rev. Genet. 19, 671–687 (2018).

    CAS 
    Article 

    Google Scholar 

  • 2.

    Clevers, H. Modeling development and disease with organoids. Cell 165, 1586–1597 (2016).

    CAS 
    Article 

    Google Scholar 

  • 3.

    Lancaster, M. A. & Knoblich, J. A. Organogenesis in a dish: modeling development and disease using organoid technologies. Science 345, 1247125 (2014).

    Article 
    CAS 

    Google Scholar 

  • 4.

    Sasai, Y. Cytosystems dynamics in self-organization of tissue architecture. Nature 493, 318–326 (2013).

    CAS 
    Article 

    Google Scholar 

  • 5.

    Huch, M., Knoblich, J. A., Lutolf, M. P. & Martinez-Arias, A. The hope and the hype of organoid research. Development 144, 938–941 (2017).

    CAS 
    Article 

    Google Scholar 

  • 6.

    Gjorevski, N., Ranga, A. & Lutolf, M. P. Bioengineering approaches to guide stem cell-based organogenesis. Development 141, 1794–1804 (2014).

    CAS 
    Article 

    Google Scholar 

  • 7.

    Blondel, D. & Lutolf, M. P. Bioinspired hydrogels for 3D organoid culture. Chimia 73, 81–85 (2019).

    Article 
    CAS 

    Google Scholar 

  • 8.

    Wang, H. & Heilshorn, S. C. Adaptable hydrogel networks with reversible linkages for tissue engineering. Adv. Mater. 27, 3717–3736 (2015).

    CAS 
    Article 

    Google Scholar 

  • 9.

    Gjorevski, N. et al. Designer matrices for intestinal stem cell and organoid culture. Nature 539, 560–564 (2016).

    CAS 
    Article 

    Google Scholar 

  • 10.

    DiMarco, R. L., Dewi, R. E., Bernal, G., Kuo, C. & Heilshorn, S. C. Protein-engineered scaffolds for in vitro 3D culture of primary adult intestinal organoids. Biomater. Sci. 3, 1376–1385 (2015).

    CAS 
    Article 

    Google Scholar 

  • 11.

    Ng, S., Tan, W. J., Pek, M. M. X., Tan, M.-H. & Kurisawa, M. Mechanically and chemically defined hydrogel matrices for patient-derived colorectal tumor organoid culture. Biomaterials 219, 119400 (2019).

    CAS 
    Article 

    Google Scholar 

  • 12.

    Ranga, A. et al. Neural tube morphogenesis in synthetic 3D microenvironments. Proc. Natl Acad. Sci. USA 113, E6831–E6839 (2016).

    CAS 
    Article 

    Google Scholar 

  • 13.

    Ye, S. et al. A chemically defined hydrogel for human liver organoid culture. Adv. Funct. Mater. 30, 2000893 (2020).

    CAS 
    Article 

    Google Scholar 

  • 14.

    Rezakhani, S., Gjorevski, N. & Lutolf, M. P. Low-defect thiol-Michael addition hydrogels as Matrigel substitutes for epithelial organoid derivation. Adv. Funct. Mater. 30, 2000761 (2020).

    CAS 
    Article 

    Google Scholar 

  • 15.

    Cruz-Acuña, R. et al. Synthetic hydrogels for human intestinal organoid generation and colonic wound repair. Nat. Cell Biol. 19, 1326–1335 (2017).

    Article 
    CAS 

    Google Scholar 

  • 16.

    Hernandez-Gordillo, V. et al. Fully synthetic matrices for in vitro culture of primary human intestinal enteroids and endometrial organoids. Biomaterials 254, 120125 (2020).

    CAS 
    Article 

    Google Scholar 

  • 17.

    Lutolf, M. P. & Hubbell, J. A. Synthesis and physicochemical characterization of end-linked poly(ethylene glycol)-co-peptide hydrogels formed by Michael-type addition. Biomacromolecules 4, 713–722 (2003).

    CAS 
    Article 

    Google Scholar 

  • 18.

    Shugar, D. & Fox, J. J. Spectrophotometric studies of nucleic acid derivatives and related compounds as a function of pH. I. Pyrimidines. Biochim. Biophys. Acta 9, 199–218 (1952).

    CAS 
    Article 

    Google Scholar 

  • 19.

    Dankers, P. Y. W. et al. Hierarchical formation of supramolecular transient networks in water: a modular injectable delivery system. Adv. Mater. 24, 2703–2709 (2012).

    CAS 
    Article 

    Google Scholar 

  • 20.

    Ye, X. et al. Self-healing pH-sensitive cytosine- and guanosine-modified hyaluronic acid hydrogels via hydrogen bonding. Polymer 108, 348–360 (2017).

    CAS 
    Article 

    Google Scholar 

  • 21.

    Bastings, M. M. C. et al. A fast pH-switchable and self-healing supramolecular hydrogel carrier for guided, local catheter injection in the infarcted myocardium. Adv. Healthc. Mater. 3, 70–78 (2014).

    CAS 
    Article 

    Google Scholar 

  • 22.

    Hamada, N. & Einaga, Y. Effects of hydrophobic chain length on the characteristics of the micelles of octaoxyethylene tetradecyl C14E8, hexadecyl C16E8, and octadecyl C18E8 ethers. J. Phys. Chem. B 109, 6990–6998 (2005).

    CAS 
    Article 

    Google Scholar 

  • 23.

    Génin, F., Quilès, F. & Burneau, A. Infrared and Raman spectroscopic study of carboxylic acids in heavy water. Phys. Chem. Chem. Phys. 3, 932–942 (2001).

    Article 

    Google Scholar 

  • 24.

    Badasyan, A., Mavrič, A., Cigić, I. K., Bencik, T. & Valant, M. Polymer nanoparticle sizes from dynamic light scattering and size exclusion chromatography: the case study of polysilanes. Soft Matter 14, 4735–4740 (2018).

    CAS 
    Article 

    Google Scholar 

  • 25.

    Coleman, M. M., Lee, K. H., Skrovanek, D. J. & Painter, P. C. Hydrogen bonding in polymers. 4. Infrared temperature studies of a simple polyurethane. Macromolecules 19, 2149–2157 (1986).

    CAS 
    Article 

    Google Scholar 

  • 26.

    Cortese, J., Soulié-Ziakovic, C., Cloitre, M., Tencé-Girault, S. & Leibler, L. Order–disorder transition in supramolecular polymers. J. Am. Chem. Soc. 133, 19672–19675 (2011).

    CAS 
    Article 

    Google Scholar 

  • 27.

    Chan, J. W., Hoyle, C. E., Lowe, A. B. & Bowman, M. Nucleophile-initiated thiol-Michael reactions: effect of organocatalyst, thiol, and ene. Macromolecules 43, 6381–6388 (2010).

    CAS 
    Article 

    Google Scholar 

  • 28.

    Peppas, N. A. & Merrill, E. W. Poly(vinyl alcohol) hydrogels: reinforcement of radiation-crosslinked networks by crystallization. J. Polym. Sci. Polym. Chem. Ed. 14, 441–457 (1976).

    CAS 
    Article 

    Google Scholar 

  • 29.

    Chaudhuri, O. Viscoelastic hydrogels for 3D cell culture. Biomater. Sci. 5, 1480–1490 (2017).

    CAS 
    Article 

    Google Scholar 

  • 30.

    Dosh, R. H., Jordan-Mahy, N., Sammon, C. & Maitre, C. L. L. Use of L-pNIPAM hydrogel as a 3D-scaffold for intestinal crypts and stem cell tissue engineering. Biomater. Sci. 7, 4310–4324 (2019).

    CAS 
    Article 

    Google Scholar 

  • 31.

    Babaei, B., Davarian, A., Pryse, K. M., Elson, E. L. & Genin, G. M. Efficient and optimized identification of generalized Maxwell viscoelastic relaxation spectra. J. Mech. Behav. Biomed. Mater. 55, 32–41 (2016).

    Article 

    Google Scholar 

  • 32.

    Chaudhuri, O. et al. Hydrogels with tunable stress relaxation regulate stem cell fate and activity. Nat. Mater. 15, 326–334 (2016).

    CAS 
    Article 

    Google Scholar 

  • 33.

    Zhao, X., Huebsch, N., Mooney, D. J. & Suo, Z. Stress-relaxation behavior in gels with ionic and covalent crosslinks. J. Appl. Phys. 107, 063509 (2010).

    Article 
    CAS 

    Google Scholar 

  • 34.

    Sato, T. et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459, 262–265 (2009).

    CAS 
    Article 

    Google Scholar 

  • 35.

    Sato, T. & Clevers, H. Growing self-organizing mini-guts from a single intestinal stem cell: mechanism and applications. Science 340, 1190–1194 (2013).

    CAS 
    Article 

    Google Scholar 

  • 36.

    Yang, Q. et al. Cell fate coordinates mechano-osmotic forces in intestinal crypt formation. Nat. Cell Biol. 23, 733–744 (2021).

    CAS 
    Article 

    Google Scholar 

  • 37.

    Serra, D. et al. Self-organization and symmetry breaking in intestinal organoid development. Nature 569, 66–72 (2019).

    CAS 
    Article 

    Google Scholar 

  • 38.

    Broguiere, N. et al. Growth of epithelial organoids in a defined hydrogel. Adv. Mater. 30, e1801621 (2018).

    Article 
    CAS 

    Google Scholar 

  • 39.

    Lee, H.-P., Gu, L., Mooney, D. J., Levenston, M. E. & Chaudhuri, O. Mechanical confinement regulates cartilage matrix formation by chondrocytes. Nat. Mater. 16, 1243–1251 (2017).

    CAS 
    Article 

    Google Scholar 

  • 40.

    Yin, X. et al. Niche-independent high-purity cultures of Lgr5+ intestinal stem cells and their progeny. Nat. Methods 11, 106–112 (2014).

    CAS 
    Article 

    Google Scholar 

  • 41.

    Panciera, T., Azzolin, L., Cordenonsi, M. & Piccolo, S. Mechanobiology of YAP and TAZ in physiology and disease. Nat. Rev. Mol. Cell Biol. 18, 758–770 (2017).

    CAS 
    Article 

    Google Scholar 

  • 42.

    Lukonin, I. et al. Phenotypic landscape of intestinal organoid regeneration. Nature 586, 275–280 (2020).

    CAS 
    Article 

    Google Scholar 

  • 43.

    Chaudhuri, O. et al. Substrate stress relaxation regulates cell spreading. Nat. Commun. 6, 6364 (2015).

    Article 
    CAS 

    Google Scholar 

  • 44.

    Broguiere, N., Formica, F. A., Barreto, G. & Zenobi-Wong, M. Sortase A as a cross-linking enzyme in tissue engineering. Acta Biomater. 77, 182–190 (2018).

    CAS 
    Article 

    Google Scholar 

  • 45.

    Valdez, J. et al. On-demand dissolution of modular, synthetic extracellular matrix reveals local epithelial-stromal communication networks. Biomaterials 130, 90–103 (2017).

    CAS 
    Article 

    Google Scholar 

  • 46.

    Fujii, M. et al. Human intestinal organoids maintain self-renewal capacity and cellular diversity in niche-inspired culture condition. Cell Stem Cell 23, 787–793 (2018).

    CAS 
    Article 

    Google Scholar 

  • 47.

    He, S. et al. Stiffness regulates intestinal stem cell fate. Preprint at https://doi.org/10.1101/2021.03.15.435410 (2021).

  • 48.

    Zhang, J. et al. Physically associated synthetic hydrogels with long-term covalent stabilization for cell culture and stem cell transplantation. Adv. Mater. 23, 5098–5103 (2011).

    CAS 
    Article 

    Google Scholar 

  • 49.

    Shin, S. R. et al. Cell-laden microengineered and mechanically tunable hybrid hydrogels of gelatin and graphene oxide. Adv. Mater. 25, 6385–6391 (2013).

    CAS 
    Article 

    Google Scholar 

  • 50.

    Hong, S. et al. 3D printing of highly stretchable and tough hydrogels into complex, cellularized structures. Adv. Mater. 27, 4035–4040 (2015).

    CAS 
    Article 

    Google Scholar 

  • 51.

    Miyoshi, H. & Stappenbeck, T. S. In vitro expansion and genetic modification of gastrointestinal stem cells in spheroid culture. Nat. Protoc. 8, 2471–2482 (2013).

    CAS 

    Google Scholar 

  • 52.

    Chen, I., Dorr, B. M. & Liu, D. R. A general strategy for the evolution of bond-forming enzymes using yeast display. Proc. Natl Acad. Sci. USA 108, 11399–11404 (2011).

    CAS 
    Article 

    Google Scholar 

  • Source link