Preloader

Synthetic biology for the engineering of complex wine yeast communities

  • Pretorius, I. S. Tasting the terroir of wine yeast innovation. FEMS Yeast Res. https://doi.org/10.1093/femsyr/foz084 (2020).

  • Bartle, L., Sumby, K., Sundstrom, J. & Jiranek, V. The microbial challenge of winemaking: yeast-bacteria compatibility. FEMS Yeast Res. https://doi.org/10.1093/femsyr/foz040 (2019).

  • Fleet, G. H. Yeast interactions and wine flavour. Int. J. Food Microbiol. 86, 11–22 (2003).

    CAS 
    PubMed 

    Google Scholar 

  • Denby, C. M. et al. Industrial brewing yeast engineered for the production of primary flavor determinants in hopped beer. Nat. Commun. 9, 965 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lee, D., Lloyd, N. D., Pretorius, I. S. & Borneman, A. R. Heterologous production of raspberry ketone in the wine yeast Saccharomyces cerevisiae via pathway engineering and synthetic enzyme fusion. Microbial Cell Factories 15, 49 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Timmins, J. B., Kroukamp, H., Paulsen, I. T. & Pretorius, I. S. The sensory significance of apocarotenoids in wine: importance of carotenoid cleavage dioxygenase 1 (CCD1) in the production of beta-ionone. Molecules https://doi.org/10.3390/molecules25122779 (2020).

  • Goold, H. D. et al. Yeast’s balancing act between ethanol and glycerol production in low-alcohol wines. Microb. Biotechnol. 10, 264–278 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Conacher, C. G. et al. The ecology of wine fermentation: a model for the study of complex microbial ecosystems. Appl. Microbiol. Biotechnol. 105, 3027–3043 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • McCarty, N. S. & Ledesma-Amaro, R. Synthetic biology tools to engineer microbial communities for biotechnology. Trends Biotechnol. 37, 181–197 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stovicek, V., Borodina, I. & Forster, J. CRISPR-Cas system enables fast and simple genome editing of industrial saccharomyces cerevisiae strains. Metabolic Eng. Commun. 2, 13–22 (2015).

    Google Scholar 

  • Brenner, K., You, L. & Arnold, F. H. Engineering microbial consortia: a new frontier in synthetic biology. Trends Biotechnol. 26, 483–489 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • Tsoi, R. et al. Metabolic division of labor in microbial systems. Proc. Natl Acad. Sci. USA 115, 2526–2531 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hays, S. G., Patrick, W. G., Ziesack, M., Oxman, N. & Silver, P. A. Better together: engineering and application of microbial symbioses. Curr. Opin. Biotechnol. 36, 40–49 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Zhou, K., Qiao, K., Edgar, S. & Stephanopoulos, G. Distributing a metabolic pathway among a microbial consortium enhances production of natural products. Nat. Biotechnol. 33, 377–383 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Conacher, C. G., Naidoo-Blassoples, R. K., Rossouw, D. & Bauer, F. F. Real-time monitoring of population dynamics and physical interactions in a synthetic yeast ecosystem by use of multicolour flow cytometry. Appl. Microbiol. Biotechnol. 104, 5547–5562 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Vega, N. M. & Gore, J. Simple organizing principles in microbial communities. Curr. Opin. Microbiol. 45, 195–202 (2018).

    PubMed 

    Google Scholar 

  • Ratzke, C., Barrere, J. & Gore, J. Strength of species interactions determines biodiversity and stability in microbial communities. Nat. Ecol. Evol. 4, 376–383 (2020).

    PubMed 

    Google Scholar 

  • Gorter, F. A., Manhart, M. & Ackermann, M. Understanding the evolution of interspecies interactions in microbial communities. Phil. Trans. R. Soc. B. 375, 20190256 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rodriguez-Verdugo, A. & Ackermann, M. Rapid evolution destabilizes species interactions in a fluctuating environment. ISME J. 15, 450–460 (2021).

    PubMed 

    Google Scholar 

  • Avramova, M. et al. Brettanomyces bruxellensis population survey reveals a diploid–triploid complex structured according to substrate of isolation and geographical distribution. Sci. Rep. 8, 4136 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Du Toit, M. & Pretorius, I. Microbial spoilage and preservation of wine: using weapons from nature’s own arsenal—a review. S. Afr. J. Enol. Vitic. 21, 74–96 (2000).

    Google Scholar 

  • Mannazzu, I. et al. Yeast killer toxins: from ecological significance to application. Crit. Rev. Biotechnol. 39, 603–617 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Chessa, R. et al. Biotechnological exploitation of Tetrapisispora phaffii killer toxin: heterologous production in Komagataella phaffii (Pichia pastoris). Appl. Microbiol. Biotechnol. 101, 2931–2942 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Schoeman, H., Vivier, M. A., Du Toit, M., Dicks, L. M. & Pretorius, I. S. The development of bactericidal yeast strains by expressing the Pediococcus acidilactici pediocin gene (pedA) in Saccharomyces cerevisiae. Yeast 15, 647–656 (1999).

    CAS 
    PubMed 

    Google Scholar 

  • Borrero, J. et al. Cloning, production, and functional expression of the bacteriocin enterocin A, produced by Enterococcus faecium T136, by the yeasts Pichia pastoris, Kluyveromyces lactis, Hansenula polymorpha, and Arxula adeninivorans. Appl. Environ. Microbiol. 78, 5956–5961 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jayaraman, P., Holowko, M. B., Yeoh, J. W., Lim, S. & Poh, C. L. Repurposing a two-component system-based biosensor for the killing of Vibrio cholerae. ACS Synth. Biol. 6, 1403–1415 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Shaw, W. M. et al. Engineering a model cell for rational tuning of GPCR signaling. Cell 177, 782–796.e727 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ostrov, N. et al. A modular yeast biosensor for low-cost point-of-care pathogen detection. Sci. Adv. 3, e1603221 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Meng, Q. et al. Optimization of electrotransformation parameters and engineered promoters for Lactobacillus plantarum from wine. ACS Synthetic Biology 10, 1728–1738 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Badura, J. et al. Development of genetic modification tools for Hanseniaspora uvarum. Int. J. Mol. Sci. https://doi.org/10.3390/ijms22041943 (2021).

  • Avbelj, M., Zupan, J. & Raspor, P. Quorum-sensing in yeast and its potential in wine making. Appl. Microbiol. Biotechnol. 100, 7841–7852 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Volschenk, H., Viljoen-Bloom, M., Subden, R. E. & van Vuuren, H. J. Malo-ethanolic fermentation in grape must by recombinant strains of Saccharomyces cerevisiae. Yeast 18, 963–970 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • Carpenter, A. C., Paulsen, I. T. & Williams, T. C. Blueprints for biosensors: Design, limitations, and application. Genes https://doi.org/10.3390/genes9080375 (2018).

  • Krstic, M. P., Johnson, D. L. & Herderich, M. J. Review of smoke taint in wine: smoke-derived volatile phenols and their glycosidic metabolites in grapes and vines as biomarkers for smoke exposure and their role in the sensory perception of smoke taint. Aust. J. Grape Wine Res. 21, 537–553 (2015).

    CAS 

    Google Scholar 

  • Morcillo-Parra, M. Á., Beltran, G., Mas, A. & Torija, M.-J. Determination of melatonin by a whole cell bioassay in fermented beverages. Sci. Rep. 9, 9120 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dixon, T. A., Williams, T. C. & Pretorius, I. S. Bioinformational trends in grape and wine biotechnology. Trends Biotechnol. https://doi.org/10.1016/j.tibtech.2021.05.001 (2021).

  • Dixon, T. A., Williams, T. C. & Pretorius, I. S. Sensing the future of bio-informational engineering. Nat. Commun. 12, 388 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hardin, G. The competitive exclusion principle. Science 131, 1292–1297 (1960).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Grandel, N. E., Reyes Gamas, K. & Bennett, M. R. Control of synthetic microbial consortia in time, space, and composition. Trends Microbiol. https://doi.org/10.1016/j.tim.2021.04.001 (2021).

  • Johns, N. I., Blazejewski, T., Gomes, A. L. & Wang, H. H. Principles for designing synthetic microbial communities. Curr. Opin. Microbiol. 31, 146–153 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen, M.-T. & Weiss, R. Artificial cell–cell communication in yeast Saccharomyces cerevisiae using signaling elements from Arabidopsis thaliana. Nat. Biotechnol. 23, 1551–1555 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • Khakhar, A., Bolten, N. J., Nemhauser, J. & Klavins, E. Cell–cell communication in yeast using auxin biosynthesis and auxin responsive CRISPR transcription factors. ACS Synth. Biol. 5, 279–286 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Hennig, S. et al. New approaches in bioprocess-control: consortium guidance by synthetic cell–cell communication based on fungal pheromones. Eng. Life Sci. 18, 387–400 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Williams, T. C. et al. Quorum-sensing linked RNA interference for dynamic metabolic pathway control in Saccharomyces cerevisiae. Metab. Eng. 29, 124–134 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Billerbeck, S. et al. A scalable peptide–GPCR language for engineering multicellular communication. Nat. Commun. 9, 5057 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hennig, S., Clemens, A., Rödel, G. & Ostermann, K. A yeast pheromone-based inter-species communication system. Appl. Microbiol. Biotechnol. 99, 1299–1308 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Terrell, J. L. et al. Bioelectronic control of a microbial community using surface-assembled electrogenetic cells to route signals. Nat. Nanotechnol. 16, 688–697 (2021).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Tschirhart, T. et al. Electronic control of gene expression and cell behaviour in Escherichia coli through redox signalling. Nat. Commun. 8, 14030 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Milias-Argeitis, A., Rullan, M., Aoki, S. K., Buchmann, P. & Khammash, M. Automated optogenetic feedback control for precise and robust regulation of gene expression and cell growth. Nat. Commun. 7, 12546 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lalwani, M. A., Kawabe, H., Mays, R. L., Hoffman, S. M. & Avalos, J. L. Optogenetic control of microbial consortia populations for chemical production. ACS Synth. Biol. 10, 2015–2029 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Bhokisham, N. et al. A redox-based electrogenetic CRISPR system to connect with and control biological information networks. Nat. Commun. 11, 2427 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dozon, N. M. & Noble, A. C. Sensory study of the effect of fluorescent light on a sparkling wine and its base wine. Am. J. Enol. Viticult. 40, 265 (1989).

    Google Scholar 

  • Shou, W., Ram, S. & Vilar, J. M. Synthetic cooperation in engineered yeast populations. Proc. Natl Acad. Sci. USA 104, 1877–1882 (2007).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rovner, A. J. et al. Recoded organisms engineered to depend on synthetic amino acids. Nature 518, 89–93 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Biava, H. D. Tackling Achilles’ heel in synthetic biology: pairing intracellular synthesis of noncanonical amino acids with genetic-code expansion to foster biotechnological applications. ChemBioChem 21, 1265–1273 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Yang, Y., Nemhauser, J. L. & Klavins, E. Synthetic bistability and differentiation in yeast. ACS Synth. Biol. 8, 929–936 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Aditya, C., Bertaux, F., Batt, G. & Ruess, J. A light tunable differentiation system for the creation and control of consortia in yeast. Nat. Commun. 12, 5829 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Del Vecchio, D., Dy, A. J. & Qian, Y. Control theory meets synthetic biology. J. Roy. Soc. Interface https://doi.org/10.1098/rsif.2016.0380 (2021).

  • Perrino, G., Hadjimitsis, A., Ledesma-Amaro, R. & Stan, G. B. Control engineering and synthetic biology: working in synergy for the analysis and control of microbial systems. Curr. Opin. Microbiol. 62, 68–75 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Markley, L. & Crassidis, J. Fundamentals of Spacecraft Attitude Determination and Control (Springer, 2014).

  • Briat, C., Gupta, A. & Khammash, M. Antithetic integral feedback ensures robust perfect adaptation in noisy biomolecular networks. Cell Systems 2, 15–26 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Lindemann, S. R. et al. Engineering microbial consortia for controllable outputs. ISME J. 10, 2077–2084 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fedorec, A. J. H., Karkaria, B. D., Sulu, M. & Barnes, C. P. Single strain control of microbial consortia. Nat. Commun. 12, 1977 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Swiegers, J. H. & Pretorius, I. S. Modulation of volatile sulfur compounds by wine yeast. Appl. Microbiol. Biotechnol. 74, 954–960 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • Bell, S.-J. & Henschke, P. A. Implications of nitrogen nutrition for grapes, fermentation and wine. Aust. J. Grape Wine Res. 11, 242–295 (2005).

    CAS 

    Google Scholar 

  • Pretorius, I. S. Conducting wine symphonics with the aid of yeast genomics. Beverages https://doi.org/10.3390/beverages2040036 (2016).

  • Det-udom, R. et al. Towards semi-synthetic microbial communities: enhancing soy sauce fermentation properties in B. subtilis co-cultures. Microb. Cell Fact. 18, 101 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Source link