Preloader

Synergistic effects of laccase and pectin on the color changes and functional properties of meat analogs containing beet red pigment

  • 1.

    He, J., Evans, N. M., Liu, H. & Shao, S. A review of research on plant-based meat alternatives: Driving forces, history, manufacturing, and consumer attitudes. Compr. Rev. Food Sci. Food Saf. 19, 2639–2656 (2020).

    PubMed 

    Google Scholar 

  • 2.

    Fresán, U. & Sabaté, J. Vegetarian diets: Planetary health and its alignment with human health. Adv. Nutr. 10, S380–S388 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 3.

    Fehér, A., Gazdecki, M., Véha, M., Szakály, M. & Szakály, Z. A comprehensive review of the benefits of and the barriers to the switch to a plant-based diet. Sustainability 12, 4136 (2020).

    Google Scholar 

  • 4.

    Godfray, H. C. J. et al. Meat consumption, health, and the environment. Science 361, eaam5324 (2018).

    PubMed 

    Google Scholar 

  • 5.

    Lee, H. J., Yong, H. I., Kim, M., Choi, Y. S. & Jo, C. Status of meat alternatives and their potential role in the future meat market—A review. Asian-Australas J. Anim. Sci. 33, 1533–1543 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 6.

    Spence, C. On the psychological impact of food colour. Flavour 4, 21 (2015).

    Google Scholar 

  • 7.

    Suman, S. P. & Joseph, P. Myoglobin chemistry and meat color. Annu. Rev. Food Sci. Technol. 4, 79–99 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • 8.

    Kyriakopoulou, K., Dekkers, B. & van der Goot, A. J. Plant-based meat analogues. In Sustainable Meat Production and Processing (ed. Galanakis, C. M.) 103–126 (Academic, Elsevier Inc., 2019).

    Google Scholar 

  • 9.

    Bohrer, B. M. An investigation of the formulation and nutritional composition of modern meat analogue products. Food Sci. Hum. Wellness 8, 320–329 (2019).

    Google Scholar 

  • 10.

    Strack, D., Vogt, T. & Schliemann, W. Recent advances in betalain research. Phytochemistry 62, 247–269 (2003).

    CAS 
    PubMed 

    Google Scholar 

  • 11.

    Stintzing, F. C. & Carle, R. Functional properties of anthocyanins and betalains in plants, food, and in human nutrition. Trends Food Sci. Technol. 15, 19–38 (2004).

    CAS 

    Google Scholar 

  • 12.

    Esatbeyoglu, T., Wagner, A. E., Schini-Kerth, V. B. & Rimbach, G. Betanin—A food colorant with biological activity. Mol. Nutr. Food Res. 59, 36–47 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 13.

    Leong, H. Y., Show, P. L., Lim, M. H., Ooi, C. W. & Ling, T. C. Natural red pigments from plants and their health benefits—A review. Food Rev. Int. 34, 463–482 (2018).

    CAS 

    Google Scholar 

  • 14.

    Vulić, J. J. et al. Antiradical, antimicrobial and cytotoxic activities of commercial beetroot pomace. Food Funct. 4, 713–721 (2013).

    PubMed 

    Google Scholar 

  • 15.

    Goldstein, B., Moses, R., Sammons, N. & Birkved, M. Potential to curb the environmental burdens of American beef consumption using a novel plant-based beef substitute. PLoS ONE 12, e0189029 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 16.

    Zhang, Y. & Zhang, Y. Formation and reduction of acrylamide in Maillard reaction: A review based on the current state of knowledge. Crit. Rev. Food Sci. Nutr. 47, 521–542 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • 17.

    Dennis, C., Karim, F. & Smith, J. S. Evaluation of Maillard reaction variables and their effect on heterocyclic amine formation in chemical model systems. J. Food Sci. 80, T472–T478 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 18.

    Morsy, S. A. G. Z., Ahmad Tajudin, A., Ali, M. S. M. & Shariff, F. M. Current development in decolorization of synthetic dyes by immobilized laccases. Front. Microbiol. 11, 572309 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 19.

    Heck, T., Faccio, G., Richter, M. & Thöny-Meyer, L. Enzyme-catalyzed protein crosslinking. Appl. Microbiol. Biotechnol. 97, 461–475 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • 20.

    Faramarzi, M. A. & Forootanfar, H. Biosynthesis and characterization of gold nanoparticles produced by laccase from Paraconiothyrium variabile. Colloids Surf. B Biointerfaces 87, 23–27 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • 21.

    Mogharabi, M. & Faramarzi, M. A. Laccase and laccase-mediated systems in the synthesis of organic compounds. Adv. Synth. Catal. 356, 897–927 (2014).

    CAS 

    Google Scholar 

  • 22.

    Forootanfar, H. & Faramarzi, M. A. Insights into laccase producing organisms, fermentation states, purification strategies, and biotechnological applications. Biotechnol. Prog. 31, 1443–1463 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 23.

    Forootanfar, H. et al. Removal of chlorophenolic derivatives by soil isolated ascomycete of Paraconiothyrium variabile and studying the role of its extracellular laccase. J. Hazard. Mater. 209–210, 199–203 (2012).

    PubMed 

    Google Scholar 

  • 24.

    Dehghanifard, E. et al. Biodegradation of 2,4-dinitrophenol with laccase immobilized on nanoporous silica beads. J. Environ. Health Sci. Eng. 10, 25 (2013).

    Google Scholar 

  • 25.

    Rahmani, K. et al. Elimination and detoxification of sulfathiazole and sulfamethoxazole assisted by laccase immobilized on porous silica beads. Int. Biodeterior. Biodegrad. 97, 107–114 (2015).

    CAS 

    Google Scholar 

  • 26.

    Pereira, L. et al. On the mechanism of biotransformation of the anthraquinonic dye acid blue 62 by laccases. Adv. Synth. Catal. 351, 1857–1865 (2009).

    CAS 

    Google Scholar 

  • 27.

    Mendes, S. et al. Synergistic action of azoreductase and laccase leads to maximal decolourization and detoxification of model dye-containing wastewaters. Bioresour. Technol. 102, 9852–9859 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • 28.

    Zhang, Y. et al. Amperometric biosensors based on recombinant bacterial laccase CotA for hydroquinone determination. Electroanalysis 32, 142–148 (2020).

    CAS 

    Google Scholar 

  • 29.

    Niu, X. et al. Small laccase from Streptomyces coelicolor catalyzed chitosan–pectin blending film for hazardous gas removal. Environ. Technol. Innov. 23, 1690 (2021).

    Google Scholar 

  • 30.

    Martínez-López, A. L. et al. Enzymatic cross-linking of ferulated arabinoxylan: Effect of laccase or peroxidase catalysis on the gel characteristics. Food Sci. Biotechnol. 28, 311–318 (2019).

    PubMed 

    Google Scholar 

  • 31.

    Hadrich, A. et al. Biomimetic hydrogel by enzymatic crosslinking of pullulan grafted with ferulic acid. Carbohydr. Polym. 250, 116967 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • 32.

    Buchert, J. et al. Crosslinking food proteins for improved functionality. Annu. Rev. Food Sci. Technol. 1, 113–138 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • 33.

    Isaschar-Ovdat, S. & Fishman, A. Crosslinking of food proteins mediated by oxidative enzymes—A review. Trends Food Sci. Technol. 72, 134–143 (2018).

    CAS 

    Google Scholar 

  • 34.

    Quan, W. et al. Effects of small laccase from Streptomyces coelicolor on the solution and gel properties of whey protein isolate. LWT Food Sci. Technol. 101, 17–24 (2019).

    CAS 

    Google Scholar 

  • 35.

    Mattinen, M. L. et al. Effect of protein structure on laccase-catalyzed protein oligomerization. J. Agric. Food Chem. 54, 8883–8890 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • 36.

    Zhou, Y. et al. Characterization of whey protein isolate and pectin composite film catalyzed by small laccase from Streptomyces coelicolor. Environ. Technol. Innov. 19, 100999 (2020).

    Google Scholar 

  • 37.

    Sakai, K., Sato, Y., Okada, M. & Yamaguchi, S. Improved functional properties of meat analogs by laccase catalyzed protein and pectin crosslinks. Sci. Rep. 11, 16631 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 38.

    Lee, C. Y. & Smith, N. L. Blanching effect on polyphenol oxidase activity in table beets. J. Food Sci. 44, 82–83 (1979).

    CAS 

    Google Scholar 

  • 39.

    Martínez-Parra, J. & Muñoz, R. Characterization of betacyanin oxidation catalyzed by a peroxidase from Beta vulgaris L. roots. J. Agric. Food Chem. 49, 4064–4068 (2001).

    PubMed 

    Google Scholar 

  • 40.

    Escribano, J., Gandía-Herrero, F., Caballero, N. & Pedreño, M. A. Subcellular localization and isoenzyme pattern of peroxidase and polyphenol oxidase in beet root (Beta vulgaris L.). J. Agric. Food Chem. 50, 6123–6129 (2002).

    CAS 
    PubMed 

    Google Scholar 

  • 41.

    Domínguez, R. et al. A comprehensive review on lipid oxidation in meat and meat products. Antioxidants 8, 429 (2019).

    PubMed Central 

    Google Scholar 

  • 42.

    Kimler, L., Larson, R. A., Messenger, L., Moore, J. B. & Mabry, T. J. Betalamic acid, a new naturally occurring pigment. J. Chem. Soc. D 21, 1329–1330 (1971).

    Google Scholar 

  • 43.

    Ito, S., IFPCS. The IFPCS presidential lecture: A chemist’s view of melanogenesis. Pigment Cell Res. 16, 230–236 (2003).

    CAS 
    PubMed 

    Google Scholar 

  • 44.

    Gandía-Herrero, F. & García-Carmona, F. Biosynthesis of betalains: Yellow and violet plant pigments. Trends Plant Sci. 18, 334–343 (2013).

    PubMed 

    Google Scholar 

  • 45.

    Biswas, M., Dey, S. & Sen, R. Betalains from Amaranthus tricolor L. J. Pharmacogn. Phytochem. 1, 87–95 (2013).

    Google Scholar 

  • 46.

    Tundis, R., Loizzo, M. R. & Menichini, F. Natural products as α-amylase and α-glucosidase inhibitors and their hypoglycaemic potential in the treatment of diabetes: An update. Mini Rev. Med. Chem. 10, 315–331 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • 47.

    Rochefort, D., Leech, D. & Bourbonnais, R. Electron transfer mediator systems for bleaching of paper pulp. Green Chem. 6, 14–24 (2004).

    CAS 

    Google Scholar 

  • 48.

    Munk, L., Andersen, M. L. & Meyer, A. S. Influence of mediators on laccase catalyzed radical formation in lignin. Enzyme Microb. Technol. 116, 48–56 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 49.

    Lantto, R., Plathin, P., Niemistö, M., Buchert, J. & Autio, K. Effects of transglutaminase, tyrosinase and freeze-dried apple pomace powder on gel forming and structure of pork meat. LWT Food Sci. Technol. 39, 1117–1124 (2006).

    CAS 

    Google Scholar 

  • 50.

    Mattinen, M. L. et al. Laccase-catalyzed polymerization of tyrosine containing peptides. FEBS J. 272, 3640–3650 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • 51.

    Selinheimo, E., Lampila, P., Mattinen, M. L. & Buchert, J. Formation of protein-oligosaccharide conjugates by laccase and tyrosinase. J. Agric. Food Chem. 56, 3118–3128 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • 52.

    Bakhsh, A. et al. A novel approach for tuning the physicochemical, textural, and sensory characteristics of plant-based meat analogs with different levels of methylcellulose concentration. Foods 10, 560 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 53.

    Ismail, I., Hwang, Y. H. & Joo, S. T. Interventions of two-stage thermal sous-vide cooking on the toughness of beef semitendinosus. Meat Sci. 157, 107882 (2019).

    PubMed 

    Google Scholar 

  • 54.

    Arora, B., Kamal, S. & Sharma, V. P. Effect of binding agents on quality characteristics of mushroom based sausage analogue. J. Food Process. 41, e13134 (2017).

    Google Scholar 

  • 55.

    De Angelis, D. et al. Physicochemical and sensorial evaluation of meat analogues produced from dry-fractionated pea and oat proteins. Foods 9, 1754 (2020).

    PubMed Central 

    Google Scholar 

  • 56.

    Kamani, M. H., Meera, M. S., Bhaskar, N. & Modi, V. K. Partial and total replacement of meat by plant-based proteins in chicken sausage: Evaluation of mechanical, physico-chemical and sensory characteristics. J. Food Sci. Technol. 56, 2660–2669 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 57.

    Ayadi, M. A., Kechaou, A., Makni, I. & Attia, H. Influence of carrageenan addition on turkey meat sausages properties. J. Food Eng. 93, 278–283 (2009).

    CAS 

    Google Scholar 

  • 58.

    Furuhashi, M. et al. Formation of contractile 3D bovine muscle tissue for construction of millimetre-thick cultured steak. npj Sci. Food 5, 6 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 59.

    de Marchi, M., Costa, A., Pozza, M., Goi, A. & Manuelian, C. L. Detailed characterization of plant-based burgers. Sci. Rep. 11, 2049 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 60.

    Mehta, N., Ahlawat, S. S., Sharma, D. P. & Dabur, R. S. Novel trends in development of dietary fiber rich meat products—A critical review. J. Food Sci. Technol. 52, 633–647 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 61.

    Trowell, H. Dietary fibre, ischaemic heart disease and diabetes mellitus. Proc. Nutr. Soc. 32, 151–157 (1973).

    CAS 
    PubMed 

    Google Scholar 

  • 62.

    Wi, G., Bae, J., Kim, H., Cho, Y. & Choi, M. J. Evaluation of the physicochemical and structural properties and the sensory characteristics of meat analogues prepared with various non-animal based liquid additives. Foods 9, 461 (2020).

    CAS 
    PubMed Central 

    Google Scholar 

  • 63.

    Barbut, S. & Marangoni, A. Organogels use in meat processing – Effects of fat/oil type and heating rate. Meat Sci. 149, 9–13 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 64.

    Youssef, M. K. & Barbut, S. Fat reduction in comminuted meat products-effects of beef fat, regular and pre-emulsified canola oil. Meat Sci. 87, 356–360 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • 65.

    Guillon, F. & Thibault, J. F. Further characterization of acid- and alkalisoluble pectins from sugar beet pulp. Lebensm. Wiss. Technol. 21, 198–205 (1988).

    CAS 

    Google Scholar 

  • 66.

    Nakauma, M. et al. Comparison of sugar beet pectin, soybean soluble polysaccharide, and gum arabic as food emulsifiers. 1. Effect of concentration, pH, and salts on the emulsifying properties. Food Hydrocoll. 22, 1254–1267 (2008).

    CAS 

    Google Scholar 

  • 67.

    Pathare, P. B. & Roskilly, A. P. Quality and energy evaluation in meat cooking. Food Eng. Rev. 8, 435–447 (2016).

    Google Scholar 

  • Source link