Satari, B., Karimi, K. & Kumar, R. Cellulose solvent-based pretreatment for enhanced second-generation biofuel production: a review. Sustain. Energy Fuels 3, 11–62 (2019).
Google Scholar
Xue, D. et al. Tandem integration of aerobic fungal cellulase production, lignocellulose substrate saccharification and anaerobic ethanol fermentation by a modified gas lift bioreactor. Bioresour. Technol. 302, 122902 (2020).
Google Scholar
Liu, C.-G. et al. Cellulosic ethanol production: progress, challenges and strategies for solutions. Biotechnol. Adv. 37, 491–504 (2019).
Google Scholar
Liu, H. et al. Comparative study of two different alkali-mechanical pretreatments of corn stover for bioethanol production. Fuel 221, 21–27 (2018).
Google Scholar
Patel, A. K., Singhania, R. R., Sim, S. J. & Pandey, A. Thermostable cellulases: current status and perspectives. Bioresour. Technol. 279, 385–392 (2019).
Google Scholar
Vaishnav, N. et al. Penicillium: the next emerging champion for cellulase production. Bioresour. Technol. Rep. 2, 131–140 (2018).
Srivastava, N. et al. Advances in nanomaterials induced biohydrogen production using waste biomass. Bioresour. Technol. 307, 123094 (2020).
Google Scholar
Srivastava, N. et al. Biohydrogen production via integrated sequential fermentation using magnetite nanoparticles treated crude enzyme to hydrolyze sugarcane bagasse. Int. J. Hydrog. Energy https://doi.org/10.1016/j.ijhydene.2021.08.198 (2021).
Google Scholar
Singh, N., Dhanya, B. S. & Verma, M. L. Nano-immobilized biocatalysts and their potential biotechnological applications in bioenergy production. Mater. Sci. Energy Technol. 3, 808–824 (2020).
Google Scholar
Kumar, S. et al. Investigation of nanoparticle immobilized cellulase: nanoparticle identity, linker length and polyphenol hydrolysis. Heliyon 5, e01702 (2019).
Google Scholar
Dhasmana, A. et al. Titanium dioxide nanoparticles provide protection against polycyclic aromatic hydrocarbon BaP and chrysene-induced perturbation of DNA repair machinery: a computational biology approach. Biotechnol. Appl. Biochem. 63, 497–513 (2016).
Google Scholar
Dhasmana, A. et al. Tobacco smoke carcinogens induce DNA repair machinery function loss: protection by carbon nanotubes. Asian Pac. J. Cancer Prev. 21, 3099–3108 (2020).
Google Scholar
Jordan, J., Kumar, C. S. S. R. & Theegala, C. Preparation and characterization of cellulase-bound magnetite nanoparticles. J. Mol. Catal. B Enzym 68, 139–146 (2011).
Google Scholar
Altaf, M., Manoharadas, S. & Zeyad, M. T. Green synthesis of cerium oxide nanoparticles using Acorus calamus extract and their antibiofilm activity against bacterial pathogens. Microsc. Res. Tech. 84, 1638–1648 (2021).
Google Scholar
Suresh, K. C. et al. Green synthesis of SnO2 nanoparticles using Delonix elata leaf extract: evaluation of its structural, optical, morphological and photocatalytic properties. SN Appl. Sci. 2, 1735 (2020).
Google Scholar
Selim, Y. A., Azb, M. A., Ragab, I. & Abd El-Azim, M. H. Green synthesis of zinc oxide nanoparticles using aqueous extract of deverra tortuosa and their cytotoxic activities. Sci. Rep. 10, 3445 (2020).
Google Scholar
Bekele, E. T., Gonfa, B. A., Zelekew, O. A., Belay, H. H. & Sabir, F. K. Synthesis of titanium oxide nanoparticles using root extract of Kniphofia foliosa as a template, characterization, and its application on drug resistance bacteria. J. Nanomater. 2020, 2817037 (2020).
Aritonang, H. F., Koleangan, H. & Wuntu, A. D. Synthesis of silver nanoparticles using aqueous extract of medicinal plants’ (Impatiens balsamina and Lantana camara) fresh leaves and analysis of antimicrobial activity. Int. J. Microbiol. 2019, 8642303 (2019).
Google Scholar
Rodríguez-León, E. et al. Synthesis of gold nanoparticles using mimosa tenuiflora extract, assessments of cytotoxicity, cellular uptake, and catalysis. Nanoscale Res. Lett. 14, 334 (2019).
Google Scholar
Bhuiyan, M. S. H. et al. Green synthesis of iron oxide nanoparticle using Carica papaya leaf extract: application for photocatalytic degradation of remazol yellow RR dye and antibacterial activity. Heliyon 6, e04603 (2020).
Google Scholar
Kulkarni, G. D. et al. Green synthesis of NiFe2O4 nanoparticles using different fuels and their structural characterization. J. Phys. Conf. Ser. 1644, 012003 (2020).
Google Scholar
Muthukumar, H., Palanirajan, S. K., Shanmugam, M. K. & Gummadi, S. N. Plant extract mediated synthesis enhanced the functional properties of silver ferrite nanoparticles over chemical mediated synthesis. Biotechnol. Rep. 26, e00469 (2020).
Meka Chufa, B., Abdisa Gonfa, B., Yohannes Anshebo, T. & Adam, W. G. A novel and simplest green synthesis method of reduced graphene oxide using methanol extracted Vernonia Amygdalina: large-scale production. Adv. Condens. Matter Phys. 2021, 6681710 (2021).
Srivastava, N., Singh, J., Ramteke, P. W., Mishra, P. K. & Srivastava, M. Improved production of reducing sugars from rice straw using crude cellulase activated with Fe3O4/Alginate nanocomposite. Bioresour. Technol. 183, 262–266 (2015).
Google Scholar
Srivastava, M. et al. Bioinspired synthesis of iron-based nanomaterials for application in biofuels production: a new in-sight. Renew. Sustain. Energy Rev. 147, 111206 (2021).
Google Scholar
Selvam, K. et al. Activity and stability of bacterial cellulase immobilized on magnetic nanoparticles. Chin. J. Catal. 37, 1891–1898 (2016).
Google Scholar
Sadiq, H. et al. Green synthesis of ZnO nanoparticles from Syzygium Cumini leaves extract with robust photocatalysis applications. J. Mol. Liq. 335, 116567 (2021).
Google Scholar
Asghar, M. A., Zahir, E., Asghar, M. A., Iqbal, J. & Rehman, A. A. Facile, one-pot biosynthesis and characterization of iron, copper and silver nanoparticles using Syzygium cumini leaf extract: as an effective antimicrobial and aflatoxin B1 adsorption agents. PLoS ONE 15, e0234964 (2020).
Google Scholar
Chhikara, N. et al. Bioactive compounds and pharmacological and food applications of Syzygium cumini: a review. Food Funct. 9, 6096–6115 (2018).
Google Scholar
Marslin, G. et al. Secondary metabolites in the green synthesis of metallic nanoparticles. Materials (Basel) 11, 940 (2018).
Google Scholar
da Silva, A. C. C. et al. Xyloglucan-based hybrid nanocomposite with potential for biomedical applications. Int. J. Biol. Macromol. 168, 722–732 (2021).
Google Scholar
Zhang, L. et al. Facile synthesis of iron oxides/reduced graphene oxide composites: application for electromagnetic wave absorption at high temperature. Sci. Rep. 5, 9298 (2015).
Google Scholar
Sukmaningsih, A. A. S. A., Permana, S., Santjojo, D. J. D. H., Wardoyo, A. Y. P. & Sumitro, S. B. The potency of java plum (Syzgium cumini) fruit extract as free radical scavenging in cigarette smoke. AIP Conf. Proc. 2155, 020015 (2019).
Google Scholar
Jebitta, S. R., Allwin, S. & Ramanathan, M. Functional group analysis of jamun (Syzygium cumini) pulp dried in cross flow dryer. Int. Res. J. Pharm. 6, 111–113 (2015).
Nag, S., Roychowdhury, A., Das, D. & Mukherjee, S. Synthesis of α-Fe2O3-functionalised graphene oxide nanocomposite by a facile low temperature method and study of its magnetic and hyperfine properties. Mater. Res. Bull. 74, 109–116 (2016).
Google Scholar
Testa-Anta, M., Ramos-Docampo, M. A., Comesaña-Hermo, M., Rivas-Murias, B. & Salgueiriño, V. Raman spectroscopy to unravel the magnetic properties of iron oxide nanocrystals for bio-related applications. Nanoscale Adv. 1, 2086–2103 (2019).
Google Scholar
Shebanova, O. N. & Lazor, P. Raman spectroscopic study of magnetite (FeFe2O4): a new assignment for the vibrational spectrum. J. Solid State Chem. 174, 424–430 (2003).
Google Scholar
El Ghandoor, H., Zidan, H., Khalil, M. & Ismail, M. I. M. Synthesis and some physical properties of magnetite (Fe3O4) nanoparticles. Int. J. Electrochem. Sci. 7, 5734–5745 (2012).
Li, Y., Wang, Z. & Liu, R. Superparamagnetic α-Fe2O3/Fe3O4 heterogeneous nanoparticles with enhanced biocompatibility. Nanomaterials (Basel). 11, 834 (2021).
Google Scholar
Rufus, A., Sreeju, N. & Philip, D. Synthesis of biogenic hematite (α-Fe2O3) nanoparticles for antibacterial and nanofluid applications. RSC Adv. 6, 94206–94217 (2016).
Google Scholar
Jayabharathi, J., Ramanathan, P., Thanikachalam, V. & Karunakaran, C. Optical and theoretical studies on Fe3O4–imidazole nanocomposite and clusters. New J. Chem. 39, 3801–3812 (2015).
Google Scholar
Potprommanee, L. et al. Characterization of a thermophilic cellulase from Geobacillus sp. HTA426, an efficient cellulase-producer on alkali pretreated of lignocellulosic biomass. PLoS ONE 12, e0175004 (2017).
Google Scholar
Huang, W., Pan, S., Li, Y., Yu, L. & Liu, R. Immobilization and characterization of cellulase on hydroxy and aldehyde functionalized magnetic Fe2O3/Fe3O4 nanocomposites prepared via a novel rapid combustion process. Int. J. Biol. Macromol. 162, 845–852 (2020).
Google Scholar
Yang, G. & Wang, J. Improving mechanisms of biohydrogen production from grass using zero-valent iron nanoparticles. Bioresour. Technol. 266, 413–420 (2018).
Google Scholar
Khan, S. et al. Maximizing the native concentration and shelf life of protein: a multiobjective optimization to reduce aggregation. Appl. Microbiol. Biotechnol. 89, 99–108 (2011).
Google Scholar
Srivastava, N. et al. Nickel ferrite nanoparticles induced improved fungal cellulase production using residual algal biomass and subsequent hydrogen production following dark fermentation. Fuel 304, 121391 (2021).
Google Scholar
Vijayalakshmi, S., Govindarajan, M., Al-Mulahim, N., Ahmed, Z. & Mahboob, S. Cellulase immobilized magnetic nanoparticles for green energy production from Allamanda schottii L.: sustainability research in waste recycling. Saudi J. Biol. Sci. 28, 901–910 (2021).
Google Scholar
Song, Q., Mao, Y., Wilkins, M., Segato, F. & Prade, R. Cellulase immobilization on superparamagnetic nanoparticles for reuse in cellulosic biomass conversion. AIMS Bioeng. 3, 264–276 (2016).
Google Scholar
Ahmad, R. & Sardar, M. Immobilization of cellulase on TiO2 nanoparticles by physical and covalent methods: a comparative study. Indian J. Biochem. Biophys. 51, 314–320 (2014).
Google Scholar
Elsa Cherian, M. D. G. B. Immobilization of cellulase onto MnO2 nanoparticles for bioethanol production by enhanced hydrolysis of agricultural waste. Chin. J. Catal. 36, 1223–1229 (2015).
Bohara, R. A., Thorat, N. D. & Pawar, S. H. Immobilization of cellulase on functionalized cobalt ferrite nanoparticles. Korean J. Chem. Eng. 33, 216–222 (2016).
Google Scholar
Manasa, P., Saroj, P. & Korrapati, N. Immobilization of cellulase enzyme on zinc ferrite nanoparticles in increasing enzymatic hydrolysis on ultrasound-assisted alkaline pretreated crotalaria juncea biomass. Indian J. Sci. Technol. 10, 1–7 (2017).
Google Scholar
Samaratunga, A. et al. Modeling the effect of pH and temperature for cellulases immobilized on enzymogel nanoparticles. Appl. Biochem. Biotechnol. 176, 1114–1130 (2015).
Google Scholar
Han, J. et al. Preparation and characterization of Fe3O4-NH2@4-arm-PEG-NH2, a novel magnetic four-arm polymer-nanoparticle composite for cellulase immobilization. Biochem. Eng. J. 130, 90–98 (2018).
Google Scholar
Li, Y. et al. Molecular Imprinting and immobilization of cellulase onto magnetic Fe3O4@SiO2 nanoparticles. J. Nanosci. Nanotechnol. 14, 2931–2936 (2014).
Google Scholar
Desai, M. P. & Pawar, K. D. Immobilization of cellulase on iron tolerant Pseudomonas stutzeri biosynthesized photocatalytically active magnetic nanoparticles for increased thermal stability. Mater. Sci. Eng. C 106, 110169 (2020).
Google Scholar
Abbaszadeh, M. & Hejazi, P. Metal affinity immobilization of cellulase on Fe3O4 nanoparticles with copper as ligand for biocatalytic applications. Food Chem. 290, 47–55 (2019).
Google Scholar
Kumari, A. et al. Multiple thermostable enzyme hydrolases on magnetic nanoparticles: an immobilized enzyme-mediated approach to saccharification through simultaneous xylanase, cellulase and amylolytic glucanotransferase action. Int. J. Biol. Macromol. 120, 1650–1658 (2018).
Google Scholar
Sharma, N. et al. Preparation and evaluation of the ZnO NP-ampicillin/sulbactam nanoantibiotic: optimization of formulation variables using RSM coupled GA method and antibacterial activities. Biomolecules 9, 764 (2019).
Google Scholar
Hyeon, J. E., Shin, S. K. & Han, S. O. Design of nanoscale enzyme complexes based on various scaffolding materials for biomass conversion and immobilization. Biotechnol. J. 11, 1386–1396 (2016).
Google Scholar
Rai, M. et al. Strategic role of nanotechnology for production of bioethanol and biodiesel. Nanotechnol. Rev. 5, 231–250 (2016).
Google Scholar
Li, L.-J., Xia, W.-J., Ma, G.-P., Chen, Y.-L. & Ma, Y.-Y. A study on the enzymatic properties and reuse of cellulase immobilized with carbon nanotubes and sodium alginate. AMB Express 9, 112 (2019).
Google Scholar
Ghose, T. K. Measurement of cellulase activities. Pure Appl. Chem. 59, 257–268 (1987).
Google Scholar
Miller, G. L. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31, 426–428 (1959).
Google Scholar

