Preloader

Subcutaneous nanotherapy repurposes the immunosuppressive mechanism of rapamycin to enhance allogeneic islet graft viability

  • 1.

    Shapiro, A. M., Pokrywczynska, M. & Ricordi, C. Clinical pancreatic islet transplantation. Nat. Rev. Endocrinol. 13, 268–277 (2017).

    CAS 

    Google Scholar 

  • 2.

    Molano, R. D. et al. Long-term islet allograft survival in nonobese diabetic mice treated with tacrolimus, rapamycin, and anti-interleukin-2 antibody. Transplantation 75, 1812–1819 (2003).

    CAS 

    Google Scholar 

  • 3.

    Shapiro, A. M. et al. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N. Engl. J. Med. 343, 230–238 (2000).

    CAS 

    Google Scholar 

  • 4.

    Rapamune (sirolimus) [Package Insert]. Wyeth Pharmaceuticals, Collegeville, PA (2011).

  • 5.

    Halloran, P. F. Immunosuppressive drugs for kidney transplantation. N. Engl. J. Med. 351, 2715–2729 (2004).

    CAS 

    Google Scholar 

  • 6.

    Yatscoff, R. W., Wang, P., Chan, K., Hicks, D. & Zimmerman, J. Rapamycin: distribution, pharmacokinetics, and therapeutic range investigations. Ther. Drug Monit. 17, 666–671 (1995).

    CAS 

    Google Scholar 

  • 7.

    Ferron, G. M., Mishina, E. V., Zimmerman, J. J. & Jusko, W. J. Population pharmacokinetics of sirolimus in kidney transplant patients. Clin. Pharmacol. Ther. 61, 416–428 (1997).

    CAS 

    Google Scholar 

  • 8.

    Meier-Kriesche, H. U. & Kaplan, B. Toxicity and efficacy of sirolimus: relationship to whole-blood concentrations. Clin. Ther. 22, B93–B100 (2000).

    CAS 

    Google Scholar 

  • 9.

    Hafiz, M. M. et al. Immunosuppression and procedure-related complications in 26 patients with type 1 diabetes mellitus receiving allogeneic islet cell transplantation. Transplantation 80, 1718–1728 (2005).

    CAS 

    Google Scholar 

  • 10.

    Lombardi, G. & Vasquez, Y. in Handbook of Experimental Pharmacology, Vol. 188 (eds Lombardi, G. & Vasquez, Y.) Preface (Springer, 2009).

  • 11.

    Stabler, C. L., Li, Y., Stewart, J. M. & Keselowsky, B. C. Engineering immunomodulatory biomaterials for type 1 diabetes. Nat. Rev. Mater. 4, 429–450 (2019).

    CAS 

    Google Scholar 

  • 12.

    Emoto, C., Fukuda, T., Cox, S., Christians, U. & Vinks, A. A. Development of a physiologically-based pharmacokinetic model for sirolimus: predicting bioavailability based on intestinal CYP3A content. CPT Pharmacometrics Syst. Pharmacol. 2, e59 (2013).

    CAS 

    Google Scholar 

  • 13.

    Haeri, A., Osouli, M., Bayat, F., Alavi, S. & Dadashzadeh, S. Nanomedicine approaches for sirolimus delivery: a review of pharmaceutical properties and preclinical studies. Artif. Cells Nanomed. Biotechnol. 46, 1–14 (2018).

    CAS 

    Google Scholar 

  • 14.

    Alemdar, A. Y., Baker, K. A., Sadi, D., McAlister, V. C. & Mendez, I. Liposomal tacrolimus administered systemically and within the donor cell suspension improves xenograft survival in hemiparkinsonian rats. Exp. Neurol. 172, 416–424 (2001).

    CAS 

    Google Scholar 

  • 15.

    Haeri, A. et al. Use of remote film loading methodology to entrap sirolimus into liposomes: preparation, characterization and in vivo efficacy for treatment of restenosis. Int. J. Pharm. 414, 16–27 (2011).

    CAS 

    Google Scholar 

  • 16.

    Allen, S., Osorio, O., Liu, Y. G. & Scott, E. Facile assembly and loading of theranostic polymersomes via multi-impingement flash nanoprecipitation. J. Control. Release 262, 91–103 (2017).

    CAS 

    Google Scholar 

  • 17.

    Allen, S. D. et al. Polymersomes scalably fabricated via flash nanoprecipitation are non-toxic in non-human primates and associate with leukocytes in the spleen and kidney following intravenous administration. Nano Res. https://doi.org/10.1007/s12274-018-2069-x (2018).

  • 18.

    Stano, A., Scott, E. A., Dane, K. Y., Swartz, M. A. & Hubbell, J. A. Tunable T cell immunity towards a protein antigen using polymersomes vs. solid-core nanoparticles. Biomaterials 34, 4339–4346 (2013).

    CAS 

    Google Scholar 

  • 19.

    Scott, E. A. et al. Dendritic cell activation and T cell priming with adjuvant- and antigen-loaded oxidation-sensitive polymersomes. Biomaterials 33, 6211–6219 (2012).

    CAS 

    Google Scholar 

  • 20.

    Dowling, D. J. et al. Toll-like receptor 8 agonist nanoparticles mimic immunomodulating effects of the live BCG vaccine and enhance neonatal innate and adaptive immune responses. J. Allergy Clin. Immunol. 140, 1339–1350 (2017).

    CAS 

    Google Scholar 

  • 21.

    Yi, S. et al. Tailoring nanostructure morphology for enhanced targeting of dendritic cells in atherosclerosis. ACS Nano 10, 11290–11303 (2016).

    CAS 

    Google Scholar 

  • 22.

    Bracho-Sanchez, E., Hassanzadeh, A., Brusko, M. A., Wallet, M. A. & Keselowsky, B. G. Dendritic cells treated with exogenous indoleamine 2,3-dioxygenase maintain an immature phenotype and suppress antigen-specific T cell proliferation. J. Immunol. Regen. Med. https://doi.org/10.1016/j.regen.2019.100015 (2019).

  • 23.

    Peng, Y., Latchman, Y. & Elkon, K. B. Ly6Clow monocytes differentiate into dendritic cells and cross-tolerize T cells through PDL-1. J. Immunol. 182, 2777–2785 (2009).

    CAS 

    Google Scholar 

  • 24.

    Allen, R. P., Bolandparvaz, A., Ma, J. A., Manickam, V. A. & Lewis, J. S. Latent, immunosuppressive nature of poly(lactic-co-glycolic acid) microparticles. ACS Biomater. Sci. Eng. 4, 900–918 (2018).

    CAS 

    Google Scholar 

  • 25.

    Zhang, N. et al. Sirolimus is associated with reduced islet engraftment and impaired β-cell function. Diabetes 55, 2429–2436 (2006).

    CAS 

    Google Scholar 

  • 26.

    Rosborough, B. R. et al. Adenosine triphosphate-competitive mTOR inhibitors: a new class of immunosuppressive agents that inhibit allograft rejection. Am. J. Transpl. 14, 2173–2180 (2014).

    CAS 

    Google Scholar 

  • 27.

    van den Bosch, T. P., Kannegieter, N. M., Hesselink, D. A., Baan, C. C. & Rowshani, A. T. Targeting the monocyte-macrophage lineage in solid organ transplantation. Front. Immunol. 8, 153 (2017).

    Google Scholar 

  • 28.

    Abbas, A. K. & Lichtman, A. H. Basic Immunology: Functions and Disorders of the Immune System 2nd edn (Saunders, 2004).

  • 29.

    Cantarelli, E. et al. Murine animal models for preclinical islet transplantation: no model fits all (research purposes). Islets 5, 79–86 (2013).

    Google Scholar 

  • 30.

    Mahe, E. et al. Cutaneous adverse events in renal transplant recipients receiving sirolimus-based therapy. Transplantation 79, 476–482 (2005).

    CAS 

    Google Scholar 

  • 31.

    Ventola, C. L. Progress in nanomedicine: approved and investigational nanodrugs. P T 42, 742–755 (2017).

    Google Scholar 

  • 32.

    Burrack, A. L., Martinov, T. & Fife, B. T. T cell-mediated beta cell destruction: autoimmunity and alloimmunity in the context of type 1 diabetes. Front. Endocrinol. (Lausanne) 8, 343 (2017).

    Google Scholar 

  • 33.

    Bouhdoud, L., Villain, P., Merzouki, A., Arella, M. & Couture, C. T-cell receptor-mediated anergy of a human immunodeficiency virus (HIV) gp120-specific CD4+ cytotoxic T-cell clone, induced by a natural HIV type 1 variant peptide. J. Virol. 74, 2121–2130 (2000).

    CAS 

    Google Scholar 

  • 34.

    Vieyra-Lobato, M. R., Vela-Ojeda, J., Montiel-Cervantes, L., Lopez-Santiago, R. & Moreno-Lafont, M. C. Description of CD8+ regulatory T lymphocytes and their specific intervention in graft-versus-host and infectious diseases, autoimmunity, and cancer. J. Immunol. Res. 2018, 3758713 (2018).

    Google Scholar 

  • 35.

    Fu, C. et al. Plasmacytoid dendritic cells cross-prime naive CD8 T cells by transferring antigen to conventional dendritic cells through exosomes. Proc. Natl Acad. Sci. USA 117, 23730–23741 (2020).

    CAS 

    Google Scholar 

  • 36.

    Thomas, H. E., Darwiche, R., Corbett, J. A. & Kay, T. W. Interleukin-1 plus γ-interferon-induced pancreatic β-cell dysfunction is mediated by β-cell nitric oxide production. Diabetes 51, 311–316 (2002).

    CAS 

    Google Scholar 

  • 37.

    Kawamura, S. & Ohteki, T. Monopoiesis in humans and mice. Int. Immunol. 30, 503–509 (2018).

    CAS 

    Google Scholar 

  • 38.

    Zhu, J., Chen, H., Huang, X., Jiang, S. & Yang, Y. Ly6Chi monocytes regulate T cell responses in viral hepatitis. JCI Insight 1, e89880 (2016).

    Google Scholar 

  • 39.

    Parrot, T. et al. Transcriptomic features of tumour-infiltrating CD4lowCD8high double positive ɑβ T cells in melanoma. Sci. Rep. 10, 5900 (2020).

    CAS 

    Google Scholar 

  • 40.

    Parel, Y. et al. Presence of CD4+CD8+ double-positive T cells with very high interleukin-4 production potential in lesional skin of patients with systemic sclerosis. Arthritis Rheum. 56, 3459–3467 (2007).

    CAS 

    Google Scholar 

  • 41.

    Overgaard, N. H., Jung, J. W., Steptoe, R. J. & Wells, J. W. CD4+/CD8+ double-positive T cells: more than just a developmental stage? J. Leukoc. Biol. 97, 31–38 (2015).

    Google Scholar 

  • 42.

    Dew, M. A. et al. Rates and risk factors for nonadherence to the medical regimen after adult solid organ transplantation. Transplantation 83, 858–873 (2007).

    Google Scholar 

  • 43.

    Nulojix (belatacept) [Package Insert]. Bristol Myers Squibb, Princeton, NJ (2011).

  • 44.

    O’Hare, F. M. et al. Neutrophil and monocyte toll-like receptor 4, CD11b and reactive oxygen intermediates, and neuroimaging outcomes in preterm infants. Pediatr. Res. 78, 82–90 (2015).

    Google Scholar 

  • 45.

    Yasunami, Y. et al. Vɑ14 NK T cell-triggered IFN-γ production by Gr-1+CD11b+ cells mediates early graft loss of syngeneic transplanted islets. J. Exp. Med. 202, 913–918 (2005).

    CAS 

    Google Scholar 

  • 46.

    Manzoli, V. et al. Immunoisolation of murine islet allografts in vascularized sites through conformal coating with polyethylene glycol. Am. J. Transpl. 18, 590–603 (2018).

    CAS 

    Google Scholar 

  • 47.

    Allen, S. D., Bobbala, S., Karabin, N. B., Modak, M. & Scott, E. A. Benchmarking bicontinuous nanospheres against polymersomes for in vivo biodistribution and dual intracellular delivery of lipophilic and water-soluble payloads. ACS Appl. Mater. Interfaces 10, 33857–33866 (2018).

    CAS 

    Google Scholar 

  • 48.

    Yu, Y. R. et al. A protocol for the comprehensive flow cytometric analysis of immune cells in normal and inflamed murine non-lymphoid tissues. PLoS ONE 11, e0150606 (2016).

    Google Scholar 

  • 49.

    Belkina, A. C. et al. Automated optimized parameters for T-distributed stochastic neighbor embedding improve visualization and analysis of large datasets. Nat. Commun. 10, 5415 (2019).

    Google Scholar 

  • 50.

    Andrews, S. FastQC: a quality control tool for high throughput sequence data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc (Babraham Bioinformatics, 2010).

  • 51.

    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    CAS 

    Google Scholar 

  • 52.

    Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    CAS 

    Google Scholar 

  • 53.

    Trapnell, C. et al. Transcript assembly and quantification by RNA-seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 28, 511–515 (2010).

    CAS 

    Google Scholar 

  • 54.

    Trapnell, C. et al. Differential analysis of gene regulation at transcript resolution with RNA-seq. Nat. Biotechnol. 31, 46–53 (2013).

    CAS 

    Google Scholar 

  • 55.

    Roberts, A., Trapnell, C., Donaghey, J., Rinn, J. L. & Pachter, L. Improving RNA-seq expression estimates by correcting for fragment bias. Genome Biol. 12, R22 (2011).

    CAS 

    Google Scholar 

  • Source link