Preloader

Structural insights into bifunctional thaumarchaeal crotonyl-CoA hydratase and 3-hydroxypropionyl-CoA dehydratase from Nitrosopumilus maritimus

  • 1.

    Konneke, M. et al. Ammonia-oxidizing archaea use the most energy-efficient aerobic pathway for CO2 fixation. Proc. Natl. Acad. Sci. 111, 8239–8244 (2014).

    ADS 
    Article 

    Google Scholar 

  • 2.

    Siegenthaler, U. & Oeschger, H. Predicting future atmospheric carbon dioxide levels. Science 199, 388–395 (1978).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 3.

    Cicerone, R. J. Human forcing of climate change: Easing up on the gas pedal. Proc. Natl. Acad. Sci. 97, 10304–10306 (2000).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 4.

    Walker, C. B. et al. Nitrosopumilus maritimus genome reveals unique mechanisms for nitrification and autotrophy in globally distributed marine crenarchaea. Proc. Natl. Acad. Sci. U. S. A. 107, 8818–8823 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 5.

    Santoro, A. E. et al. Genomic and proteomic characterization of ‘Candidatus Nitrosopelagicus brevis’: An ammonia-oxidizing archaeon from the open ocean. Proc. Natl. Acad. Sci. U. S. A. 112, 1173–1178 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 6.

    Karner, M. B., DeLong, E. F. & Karl, D. M. Archaeal dominance in the mesopelagic zone of the Pacific Ocean. Nature 409, 507–510 (2001).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 7.

    Venter, J. C. et al. Environmental genome shotgun sequencing of the Sargasso Sea. Science 304, 66–74 (2004).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 8.

    Treusch, A. H. et al. Novel genes for nitrite reductase and Amo-related proteins indicate a role of uncultivated mesophilic crenarchaeota in nitrogen cycling. Environ. Microbiol. 7, 1985–1995 (2005).

    CAS 
    Article 

    Google Scholar 

  • 9.

    Könneke, M. et al. Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437, 543–546 (2005).

    ADS 
    Article 

    Google Scholar 

  • 10.

    Francis, C. A., Roberts, K. J., Beman, J. M., Santoro, A. E. & Oakley, B. B. Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proc. Natl. Acad. Sci. U. S. A. 102, 14683–14688 (2005).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 11.

    Wuchter, C. et al. Archaeal nitrification in the ocean. Proc. Natl. Acad. Sci. U. S. A. 103, 12317–12322 (2006).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 12.

    Leininger, S. et al. Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature https://doi.org/10.1038/nature04983 (2006).

    Article 
    PubMed 

    Google Scholar 

  • 13.

    Santoro, A. E., Casciotti, K. L. & Francis, C. A. Activity, abundance and diversity of nitrifying archaea and bacteria in the central California Current. Environ. Microbiol. 12, 1989–2006 (2010).

    CAS 
    Article 

    Google Scholar 

  • 14.

    Cardarelli, E. L., Bargar, J. R. & Francis, C. A. Diverse thaumarchaeota dominate subsurface ammonia-oxidizing communities in semi-arid floodplains in the Western United States. Microb. Ecol. 80, 778–792 (2020).

    CAS 
    Article 

    Google Scholar 

  • 15.

    Martens-Habbena, W., Berube, P. M., Urakawa, H., de la Torre, J. R. & Stahl, D. A. Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria. Nature 461, 976–979 (2009).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 16.

    Li, P.-N. et al. Nutrient transport suggests an evolutionary basis for charged archaeal surface layer proteins. ISME J. 12, 2389–2402 (2018).

    CAS 
    Article 

    Google Scholar 

  • 17.

    Stahl, D. A. & de la Torre, J. R. Physiology and diversity of ammonia-oxidizing archaea. Annu. Rev. Microbiol. 66, 83–101 (2012).

    CAS 
    Article 

    Google Scholar 

  • 18.

    Schleper, C. & Nicol, G. W. Ammonia-oxidising archaea–physiology, ecology and evolution. Adv. Microb. Physiol. 57, 1–41 (2010).

    CAS 
    Article 

    Google Scholar 

  • 19.

    Berg, I. A., Kockelkorn, D., Buckel, W. & Fuchs, G. A 3-hydroxypropionate/4-hydroxybutyrate autotrophic carbon dioxide assimilation pathway in Archaea. Science 318, 1782–1786 (2007).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 20.

    Ettema, T. J. G. & Andersson, S. G. E. Comment on ‘A 3-hydroxypropionate/4-hydroxybutyrate autotrophic carbon dioxide assimilation pathway in Archaea’. Science 321, 342; author reply 342 (2008).

  • 21.

    Berg, I. A. Ecological aspects of the distribution of different autotrophic CO2 fixation pathways. Appl. Environ. Microbiol. 77, 1925–1936 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 22.

    Liu, L. et al. Convergent evolution of a promiscuous 3-hydroxypropionyl-CoA dehydratase/crotonyl-CoA hydratase in crenarchaeota and thaumarchaeota. mSphere 6, e01079-20 (2021).

    Article 

    Google Scholar 

  • 23.

    Lee, D. & Kim, K.-J. Structural insight into substrate specificity of 3-hydroxypropionyl-coenzyme A dehydratase from Metallosphaera sedula. Sci. Rep. 8, 10692 (2018).

    ADS 
    Article 

    Google Scholar 

  • 24.

    Engel, C. K., Mathieu, M., Zeelen, J. P., Hiltunen, J. K. & Wierenga, R. K. Crystal structure of enoyl-coenzyme A (CoA) hydratase at 2.5 angstroms resolution: A spiral fold defines the CoA-binding pocket. EMBO J. 19, 5135–5145 (1996).

    Article 

    Google Scholar 

  • 25.

    Bahnson, B. J., Anderson, V. E. & Petsko, G. A. Structural mechanism of enoyl-CoA hydratase: Three atoms from a single water are added in either an E1cb stepwise or concerted fashion. Biochemistry 41, 2621–2629 (2002).

    CAS 
    Article 

    Google Scholar 

  • 26.

    Hofstein, H. A., Feng, Y., Anderson, V. E. & Tonge, P. J. Role of glutamate 144 and glutamate 164 in the catalytic mechanism of enoyl-CoA hydratase. Biochemistry 38, 9508–9516 (1999).

    CAS 
    Article 

    Google Scholar 

  • 27.

    Clamp, M., Cuff, J., Searle, S. M. & Barton, G. J. The Jalview Java alignment editor. Bioinformatics 20, 426–427 (2004).

    CAS 
    Article 

    Google Scholar 

  • 28.

    Teufel, R., Kung, J. W., Kockelkorn, D., Alber, B. E. & Fuchs, G. 3-hydroxypropionyl-coenzyme A dehydratase and acryloyl-coenzyme A reductase, enzymes of the autotrophic 3-hydroxypropionate/4-hydroxybutyrate cycle in the Sulfolobales. J. Bacteriol. 191, 4572–4581 (2009).

    CAS 
    Article 

    Google Scholar 

  • 29.

    Cao, H.-Y. et al. Molecular insight into the acryloyl-CoA hydration by AcuH for acrylate detoxification in dimethylsulfoniopropionate-catabolizing bacteria. Front. Microbiol. 8, 2034 (2017).

    Article 

    Google Scholar 

  • 30.

    Engel, C. K., Kiema, T. R., Hiltunen, J. K. & Wierenga, R. K. The crystal structure of enoyl-CoA hydratase complexed with octanoyl-CoA reveals the structural adaptations required for binding of a long chain fatty acid-CoA molecule. J. Mol. Biol. 275, 847–859 (1998).

    CAS 
    Article 

    Google Scholar 

  • 31.

    Bock, T., Reichelt, J., Müller, R. & Blankenfeldt, W. The structure of LiuC, a 3-hydroxy-3-methylglutaconyl CoA dehydratase involved in isovaleryl-CoA biosynthesis in Myxococcus xanthus, reveals insights into specificity and catalysis. ChemBioChem 17, 1658–1664 (2016).

    CAS 
    Article 

    Google Scholar 

  • 32.

    Kabsch, W. et al. XDS. Acta Crystallogr. Sect. D Biol. Crystallogr. 66, 125–132 (2010).

    CAS 
    Article 

    Google Scholar 

  • 33.

    McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    CAS 
    Article 

    Google Scholar 

  • 34.

    Adams, P. D. et al. PHENIX: A comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D. Biol. Crystallogr. 66, 213–221 (2010).

    CAS 
    Article 

    Google Scholar 

  • 35.

    Emsley, P. & Cowtan, K. Coot: Model-building tools for molecular graphics. Acta Crystallogr. D. Biol. Crystallogr. 60, 2126–2132 (2004).

    Article 

    Google Scholar 

  • 36.

    Thompson, J. D., Gibson, T. J. & Higgins, D. G. Multiple sequence alignment using ClustalW and ClustalX. Curr. Protoc. Bioinforma. Chapter 2, Unit 2.3 (2002).

  • 37.

    DeLano, W. L. The PyMOL Molecular Graphics System, Version 2.3. Schrödinger LLC (2020).

  • Source link