Preloader

Stage specific comparative transcriptomic analysis to reveal gene networks regulating iron and zinc content in pearl millet [Pennisetum glaucum (L.) R. Br.]

  • 1.

    Singhal, T. et al. Genotype x environment interaction and genetic association of grain iron and zinc content with other agronomic traits in RIL population of pearl millet. Crop Pasture Sci. 69, 1092–1102 (2018).

    CAS 
    Article 

    Google Scholar 

  • 2.

    Anuradha, N. et al. Evaluation of pearl millet [Pennisetum glaucum (L.) R. Br.] for grain iron and zinc content in different agro climatic zones of India. Indian J. Genet. Plant Breed. 77(1), 65–73 (2017).

    CAS 
    Article 

    Google Scholar 

  • 3.

    Saleh, A. S. M., Zhang, Q., Chen, J. & Shen, Q. Millet grains: Nutritional quality, processing, and potential health benefits. Compr. Rev. Food Sci. Food Saf. 12, 281–295. https://doi.org/10.1111/1541-4337.12012 (2013).

    CAS 
    Article 

    Google Scholar 

  • 4.

    Parthasarathy, R. P., Birthal, P. S., Reddy, B. V. S., Rai, K. N. & Ramesh, S. Diagnostics of sorghum and pearl millet grains-based nutrition in India. Int. Sorghum Millets Newsl. 44, 93–96 (2006).

    Google Scholar 

  • 5.

    Krishnan, R. & Meera, M. S. Pearl millet minerals: effect of processing on bioaccessibility. J. Food Sci. Technol. 55, 3362–3372. https://doi.org/10.1007/s13197-018-3305-9 (2018).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 6.

    Welch, R. M. & Graham, R. D. Breeding for micronutrients in staple food crops from a human nutrition perspective. J. Exp. Bot. 55, 353–364. https://doi.org/10.1093/jxb/erh064 (2004).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 7.

    Bailey, R. L., West, K. P. Jr. & Black, R. E. The epidemiology of global micronutrient deficiencies. Ann. Nutr. Metab. 66, 22–33. https://doi.org/10.1159/000371618 (2015).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 8.

    Ezzati, M., Lopez, A. D., Rodgers, A., Vanderhoorn, S. & Murray, C. J. L. Selected major risk factors and global and regional burden of disease. Lancet 360, 1347–1360 (2002).

    Article 

    Google Scholar 

  • 9.

    Kramer, C. V. & Allen, S. Malnutrition in developing countries. Paediatr. Child Health 25, 422–427 (2015).

    Article 

    Google Scholar 

  • 10.

    Gibson, R. S., Hess, S. Y., Hotz, C. & Brown, K. H. Indicators of zinc status at the population level: a review of the evidence. Br. J. Nutr. 99, S14–S23. https://doi.org/10.1017/S0007114508006818V (2008).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 11.

    Chasapis, C. T., Loutsidou, A. C., Spiliopoulou, C. A. & Stefanidou, M. E. Zinc and human health: An update. Arch. Toxicol. 86, 521–553. https://doi.org/10.1007/s00204-011-0775-1 (2012).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 12.

    Bouis, H. E., Hotz, C., McClafferty, B., Meenakshi, J. V. & Pfeiffer, W. H. Biofortification: a new tool to reduce micronutrient malnutrition. Food Nutr. Bull. 32, S31–S40. https://doi.org/10.1177/15648265110321S105 (2011).

    Article 
    PubMed 

    Google Scholar 

  • 13.

    Anuradha, N. et al. Pearl millet genetic variability for grain yield and micronutrients in the arid zone of India. J. Pharmaco. Phytochem. 7(1), 875–878 (2018).

    CAS 

    Google Scholar 

  • 14.

    Satyavathi, C. T. et al. Stability analysis of Grain Iron and Zinc content in Pearl millet (Pennisetum glaucum (L.) R. Br.). Int. J. Tropical Agri. 33(2), 1387–1394 (2015).

    Google Scholar 

  • 15.

    Kodkany, B. S. et al. Biofortification of pearl millet with iron and zinc in a randomized controlled trial increases absorption of these minerals above physiologic requirements in young children. J. Nutr. 143, 1489–1493. https://doi.org/10.3945/jn.113.176677 (2013).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 16.

    Hirai, M. Y. et al. Integration of transcriptomics and metabolomics for understanding of global responses to nutritional stresses in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 101, 10205–10210. https://doi.org/10.1073/pnas.0403218101 (2004).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 17.

    Kulski, J.K. Next-Generation Sequencing -An Overview of the History, Tools, and “Omic” Applications (2016) https://doi.org/10.5772/61964.

  • 18.

    Agarwal, P., Agarwal, P. K., Joshi, A. J., Sopory, S. K. & Reddy, M. K. Overexpression of PgDREB2A transcription factor enhances abiotic stress tolerance and activates downstream stress-responsive genes. Mol. Biol. Rep. 37(2), 1125–1135 (2010).

    CAS 
    Article 

    Google Scholar 

  • 19.

    Verma, D., Singla-Pareek, S. L., Rajagopal, D., Reddy, M. K. & Sopory, S. K. Functional validation of a novel isoform of Na+/H+ antiporter from Pennisetum glaucum for enhancing salinity tolerance in rice. J. Biosci. 32(3), 621–628. https://doi.org/10.1007/s12038-007-0061-9 (2007).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 20.

    Reddy, P. S., Reddy, G. M., Pandey, P., Chandrasekhar, K. & Reddy, M. K. Cloning and molecular characterization of a gene encoding late embryogenesis abundant protein from Pennisetum glaucum: protection against abiotic stresses. Mol. Biol. Rep. 39(6), 7163–7174. https://doi.org/10.1007/s11033-012-1548-5 (2012).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 21.

    Desai, M. K. et al. Structural and functional analysis of a salt stress inducible gene encoding voltage dependent anion channel (VDAC) from pearl millet (Pennisetum glaucum). Plant Physiol. Biochem. 44(7–9), 483–493 (2006).

    CAS 
    Article 

    Google Scholar 

  • 22.

    Singh, J., Reddy, P. S., Reddy, C. S. & Reddy, M. K. Molecular cloning and characterization of salt inducible dehydrin gene from the C4 plant Pennisetum glaucum. Plant Gene 4, 55–63. https://doi.org/10.1016/j.plgene (2015).

    CAS 
    Article 

    Google Scholar 

  • 23.

    Sankar, S. M. et al. Differential modulation of heat inducible genes across diverse genotypes and molecular cloning of a sHSP from Pearl millet [Pennisetum glaucum (L.) R. Br]. Front. Plant Sci. https://doi.org/10.3389/fpls/2021.659893 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 24.

    Jaiswal, S. et al. Transcriptomic signature of drought response in pearl millet (Pennisetum glaucum (L.) and development of web-genomic resources. Sci. Rep. 8(1), 3382 (2018).

    ADS 
    Article 

    Google Scholar 

  • 25.

    Shinde, H. et al. Comparative de novo transcriptomic profiling of the salinity stress responsiveness in contrasting pearl millet lines. Environ. Exp. Botany 155, 619–627 (2018).

    CAS 
    Article 

    Google Scholar 

  • 26.

    Strickler, S., Bombarely, A. & Mueller, L. Designing a transcriptome next-generation sequencing project for a nonmodel plant species. Am. J. Bot. 99, 257–266. https://doi.org/10.3732/ajb.1100292 (2012).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 27.

    Varshney, R. K. et al. Pearl millet genome sequence provides a resource to improve agronomic traits in arid environments. Nat. Biotech. 35, 969–976 (2017).

    CAS 
    Article 

    Google Scholar 

  • 28.

    Conesa, A. S., Gotz, J. M., Garcia-Gomez, J., Terol, M. & Talon, M. R. Blast 2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21(18), 3674–3676 (2005).

    CAS 
    Article 

    Google Scholar 

  • 29.

    Langmead, B. & Salzberg, S. Fast gapped-read alignment with Bowtie. Nat. Methods 9, 357–359. https://doi.org/10.1038/nmeth.1923 (2012).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 30.

    Robinson, M. D., McCarthy, D. J. & Smyth, G. K. Edger: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatic 26(1), 139–140 (2010).

    CAS 
    Article 

    Google Scholar 

  • 31.

    Usadel, B. et al. Co-expression tools for plant biology: Opportunities for hypothesis generation and caveats. Plant Cell Environ. 32(12), 1633–1651 (2009).

    CAS 
    Article 

    Google Scholar 

  • 32.

    Hamid, R. et al. Transcriptome profiling and cataloging differential gene expression in floral buds of fertile and sterile lines of cotton (Gossypium hirsutum L.). Gene 660, 80–91 (2018).

    CAS 
    Article 

    Google Scholar 

  • 33.

    Institute of Medicine. Food and Nutrition Board. Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc: a Report of the Panel on Micronutrients. National Academy Press; 2001.

  • 34.

    Lockyer, S., White, A. & Buttriss, J. L. Biofortified crops for tackling micronutrient deficiencies-what impact are these having in developing countries and could they be of relevance within Europe. Nutr. Bull. 43, 319–357 (2018).

    Article 

    Google Scholar 

  • 35.

    Singhal, T. et al. Singh N Multi environment quantitative trait loci mapping for grain iron and zinc content using biparental recombinant inbred line population in pearl millet. Front. Plant Sci. https://doi.org/10.3389/fpls/2021.659789 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 36.

    Singhal, T. et al. Identification of new stable and high iron rich fertility restorers in Pearl millet. Indian J. Genet. Plant Breed. 79(3), 552–562. https://doi.org/10.31742/IJGPB.79.3.4 (2019).

    CAS 
    Article 

    Google Scholar 

  • 37.

    Satyavathi, C. T., Singh, S. P., Sankar, M. S., Prabhu, K. V. & Gupta, H. S. PPMI 904 (IC0617290; INGR16004), a Pearl Millet (Pennisetum glaucum L.) Germplasm with high iron content of 91 mg/kg high zinc content of 78 mg/kg. Indian J. Plant Genet. Resources 31(1), 105–106 (2018).

    Google Scholar 

  • 38.

    Anuradha, N., Satyavathi, C. T., Bharadwaj, C., Bhat, J. & Pathy, T. L. Correlation studies on quality and other economic traits in pearl millet. Int. J. Chem. Stud. 6(5), 2041–2043 (2018).

    Google Scholar 

  • 39.

    Kumar, S. et al. Mapping grain iron and zinc content quantitative trait loci in an Iniadi-derived immortal population of pearl millet. Genes 9, 248. https://doi.org/10.3390/genes9050248 (2018).

    CAS 
    Article 
    PubMed Central 

    Google Scholar 

  • 40.

    Anuradha, N., Satyavathi, C. T., Bharadwaj, C., Sankar, S. M. & Pathy, T. L. Association of agronomic traits and micronutrients in pearl millet. Int. J. Chem. Stud. 6(1), 181–184 (2018).

    CAS 

    Google Scholar 

  • 41.

    Anuradha, N. et al. Deciphering genomic regions for high grain iron and zinc content using association mapping in pearl millet. Front. Plant Sci. 8, 412. https://doi.org/10.3389/fpls.2017.00412 (2017).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 42.

    Shanmugam, V. L. J. C. & Yeh, K. C. Control of Zn uptake in Arabidopsis halleri: a balance between Zn and Fe. Front. Plant Sci. 4, 281. https://doi.org/10.3389/fpls.2013.00281 (2013).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 43.

    Rout, G. R. & Sahoo, S. Role of iron in plant growth and metabolism. Rev. Agric. Sci. 3, 1–24 (2015).

    Article 

    Google Scholar 

  • 44.

    Kanehisa, M. & Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30 (2000).

    CAS 
    Article 

    Google Scholar 

  • 45.

    Kanehisa, M. KEGG bioinformatics resource for plant genomics and metabolomics. Methods Mol. Biol. 1374, 55–70 (2016).

    CAS 
    Article 

    Google Scholar 

  • 46.

    Kanehisa, M., Sato, Y. & Morishima, K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J. Mol. Biol. 428, 726–731 (2016).

    CAS 
    Article 

    Google Scholar 

  • 47.

    Mishra, V. K. et al. Comparative transcriptomic profiling of High- and Low- grain Zinc and Iron containing Indian wheat genotypes. Curr. Plant Bio. 18, 100105 (2019).

    Article 

    Google Scholar 

  • 48.

    Ludwig, Y. & Slamet-Loedin, I. H. Genetic biofortification to enrich rice and wheat grain iron: From genes to product. Front. Plant Sci. 10, 833. https://doi.org/10.3389/fpls.2019.00833 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 49.

    Margulies, M. et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature 437, 376–380. https://doi.org/10.1038/nature03959 (2005).

    ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 50.

    Jaiswal, S. et al. Transcriptomic signature reveals mechanism of flower bud distortion in witches’-broom disease of soybean (Glycine max). BMC Plant Biol. 19, 26 (2019).

    Article 

    Google Scholar 

  • 51.

    Vatanparast, M. et al. Transcriptome sequencing and marker development in winged bean (Psophocarpus tetragonolobus Leguminosae). Sci. Rep. 6, 290. https://doi.org/10.1038/srep29070 (2016).

    CAS 
    Article 

    Google Scholar 

  • 52.

    Hrdlickova, R., Toloue, M. & Tian, B. RNA-Seq methods for transcriptome analysis. Wiley Interdiscip. Rev. RNA 8(1), e1364. https://doi.org/10.1002/wrna (2017).

    Article 

    Google Scholar 

  • 53.

    Jaiswal, S. et al. Transcriptome profiling of Indian sesame (Sissemum indicum L.) and discovery of genetic region markers. Bharatiya Krishi Anusandhan Patrika 35(3), 151–158 (2020).

    Google Scholar 

  • 54.

    Garg, R. et al. Gene discovery and tissue-specific transcriptome analysis in chickpea with massively parallel pyrosequencing and web resource development. Plant Physio. 156(4), 1661–1678. https://doi.org/10.1104/pp.111.178616 (2011).

    CAS 
    Article 

    Google Scholar 

  • 55.

    Kumar, A., Gaur, V. S., Goel, A. & Gupta, A. K. D. novo assembly and characterization of developing spikes transcriptome of finger millet (Eleusine coracana): a minor crop having nutraceutical properties. Plant Mol. Biol. Rep. 33, 905–922 (2015).

    CAS 
    Article 

    Google Scholar 

  • 56.

    Jo, Y. et al. De novo transcriptome assembly of Setatria italica variety Taejin. Genome Data 5(8), 121–122. https://doi.org/10.1016/j.gdata (2016).

    Article 

    Google Scholar 

  • 57.

    Zhang, Y. et al. Cloning and expression analysis of peanut (Arachis hypogaea L.) CHI gene. Electron. J. Biotech. 15(1), 5. https://doi.org/10.2225/vol15-issue1-fulltext-6 (2012).

    CAS 
    Article 

    Google Scholar 

  • 58.

    Yue, R. et al. Transcriptome analysis of cadmium-treated roots in maize (Zea mays L.). Front. Plant Sci. 7, 1298 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 59.

    Hamid, R., Jacob, F., Marashi, H., Rathod, V. & Tomar, R. S. Uncloaking lncRNA-meditated gene expression as a potential regulator of CMS in cotton (Gossypium hirsutum L.). Genomics 112, 3354–3364 (2020).

    CAS 
    Article 

    Google Scholar 

  • 60.

    Hamid, R., Marashi, H., Tomar, R. S., Shafaroudi, S. M. & Sabara, P. H. Transcriptome analysis identified aberrant gene expression in pollen developmental pathways leading to CGMS in cotton (Gossypium hirsutum L). PLoS ONE 14, e0218381 (2019).

    CAS 
    Article 

    Google Scholar 

  • 61.

    Kawakami, Y. & Bhullar, N. K. Molecular processes in iron and zinc homeostasis and their modulation for biofortification in rice. J. Integr. Plant Biol. 60, 1–32 (2018).

    Article 

    Google Scholar 

  • 62.

    Brumbarova, T., Bauer, P. & Ivanov, R. Molecular mechanisms governing Arabidopsis iron uptake. Trends Plant Sci. 20, 124–133 (2015).

    CAS 
    Article 

    Google Scholar 

  • 63.

    Connorton, J. M., Balk, J. & Rodríguez-Celma, J. Iron homeostasis in plants—A brief overview. Metallomics 9, 813–823 (2017).

    CAS 
    Article 

    Google Scholar 

  • 64.

    Lee, S. & An, G. Over-expression of OsIRT1 leads to increased iron and zinc accumulations in rice. Plant Cell Environ. 32, 408–416 (2009).

    CAS 
    Article 

    Google Scholar 

  • 65.

    Boonyaves, K., Wu, T. Y., Gruissem, W. & Bhullar, N. K. Enhanced grain iron levels in rice expressing an iron-regulated metal transporter, nicotianamine synthase, and ferritin gene cassette. Front. Plant Sci. 8, 130 (2017).

    Article 

    Google Scholar 

  • 66.

    Narayanan, N. et al. Biofortification of field-grown cassava by engineering expression of an iron transporter and ferritin. Nat. Biotechnol. 37, 144–151. https://doi.org/10.1038/s41587-018-0002-1 (2019).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 67.

    Curie, C. et al. Maize yellow stripe1 encodes a membrane protein directly involved in Fe (III) uptake. Nature 409, 346–349 (2001).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 68.

    Masuda, H. et al. Increase in iron and zinc concentrations in rice grains via the introduction of barley genes involved in phytosiderophore synthesis. Rice 1, 100–108. https://doi.org/10.1007/s12284-008-9007-6 (2008).

    Article 

    Google Scholar 

  • 69.

    Lee, S. et al. Disruption of OsYSL15 leads to iron inefficiency in rice plants. Plant Physiol. 150, 786–800 (2009).

    CAS 
    Article 

    Google Scholar 

  • Source link