Preloader

Spatial and temporal dynamics of HDACs class IIa following mild traumatic brain injury in adult rats

  • 1.

    Peterson AB, Xu L, Daugherty J, Breiding MJ. Surveillance report of traumatic brain injury-related emergency department visits, hospitalizations, and deaths. Center for Disease Control and Prevention; United States: U.S. Department of Health and Human Services, 2019.

  • 2.

    Hammond FM, Giacino JT, Nakase Richardson R, Sherer M, Zafonte RD, Whyte J, et al. Disorders of consciousness due to traumatic brain injury: functional status ten years post-injury. J Neurotrauma. 2019;36:1136–46.

    PubMed 

    Google Scholar 

  • 3.

    Holzer KJ, Carbone JT, DeLisi M, Vaughn MG. Traumatic brain injury and coextensive psychopathology: New evidence from the 2016 Nationwide Emergency Department Sample (NEDS). J Psychiatry Res. 2019;114:149–52.

    Google Scholar 

  • 4.

    MacGregor AJ, Dougherty AL, Galarneau MR. Injury-specific correlates of combat-related traumatic brain injury in operation Iraqi freedom. J Head Trauma Rehabil. 2011;26:312–18.

    PubMed 

    Google Scholar 

  • 5.

    Rigg JL, Mooney SR. Concussions and the military: Issues specific to service members. PMR. 2011;3:S380–6.

  • 6.

    Hoge CW, McGurk D, Thomas JL, Cox AL, Engel CC, Castro CA. Mild traumatic brain injury in U.S. soldiers returning from Iraq. N Engl J Med. 2008;358:453–63.

    CAS 
    PubMed 

    Google Scholar 

  • 7.

    Schneiderman AI, Braver ER, Kang HK. Understanding sequelae of injury mechanisms and mild traumatic brain injury incurred during the conflicts in Iraq and Afghanistan: persistent postconcussive symptoms and posttraumatic stress disorder. Am J Epidemiol. 2008;167:1446–52.

    PubMed 

    Google Scholar 

  • 8.

    Kennedy JE, Leal FO, Lewis JD, Cullen MA, Amador RR. Posttraumatic stress symptoms in OIF/OEF servicemembers with blast-related and non-blast-related mild TBI. NeuroRehabilitation. 2010;26:223–31.

    PubMed 

    Google Scholar 

  • 9.

    Hill JJ, Mobo BHP, Cullen MR. Separating deployment-related traumatic brain injury and posttraumatic stress disorder in veterans: preliminary findings from the Veterans Affairs traumatic brain injury screening program. Am J Phys Med Rehabil. 2009;88:605–14.

    PubMed 

    Google Scholar 

  • 10.

    Carlson KF, Nelson D, Orazem RJ, Nugent S, Cifu DX, Sayer NA. Psychiatric diagnoses among Iraq and Afghanistan war veterans screened for deployment-related traumatic brain injury. J Trauma Stress. 2010;23:17–24.

    PubMed 

    Google Scholar 

  • 11.

    Belanger HG, Uomoto JM, Vanderploeg RD. The veterans health administration system of care for mild traumatic brain injury: costs, benefits, and controversies. J Head Trauma Rehabil. 2009;24:4–13.

    PubMed 

    Google Scholar 

  • 12.

    Chodobski A, Zink BJ, Szmydynger-Chodobska J. Blood-brain barrier pathophysiology in traumatic brain injury. Transl Stroke Res. 2011;2:492–516.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 13.

    Hemphill MA, Dauth S, Yu CJ, Dabiri BE, Parker KK. Traumatic brain injury and the neuronal microenvironment: A potential role for neuropathological mechanotransduction. Neuron. 2015;85:1177–92.

    CAS 
    PubMed 

    Google Scholar 

  • 14.

    VSSS Sajja, Hlavac N, VandeVord PJ. Role of glia in memory deficits following traumatic brain injury: Biomarkers of glia dysfunction. Front Integr Neurosci. 2016;10:7.

    Google Scholar 

  • 15.

    Wong VS, Langley B. Epigenetic changes following traumatic brain injury and their implications for outcome, recovery and therapy. Neurosci Lett. 2016;625:26–33.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 16.

    Shein NA, Shohami E. Histone deacetylase inhibitors as therapeutic agents for acute central nervous system injuries. Mol Med. 2011;17:448–56.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 17.

    Kiefer JC. Epigenetics in development. Dev Dyn. 2007;236:1144–56.

    CAS 
    PubMed 

    Google Scholar 

  • 18.

    Reik W, Dean W, Walter J. Epigenetic reprogramming in mammalian development. Science. 2001;293:1089–93.

    CAS 
    PubMed 

    Google Scholar 

  • 19.

    Majdzadeh N, Morrison BE, D’Mello SR. Class IIA HDACs in the regulation of neurodegeneration. Front Biosci. 2008;13:1072–82.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 20.

    Seto E, Yoshida M. Erasers of histone acetylation: The histone deacetylase enzymes. Cold Spring Harb Perspect Biol. 2014;6:a018713, 1–26.

  • 21.

    Qureshi IA, Mehler MF. Understanding neurological disease mechanisms in the era of epigenetics. JAMA Neurol. 2013;70:703–10.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 22.

    Hahnen E, Hauke J, Tränkle C, Eyüpoglu IY, Wirth B, Blümcke I. Histone deacetylase inhibitors: possible implications for neurodegenerative disorders. Expert Opin Investig Drugs. 2008;17:169–84.

    CAS 
    PubMed 

    Google Scholar 

  • 23.

    Jin K, Mao XO, Simon RP, Greenberg DA. Cyclic AMP response element-binding protein (CREB) and CREB binding protein (CBP) in global cerebral ischemia. J Mol Neurosci. 2001;16:49–56.

    CAS 
    PubMed 

    Google Scholar 

  • 24.

    Rouaux C, Jokic N, Mbebi C, Boutillier S, Loeffler JP, Boutillier AL. Critical loss of CBP/p300 histone acetylase activity by caspase-6 during neurodegeneration. EMBO J. 2003;22:6537–49.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 25.

    Gibson CL, Murphy SP. Benefits of histone deacetylase inhibitors for acute brain injury: A systematic review of animal studies. J Neurochem. 2010;115:806–13.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 26.

    Dash PK, Orsi SA, Zhang M, Grill RJ, Patil S, Zhao J, et al. Valproate administered after traumatic brain injury provides neuroprotection and improves cognitive function in rats. PLoS ONE. 2010;5:e11383, 1–13.

  • 27.

    Kozikowski AP, Chen Y, Gaysin A, Chen B, D’Annibale MA, Suto CM, et al. Functional differences in epigenetic modulators – Superiority of mercaptoacetamide-based histone deacetylase inhibitors relative to hydroxamates in cortical neuron neuroprotection studies. J Med Chem. 2007;50:3054–61.

    CAS 
    PubMed 

    Google Scholar 

  • 28.

    Zhang B, West EJ, Van KC, Gurkoff GG, Zhou J, Zhang XM, et al. HDAC inhibitor increases histone H3 acetylation and reduces microglia inflammatory response following traumatic brain injury in rats. Brain Res. 2008;1226:181–91.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 29.

    Nikolian VC, Dennahy IS, Weykamp M, Williams AM, Bhatti UF, Eidy H, et al. Isoform 6-selective histone deacetylase inhibition reduces lesion size and brain swelling following traumatic brain injury and hemorrhagic shock in. J Trauma Acute Care Surg. 2019;86:232–9.

    CAS 
    PubMed 

    Google Scholar 

  • 30.

    Golay J, Cuppini L, Leoni F, Micò C, Barbui V, Domenghini M, et al. The histone deacetylase inhibitor ITF2357 has anti-leukemic activity in vitro and in vivo and inhibits IL-6 and VEGF production by stromal cells. Leukemia. 2007;21:1892–1900.

    CAS 
    PubMed 

    Google Scholar 

  • 31.

    Shein NA, Grigoriadis N, Alexandrovich AG, Simeonidou C, Lourbopoulos A, Polyzoidou E, et al. Histone deacetylase inhibitor ITF2357 is neuroprotective, improves functional recovery, and induces glial apoptosis following experimental traumatic brain injury. FASEB J. 2009;23:4266–75.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 32.

    Yang H, Ni W, Jiang H, Lei Y, Su J, Gu Y, et al. Histone deacetylase inhibitor Scriptaid alleviated neurological dysfunction after experimental intracerebral hemorrhage in mice. Behav Neurol. 2018;2018:6583267. https://doi.org/10.1155/2018/6583267.

  • 33.

    Wang G, Shi Y, Jiang X, Leak RK, Hu X, Wu Y, et al. HDAC inhibition prevents white matter injury by modulating microglia/macrophage polarization through the GSK3β/PTEN/Akt axis. Proc Natl Acad Sci USA. 2015;112:2853–8.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 34.

    Wang G, Jiang X, Pu H, Zhang W, An C, Hu X, et al. Scriptaid, a novel histone deacetylase inhibitor, protects against traumatic brain injury via modulation of PTEN and AKT pathway: scriptaid protects against TBI via AKT. Neurotherapeutics. 2013;10:124–42.

    PubMed 

    Google Scholar 

  • 35.

    Lu J, Frerich JM, Turtzo LC, Li S, Chiang J, Yang C, et al. Histone deacetylase inhibitors are neuroprotective and preserve NGF-mediated cell survival following traumatic brain injury. Proc Natl Acad Sci USA. 2013;110:10747–52.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 36.

    Gaub P, Tedeschi A, Puttagunta R, Nguyen T, Schmandke A, Di Giovanni S. HDAC inhibition promotes neuronal outgrowth and counteracts growth cone collapse through CBP/p300 and P/CAF-dependent p53 acetylation. Cell Death Differ. 2010;17:1392–408.

    CAS 
    PubMed 

    Google Scholar 

  • 37.

    Levenson JM, Sweatt JD. Epigenetic mechanisms in memory formation. Nat Rev Neurosci. 2005;6:108–18.

    CAS 
    PubMed 

    Google Scholar 

  • 38.

    Vecsey CG, Hawk JD, Lattal KM, Stein JM, Fabian SA, Attner MA, et al. Histone deacetylase inhibitors enhance memory and synaptic plasticity via CREB: CBP-dependent transcriptional activation. J Neurosci. 2007;27:6128–40.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 39.

    Bradner JE, West N, Grachan ML, Greenberg EF, Haggarty SJ, Warnow T, et al. Chemical phylogenetics of histone deacetylases. Nat Chem Biol. 2010;6:238–43.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 40.

    Kim MS, Akhtar M, Adachi M, Mahgoub M, Bassel-Duby R, Kavalali ET, et al. An essential role for histone deacetylase 4 in synaptic plasticity and memory formation. J Neurosci. 2012;32:10879–86.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 41.

    Cho Y, Sloutsky R, Naegle KM, Cavalli V. Injury-Induced HDAC5 nuclear export is essential for axon regeneration. Cell. 2013;155:894.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 42.

    Sando R, Gounko N, Pieraut S, Liao L, Yates J, Maximov A. HDAC4 governs a transcriptional program essential for synaptic plasticity and memory. Cell. 2012;151:821–34.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 43.

    Agis-Balboa RC, Pavelka Z, Kerimoglu C, Fischer A. Loss of HDAC5 impairs memory function: Implications for Alzheimer’s disease. J Alzheimer’s Dis. 2013;33:35–44.

    CAS 

    Google Scholar 

  • 44.

    Saha P, Gupta R, Sen T, Sen N. Histone deacetylase 4 downregulation elicits post-traumatic psychiatric disorders through impairment of neurogenesis. J Neurotrauma. 2019;36:3284–96.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 45.

    Sagarkar S, Balasubramanian N, Mishra S, Choudhary AG, Kokare DM, Sakharkar AJ. Repeated mild traumatic brain injury causes persistent changes in histone deacetylase function in hippocampus: implications in learning and memory deficits in rats. Brain Res. 2019;1711:183–92.

    CAS 
    PubMed 

    Google Scholar 

  • 46.

    Bonomi R, Mukhopadhyay U, Shavrin A, Yeh HH, Majhi A, Dewage SW, et al. Novel histone deacetylase class IIa selective substrate radiotracers for PET imaging of epigenetic regulation in the brain. PLoS ONE. 2015;10:e0133512, 1–19.

  • 47.

    Abd-Elfattah Foda MA, Marmarou A. A new model of diffuse brain injury in rats. Part II: Morphological characterization. J Neurosurg. 1994;80:301–13.

    Google Scholar 

  • 48.

    Cernak I. Animal models of head trauma. NeuroRx. 2005;2:410–22.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 49.

    Bodnar CN, Roberts KN, Higgins EK, Bachstetter AD. A systematic review of closed head injury models of mild traumatic brain injury in mice and rats. J Neurotrauma. 2019;36:1683–706.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 50.

    Folkerts MM, Berman RF, Muizelaar JP, Rafols JA. Disruption of MAP-2 immunostaining in rat hippocampus after traumatic brain injury. J Neurotrauma. 1998;15:349–63.

    CAS 
    PubMed 

    Google Scholar 

  • 51.

    Kallakuri S, Cavanaugh JM, Özaktay AC, Takebayashi T. The effect of varying impact energy on diffuse axonal injury in the rat brain: a preliminary study. Exp Brain Res. 2003;148:419–24.

    PubMed 

    Google Scholar 

  • 52.

    Li Y, Zhang L, Kallakuri S, Zhou R, Cavanaugh JM. Quantitative relationship between axonal injury and mechanical response in a Rodent head impact acceleration model. J Neurotrauma. 2011;28:1767–82.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 53.

    Kallakuri S, Bandaru S, Zakaria N, Shen Y, Kou Z, Zhang L, et al. Traumatic brain injury by a closed head injury device induces cerebral blood flow changes and microhemorrhages. J Clin Imaging Sci. 2015;5:52.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 54.

    Li Y, Zhang L, Kallakuri S, Cohen A, Cavanaugh JM. Correlation of mechanical impact responses and biomarker levels: a new model for biomarker evaluation in TBI. J Neurol Sci. 2015;359:280–6.

    CAS 
    PubMed 

    Google Scholar 

  • 55.

    Zakaria N, Kallakuri S, Bandaru, Cavanaugh JM. Temporal assessment of traumatic axonal injury in the rat corpus callosum and optic chiasm. Brain Res. 2012;1467:81–90.

    CAS 
    PubMed 

    Google Scholar 

  • 56.

    Li Y, Zhang L, Kallakuri S, Zhou R, Cavanaugh JM. Injury predictors of traumatic axonal injury in a rodent head impact acceleration model. Stapp Car Crash J. 2011;55:25–47.

    PubMed 

    Google Scholar 

  • 57.

    Li Y, Zhang L, Kallakuri S, Zhou R, Cvanaugh JM. Quantitative relationship between axonal injury and mechanical response in a rodent head impact acceleration model. J Neurotrauma. 2011;28:1767–82.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 58.

    Beaumont A, Fatouros P, Gennarelli T, Corwin F, Marmarou A. Bolus tracer delivery measured by MRI confirms edema without blood-brain barrier permeability in diffuse traumatic brain injury. Acta Neurochir Suppl. 2006;96:171–4.

    CAS 
    PubMed 

    Google Scholar 

  • 59.

    Beaumont A, Marmarou C, Marmarou A. The effects of human corticotrophin releasing factor on motor and cognitive deficit after impact acceleration injury. Neurol Res. 2000;22:665–73.

    CAS 
    PubMed 

    Google Scholar 

  • 60.

    Chen X, Chen Y, Xu Y, Gao Q, Shen Z, Zheng W. Microstructural and neurochemical changes in the rat brain after diffuse axonal injury. J Magn Res Imaging. 2019;49:1069–77.

    Google Scholar 

  • 61.

    Song Y, Qian Y, Su W, Liu X, Huang J, Gong Z, et al. Differences in pathological changes between two rat models of severe traumatic brain injury. Neural Regen Res. 2019;14:1796–804.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 62.

    Li S, Sun Y, Shan D, Feng B, Xing J, Duan Y, et al. Temporal profiles of axonal injury following impact acceleration traumatic brain injury in rats – a comparative study with diffusion tensor imaging and morphological analysis. Int J Leg Med. 2013;127:159–67.

    Google Scholar 

  • 63.

    Goda M, Isono M, Fujiki M, Kobayashi H. Both MK801 and NBQX reduce the neuronal damage after impact-acceleration brain injury. J Neurotrauma. 2002;19:1445–56.

    PubMed 

    Google Scholar 

  • 64.

    Wang H, Ma Y. Experimental models of traumatic axonal injury. J Clin Neurosci. 2010;17:157–62.

    PubMed 

    Google Scholar 

  • 65.

    Marmarou CR, Prieto R, Taya K, Young HF, Marmarou A. Marmarou weight drop injury model. In: Chen J, Xu ZC, Xu XM, Zhang JH, editors. Animal models of acute neurological injuries. Springer Protocols Handbooks. Totowa, New Jersey, USA: Humana Press; 2009. p. 393–407.

  • 66.

    Marmarou A, Abd-Elfattah Foda MA, Van den Brink W, Campbell J, Kita H, Demetriadou K. A new model of diffuse brain injury in rats. Part I: Pathophysiology and biomechanics. J Neurosurg. 1994;80:291–300.

    CAS 
    PubMed 

    Google Scholar 

  • 67.

    Guo H, Renaut RA, Chen K. An input function estimation method for FDG-PET human brain studies. Nucl Med Biol. 2007;34:483–92.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 68.

    Watson C, Paxinos G. The rat brain in stereotaxic coordinates. San Diego: Academic Press; 2006.

  • 69.

    Logan J, Fowler JS, Volkow ND, Wang G, Ding Y, Alexoff DL. Distribution volume ratios without blood sampling from graphical analysis of PET data. J Cereb Blood Flow Metab. 1996;16:834–40.

    CAS 
    PubMed 

    Google Scholar 

  • 70.

    Laws MT, Bonomi RE, Kamal SR, Gelovani DJ, Llaniguez J, Potukutchi S, et al. Molecular imaging HDACs class IIa expression-activity and pharmacologic inhibition in intracerebral glioma models in rats using PET/CT/(MRI) with [18F]TFAHA. Sci Rep. 2019;9:3595.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 71.

    Logan J, Fowler JS, Volkow ND, Wolf AP, Dewey SL, Schlyer DJ. et al. Graphical analysis of reversible radioligand binding from time-activity measurements applied to [N-11C-methyl]-(-)-cocaine PET studies in human subjects. J Cereb Blood Flow Metab.1990;10:740–7.

    CAS 
    PubMed 

    Google Scholar 

  • 72.

    Murakami N, Yamaki T, Iwamoto Y, Sakakibara T, Kobori N, Fushiki S, et al. Experimental brain injury induces expression of amyloid precursor protein, which may be related to neuronal loss in the hippocampus. J Neurotrauma. 1998;15:993–1003.

    CAS 
    PubMed 

    Google Scholar 

  • 73.

    Zhang MH, Zhou XM, Cui JZ, Wang KJ, Feng Y, Zhang HA. Neuroprotective effects of dexmedetomidine on traumatic brain injury: Involvement of neuronal apoptosis and HSP70 expression. Mol Med Rep. 2018;17:8079–86.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 74.

    Kim JY, Kim N, Zheng Z, Lee JE, Yenari MA. The 70 kDa heat shock protein protects against experimental traumatic brain injury. Neurobiol Dis. 2013;58:289–95.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 75.

    Jassam YN, Izzy S, Whalen M, McGavern DB, El Khoury J. Neuroimmunology of traumatic brain injury: Time for a paradigm shift. Neuron. 2017;95:1246–65.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 76.

    Kim N, Kim JY, Yenari MA. Anti-inflammatory properties and pharmacological induction of Hsp70 after brain injury. Inflammopharmacology. 2012;20:177–85.

    CAS 
    PubMed 

    Google Scholar 

  • 77.

    Eroglu B, Kimbler D, Pang J, Choi J, Moskophidis D, Yanasak N, et al. Therapeutic inducers of the HSP70/HSP110 protect mice against traumatic brain injury. J Neurochemistry. 2014;130:626–41.

    CAS 

    Google Scholar 

  • 78.

    Kallakuri S, Li Y, Zhou R, Bandaru S, Zakaria N, Zhang L, et al. Impaired axoplasmic transport is the dominant injury induced by an impact acceleration injury device: an analysis of traumatic axonal injury in pyramidal tract and corpus callosum of rats. Brain Res. 2012;1452:29–38.

    CAS 
    PubMed 

    Google Scholar 

  • 79.

    Hsieh TH, Kang JW, Lai JH, Huang YZ, Rotenberg A, Chen KY, et al. Relationship of mechanical impact magnitude to neurologic dysfunction severity in a rat traumatic brain injury model. PLoS ONE. 2017;12:e0178186, 1–18.

  • 80.

    Ciallella JR, Ikonomovic MD, Paljug WR, Wilbur YI, Dixon CE, Kochanek PM, et al. Changes in expression of amyloid precursor protein and interleukin-1β after experimental traumatic brain injury in rats. J Neurotrauma. 2002;19:1555–67.

    PubMed 

    Google Scholar 

  • 81.

    Johnson VE, Stewart W, Smith DH. Axonal pathology in traumatic brain injury. Exp Neurol. 2013;246:35–43.

    CAS 
    PubMed 

    Google Scholar 

  • 82.

    Shishido H, Ueno M, Sato K, Matsumura M, Toyota Y, Kirino T, et al. Traumatic brain injury by weight-drop method causes transient amyloid-β deposition and acute cognitive deficits in mice. Behav Neurol. 2019;2019:3248519. https://doi.org/10.1155/2019/3248519.

  • 83.

    Elliott MB, Tuma RF, Amenta PS, Barbe MF, Jallo JI. Acute effects of a selective cannabinoid-2 receptor agonist on neuroinflammation in a model of traumatic brain injury. J Neurotrauma. 2011;28:973–81.

    PubMed 

    Google Scholar 

  • 84.

    Chen Y, Buck J. Cannabinoids protect cells from oxidative cell death: a receptor-independent mechanism. J Pharmacol Exp Ther. 2000;293:807–12.

    CAS 
    PubMed 

    Google Scholar 

  • 85.

    Nikodemova M, Duncan ID, Watters JJ. Minocycline exerts inhibitory effects on multiple mitogen-activated protein kinases and IκBα degradation in a stimulus-specific manner in microglia. J Neurochem. 2006;96:314–23.

    CAS 
    PubMed 

    Google Scholar 

  • 86.

    Eljaschewitsch E, Witting A, Mawrin C, Lee T, Schmidt PM, Wolf S, et al. The endocannabinoid anandamide protects neurons during CNS inflammation by induction of MKP-1 in microglial cells. Neuron 2006;49:67–79.

    CAS 
    PubMed 

    Google Scholar 

  • 87.

    Donat CK, Scott G, Gentleman SM, Sastre M. Microglial activation in traumatic brain injury. Front Aging Neurosci. 2017;15:349–63.

    Google Scholar 

  • 88.

    Madathil SK, Wilfred BS, Urankar SE, Yang W, Leung LY, Shear DA, et al. Early microglial activation following closed-head concussive injury is dominated by pro-inflammatory M-1 type. Front Neurol. 2018;9:964.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 89.

    Jin Y, Wang R, Yang S, Zhang X, Dai J. Role of Microglia autophagy in microglia activation after traumatic brain injury. World Neurosurg. 2017;100:351–60.

    PubMed 

    Google Scholar 

  • 90.

    Imai Y, Kohsaka S. Intracellular signaling in M-CSF-induced microglia activation: role of Iba1. Glia. 2002;40:164–74.

    PubMed 

    Google Scholar 

  • 91.

    Imai Y, Ibata I, Ito D, Ohsawa K, Kohsaka S. A novel gene iba1 in the major histocompatibility complex class III region encoding and EF hand protein expressed in a monocytic lineage. Biochem Biophys Res Commun. 1996;224:855–62.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 92.

    Ito D, Tanaka K, Suzuki S, Dembo T, Fukuuchi Y. Enhanced expression of Iba1, ionized calcium-binding adapter molecule 1, after transient focal cerebral ischemia in rat brain. Stroke. 2001;32:1208–15.

    CAS 
    PubMed 

    Google Scholar 

  • 93.

    Verdin E, Dequiedt F, Kasler HG. Class II histone deacetylases: versatile regulators. Trends Genet. 2003;19:286–93.

    CAS 
    PubMed 

    Google Scholar 

  • 94.

    Cernotta N, Clocchiatti A, Florean C, Brancolini C. Ubiquitin-dependent degradation of HDAC4, a new regulator of random cell motility. Mol Biol Cell. 2011;22:278–89.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 95.

    Bolger TA, Yao TP. Intracellular trafficking of histone deacetylase 4 regulates neuronal cell death. J Neurosci. 2005;25:9544–53.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 96.

    Fischle W, Dequiedt F, Hendzel MJ, Guenther MG, Lazar MA, Verdin E, et al. Enzymatic activity associated with class II HDACs is dependent on a multiprotein complex containing HDAC3 and SMRT/N-CoR. Mol Cell. 2002;9:45–57.

    CAS 
    PubMed 

    Google Scholar 

  • 97.

    Fitzsimons HL. The Class IIa histone deacetylase HDAC4 and neuronal function: Nuclear nuisance and cytoplasmic stalwart? Neurobiol Learn Mem. 2015;123:149–58.

    CAS 
    PubMed 

    Google Scholar 

  • 98.

    Isaacs JT, Antony L, Dalrymple SL, Brennen WN, Gerber S, Leanderson T, et al. Tasquinimod is an allosteric modulator of HDAC4 survival signaling within the compromised cancer microenvironment. Cancer Res. 2013;73:1386–99.

    CAS 
    PubMed 

    Google Scholar 

  • 99.

    Li J, Chen J, Ricupero CL, Hart RP, Schwartz MS, Herrup K, et al. Nuclear accumulation of HDAC4 in ATM deficiency promotes neurodegeneration in ataxia telangiectasia. Nat Med. 2012;18:783–90.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 100.

    Wu Q, Yang X, Zhang L, Zhang Y, Feng L. Nuclear accumulation of histone deacetylase 4 (HDAC4) exerts neurotoxicity in models of Parkinson’s disease. Mol Neurobiol. 2017;54:6970–83.

    CAS 
    PubMed 

    Google Scholar 

  • 101.

    Atkins CM, Chen S, Alonso OF, Dietrich WD, Hu BR. Activation of calcium/calmodulin-dependent protein kinases after traumatic brain injury. J Cereb Blood Flow Metab. 2006;26:1507–18.

    CAS 
    PubMed 

    Google Scholar 

  • 102.

    Chang S, Bezprozvannaya S, Li S, Olson EN. An expression screen reveals modulators of class II histone deacetylase phosphorylation. Proc Natl Acad Sci USA. 2005;102:8120–25.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 103.

    Harrison BC, Kim M, van-Rooij E, Plato CF, Papst PJ, McKinsey TA, et al. Regulation of cardiac stress signaling by protein kinase D1. Mol Cell Biol. 2006;26:3875–88.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 104.

    Li X, Song S, Liu Y, Ko SH, Kao HY. Phosphorylation of the histone deacetylase 7 modulates its stability and association with 14-3-3 proteins. J Biol Chem. 2004;279:34201–08.

    CAS 
    PubMed 

    Google Scholar 

  • 105.

    Lehman JJ, Kelly DP. Transcriptional activation of energy metabolic switches in the developing and hypertrophied heart. Clin Exp Pharmacol Physiol. 2002;73:667–77.

    Google Scholar 

  • 106.

    McKinsey TA, Zhang CL, Lu J, Olson EN. Signal-dependent nuclear export of a histone deacetylase regulates muscle differentiation. Nature. 2000;408:106–11.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 107.

    Vega RB, Harrison BC, Meadows E, Roberts CR, Papst PJ, McKinsey TA, et al. Protein kinases C and D mediate agonist-dependent cardiac hypertrophy through nuclear export of histone deacetylase 5. Mol Cell Biol. 2004;24:8374–85.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 108.

    Grozinger CM, Schreiber SL. Regulation of histone deacetylase 4 and 5 and transcriptional activity by 14-3-3-dependent cellular localization. Proc Natl Acad Sci USA. 2000;97:7835–40.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 109.

    McKinsey TA, Zhang CL, Olson EN. Activation of the myocyte enhancer factor-2 transcription factor by calcium/calmodulin-dependent protein kinase-stimulated binding of 14-3-3 to histone deacetylase 5. Proc Natl Acad Sci USA. 2000;97:14400–5.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 110.

    McKinsey TA, Zhang CL, Olson EN. Identification of a signal-responsive nuclear export sequence in class II histone deacetylases. Mol Cell Biol. 2001;21:6312–21.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 111.

    Backs J, Song K, Bezprozvannaya S, Chang S, Olson EN. CaM kinase II selectively signals to histone deacetylase 4 during cardiomyocyte hypertrophy. J Clin Investig. 2006;116:1853–64.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 112.

    Backs J, Backs T, Bezprozvannaya S, McKinsey TA, Olson EN. Histone deacetylase 5 acquires calcium/calmodulin-dependent kinase II responsiveness by oligomerization with histone deacetylase 4. Mol Cell Biol. 2008;28:3437–45.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 113.

    Song B, Lai B, Zheng Z, Zhang Y, Luo J, Li M, et al. Inhibitory phosphorylation of GSK-3 by CaMKII couples depolarization to neuronal survival. J Biol Chem. 2010;285:41122–34.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 114.

    Xu K, Dai XL, Huang HC, Jiang ZF. Targeting HDACs: a promising therapy for Alzheimer’s disease. Oxid Med Cell Longev. 2011;2011:143269. https://doi.org/10.1155/2011/143269.

  • 115.

    Majdzadeh N, Wang L, Morrison BE, Bassel-Duby R, Olson EN, D’Mello S. HDAC4 inhibits cell-cycle progression and protects neurons from cell death. Dev Neurobiol. 2008;68:1076–92.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 116.

    Sando R, Gounko N, Pieraut S, Liao L, Yates J, Maximov A. HDAC4 governs a transcriptional program essential for synaptic plasticity and memory. Cell. 2012;151:821–34.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 117.

    Cho Y, Cavalli V. HDAC5 is a novel injury-regulated tubulin deacetylase controlling axon regeneration. EMBO J. 2012;31:3063–78.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 118.

    Agis-Balboa RC, Pavelka Z, Kerimoglu C, Fischer A. Loss of HDAC5 impairs memory function: Implications for Alzheimer’s disease. J Alzheimer’s Dis. 2013;33:35–44.

    CAS 

    Google Scholar 

  • 119.

    Mazzocchi M, Wyatt SL, Mercatelli D, Morari M, Morales-Prieto N, O’Keeffe GW, et al. Gene Co-expression Analysis identifies histone deacetylase 5 and 9 expression in midbrain dopamine neurons and as regulators of neurite growth via bone morphogenetic protein signaling. Front Cell Dev Biol. 2019;7:191.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 120.

    Cho Y, Sloutsky R, Naegle KM, Cavalli V. Injury-Induced HDAC5 nuclear export is essential for axon regeneration. Cell. 2013;155:894.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 121.

    Vargas-López V, Lamprea MR, Múnera A. Histone deacetylase inhibition abolishes stress-induced spatial memory impairment. Neurobiol Learn Mem. 2016;134:328–38.

    PubMed 

    Google Scholar 

  • 122.

    Levenson JM, O’Riordan KJ, Brown KD, Trinh MA, Molfese DL, Sweatt JD. Regulation of histone acetylation during memory formation in the hippocampus. J Biol Chem. 2004;279:40545–59.

    CAS 

    Google Scholar 

  • 123.

    Walz A, Ugolkov A, Chandra S, Kozikowski A, Carneiro BA, Mazar AP, et al. Molecular pathways: Revisiting glycogen synthase kinase-3β as a target for the treatment of cancer. Clin Cancer Res. 2017;23:1891–97.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 124.

    Hidaka H, Yokokura H. Molecular and cellular pharmacology of a calcium/calmodulin-dependent protein kinase II (CaM kinase II) Inhibitor, KN-62, and proposal of CaM kinase phosphorylation cascades. Adv Pharmacol. 1996;36:193–219.

    CAS 
    PubMed 

    Google Scholar 

  • 125.

    Tokumitsu H, Chijiwa T, Hagiwara M, Mizutani A, Terasawa M, Hidaka H. KN-62, 1-[N,O-Bis(5-isoquinolinesulfonyl)-N-methyl-L-tyrosyl]−4-phenylpiperazine, a specific inhibitor of Ca2+/calmodulin-dependent protein kinase II. J Biol Chem.1990;265:4315–20.

    CAS 
    PubMed 

    Google Scholar 

  • 126.

    Fleming CL, Ashton TD, Gaur V, McGee SL, Pfeffer FM. Improved synthesis and structural reassignment of MC1568: A class IIa selective HDAC inhibitor. J Med Chem. 2014;57:1132–35.

    CAS 
    PubMed 

    Google Scholar 

  • 127.

    Nebbioso A, Manzo F, Miceli M, Conte M, Manente L, Altucci L, et al. Selective class II HDAC inhibitors impair myogenesis by modulating the stability and activity of HDAC-MEF2 complexes. EMBO Rep. 2009;10:776–82.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 128.

    Raymond E, Dalgleish A, Damber JE, Smith M, Pili R. Mechanisms of action of tasquinimod on the tumour microenvironment. Cancer Chemother Pharmacol. 2014;73:1–8.

    CAS 
    PubMed 

    Google Scholar 

  • 129.

    Benson RR, Gattu R, Sewick B, Kou Z, Zakaria N, Cavanaugh JM, et al. Detection of hemorrhagic and axonal pathology in mild traumatic brain injury using advanced MRI: implications for neurorehabilitation. NeuroRehabilitation. 2012;31:261–79.

    PubMed 

    Google Scholar 

  • 130.

    Beaumont A, Marmarou A, Hayasaki K, Barzo P, Fatouros P, Corwin F, et al. The permissive nature of blood brain barrier (BBB) opening in edema formation following traumatic brain injury. Acta Neurochir Suppl. 2000;76:125–9.

    CAS 
    PubMed 

    Google Scholar 

  • 131.

    Barzo P, Marmarou A, Fatouros P, Hayasaki K, Corwin F. Biphasic pathophysiological response of vasogenic and cellular edema in traumatic brain swelling. Acta Neurochir Suppl. 1997;70:119–22.

    CAS 
    PubMed 

    Google Scholar 

  • 132.

    Barzo P, Marmarou A, Fatouros P, Hayasaki K, Corwin F. Contribution of vasogenic and cellular edema to traumatic brain swelling measure by diffusion-weighted imaging. J Neurosurg. 1997;87:900–7.

    CAS 
    PubMed 

    Google Scholar 

  • Source link