Preloader

Single-cell and spatial RNA sequencing identify perturbators of microglial functions with aging

  • Hou, Y. et al. Ageing as a risk factor for neurodegenerative disease. Nat. Rev. Neurol. 15, 565–581 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Bjartmar, C., Wujek, J. R. & Trapp, B. D. Axonal loss in the pathology of MS: consequences for understanding the progressive phase of the disease. J. Neurol. Sci. 206, 165–171 (2003).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Lassmann, H. Multiple sclerosis pathology. Cold Spring Harb. Perspect. Med. 8, a028936 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tutuncu, M. et al. Onset of progressive phase is an age-dependent clinical milestone in multiple sclerosis. Mult. Scler. 19, 188–198 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Ximerakis, M. et al. Single-cell transcriptomic profiling of the aging mouse brain. Nat. Neurosci. 22, 1696–1708 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Tabula Muris, C. A single-cell transcriptomic atlas characterizes ageing tissues in the mouse. Nature 583, 590–595 (2020).

    Article 
    CAS 

    Google Scholar 

  • Westlye, L. T. et al. Lifespan changes of the human brain white matter: diffusion tensor imaging and volumetry. Cereb. Cortex 20, 2055–2068 (2010).

    Article 
    PubMed 

    Google Scholar 

  • Hasan, K. M. et al. Quantification of the spatiotemporal microstructural organization of the human brain association, projection and commissural pathways across the lifespan using diffusion tensor tractography. Brain Struct. Funct. 214, 361–373 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Conway, B. L. et al. Age is a critical determinant in recovery from multiple sclerosis relapses. Mult. Scler. 25, 1754–1763 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Haider, L. et al. Oxidative damage in multiple sclerosis lesions. Brain 134, 1914–1924 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Butterfield, D. A. & Halliwell, B. Oxidative stress, dysfunctional glucose metabolism and Alzheimer disease. Nat. Rev. Neurosci. 20, 148–160 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Dias, V., Junn, E. & Mouradian, M. M. The role of oxidative stress in Parkinson’s disease. J. Parkinsons Dis. 3, 461–491 (2013).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dong, Y. et al. Oxidized phosphatidylcholines found in multiple sclerosis lesions mediate neurodegeneration and are neutralized by microglia. Nat. Neurosci. 24, 489–503 (2021).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Dong, Y. & Yong, V. W. When encephalitogenic T cells collaborate with microglia in multiple sclerosis. Nat. Rev. Neurol. 15, 704–717 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Li, Q. & Barres, B. A. Microglia and macrophages in brain homeostasis and disease. Nat. Rev. Immunol. 18, 225–242 (2018).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Prinz, M., Jung, S. & Priller, J. Microglia biology: one century of evolving concepts. Cell 179, 292–311 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Olah, M. et al. A transcriptomic atlas of aged human microglia. Nat. Commun. 9, 539 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hammond, T. R. et al. Single-Cell RNA sequencing of microglia throughout the mouse lifespan and in the injured brain reveals complex cell-state changes. Immunity 50, 253–271 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Safaiyan, S. et al. White matter aging drives microglial diversity. Neuron 109, 1100–1117 (2021).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Pluvinage, J. V. et al. CD22 blockade restores homeostatic microglial phagocytosis in ageing brains. Nature 568, 187–192 (2019).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hefendehl, J. K. et al. Homeostatic and injury-induced microglia behavior in the aging brain. Aging Cell 13, 60–69 (2014).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Marschallinger, J. et al. Lipid-droplet-accumulating microglia represent a dysfunctional and proinflammatory state in the aging brain. Nat. Neurosci. 23, 194–208 (2020).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cantuti-Castelvetri, L. et al. Defective cholesterol clearance limits remyelination in the aged central nervous system. Science 359, 684–688 (2018).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Hickman, S. E. et al. The microglial sensome revealed by direct RNA sequencing. Nat. Neurosci. 16, 1896–1905 (2013).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Agah, E. et al. Osteopontin as a CSF and blood biomarker for multiple sclerosis: a systematic review and meta-analysis. PLoS ONE 13, e0190252 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Maetzler, W. et al. Osteopontin is elevated in Parkinson’s disease and its absence leads to reduced neurodegeneration in the MPTP model. Neurobiol. Dis. 25, 473–482 (2007).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • McGrowder, D. A. et al. Cerebrospinal fluid biomarkers of Alzheimer’s disease: current evidence and future perspectives. Brain Sci. 11, 215 (2021).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Goldmann, T. et al. A new type of microglia gene targeting shows TAK1 to be pivotal in CNS autoimmune inflammation. Nat. Neurosci. 16, 1618–1626 (2013).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Plemel, J. R. et al. Microglia response following acute demyelination is heterogenous and limits infiltrating macrophage dispersion. Sci. Adv. 6, eaay6324 (2020).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902 (2019).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Masuda, T. et al. Novel Hexb-based tools for studying microglia in the CNS. Nat. Immunol. 21, 802–815 (2020).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Van Hove, H. et al. A single-cell atlas of mouse brain macrophages reveals unique transcriptional identities shaped by ontogeny and tissue environment. Nat. Neurosci. 22, 1021–1035 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Street, K. et al. Slingshot: cell lineage and pseudotime inference for single-cell transcriptomics. BMC Genomics 19, 477 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jordao, M. J. C. et al. Single-cell profiling identifies myeloid cell subsets with distinct fates during neuroinflammation. Science 363, eaat7554 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Keren-Shaul, H. et al. A unique microglia type associated with restricting development of Alzheimer’s disease. Cell 169, 1276–1290 (2017).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Bruce, K. D. et al. Lipoprotein lipase is a feature of alternatively activated microglia and may facilitate lipid uptake in the CNS during demyelination. Front. Mol. Neurosci. 11, 57 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nugent, A. A. et al. TREM2 regulates microglial cholesterol metabolism upon chronic phagocytic challenge. Neuron 105, 837–854 (2020).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Browaeys, R., Saelens, W. & Saeys, Y. NicheNet: modeling intercellular communication by linking ligands to target genes. Nat. Methods 17, 159–162 (2020).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Clemente, N. et al. Osteopontin bridging innate and adaptive immunity in autoimmune diseases. J. Immunol. Res. 2016, 7675437 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cappellano, G. et al. The Yin–Yang of osteopontin in nervous system diseases: damage versus repair. Neural Regen. Res. 16, 1131–1137 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Selvaraju, R. et al. Osteopontin is upregulated during in vivo demyelination and remyelination and enhances myelin formation in vitro. Mol. Cell. Neurosci. 25, 707–721 (2004).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Zhao, C., Fancy, S. P., ffrench-Constant, C. & Franklin, R. J. Osteopontin is extensively expressed by macrophages following CNS demyelination but has a redundant role in remyelination. Neurobiol. Dis. 31, 209–217 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Dahiya, S. et al. Osteopontin-stimulated expression of matrix metalloproteinase-9 causes cardiomyopathy in the mdx model of Duchenne muscular dystrophy. J. Immunol. 187, 2723–2731 (2011).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Rosario, A. M. et al. Microglia-specific targeting by novel capsid-modified AAV6 vectors. Mol. Ther. Methods Clin. Dev. 3, 16026 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Krasemann, S. et al. The TREM2–APOE pathway drives the transcriptional phenotype of dysfunctional microglia in neurodegenerative diseases. Immunity 47, 566–581 (2017).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bellver-Landete, V. et al. Microglia are an essential component of the neuroprotective scar that forms after spinal cord injury. Nat. Commun. 10, 518 (2019).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhao, Q. et al. Knockdown of long noncoding RNA XIST mitigates the apoptosis and inflammatory injury of microglia cells after spinal cord injury through miR-27a–Smurf1 axis. Neurosci. Lett. 715, 134649 (2020).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Zhou, H. J. et al. Long noncoding RNA MALAT1 contributes to inflammatory response of microglia following spinal cord injury via the modulation of a miR-199b–IKKβ–NF-κB signaling pathway. Am. J. Physiol. Cell Physiol. 315, C52–C61 (2018).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Villa, A. et al. Sex-specific features of microglia from adult mice. Cell Rep. 23, 3501–3511 (2018).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zheng, J. et al. Single-cell RNA-seq analysis reveals compartment-specific heterogeneity and plasticity of microglia. iScience 24, 102186 (2021).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Comabella, M. et al. Plasma osteopontin levels in multiple sclerosis. J. Neuroimmunol. 158, 231–239 (2005).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Braitch, M., Nunan, R., Niepel, G., Edwards, L. J. & Constantinescu, C. S. Increased osteopontin levels in the cerebrospinal fluid of patients with multiple sclerosis. Arch. Neurol. 65, 633–635 (2008).

    Article 
    PubMed 

    Google Scholar 

  • Clemente, N. et al. Role of anti-osteopontin antibodies in multiple sclerosis and experimental autoimmune encephalomyelitis. Front. Immunol. 8, 321 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Murugaiyan, G., Mittal, A. & Weiner, H. L. Identification of an IL-27–osteopontin axis in dendritic cells and its modulation by IFN-γ limits IL-17-mediated autoimmune inflammation. Proc. Natl Acad. Sci. USA 107, 11495–11500 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hur, E. M. et al. Osteopontin-induced relapse and progression of autoimmune brain disease through enhanced survival of activated T cells. Nat. Immunol. 8, 74–83 (2007).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Chabas, D. et al. The influence of the proinflammatory cytokine, osteopontin, on autoimmune demyelinating disease. Science 294, 1731–1735 (2001).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Kariya, Y. et al. Increased cerebrospinal fluid osteopontin levels and its involvement in macrophage infiltration in neuromyelitis optica. BBA Clin. 3, 126–134 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sugiyama, Y. et al. Neuronal and microglial localization of secreted phosphoprotein 1 (osteopontin) in intact and damaged motor cortex of macaques. Brain Res. 1714, 52–64 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Ikeshima-Kataoka, H., Matsui, Y. & Uede, T. Osteopontin is indispensable for activation of astrocytes in injured mouse brain and primary culture. Neurol. Res. 40, 1071–1079 (2018).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Riew, T. R. et al. Osteopontin and its spatiotemporal relationship with glial cells in the striatum of rats treated with mitochondrial toxin 3-nitropropionic acid: possible involvement in phagocytosis. J. Neuroinflammation 16, 99 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gliem, M. et al. Macrophage-derived osteopontin induces reactive astrocyte polarization and promotes re-establishment of the blood brain barrier after ischemic stroke. Glia 63, 2198–2207 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Yu, H., Liu, X. & Zhong, Y. The effect of osteopontin on microglia. BioMed Res. Int. 2017, 1879437 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Polman, C. H. et al. Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann. Neurol. 69, 292–302 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kuhlmann, T. et al. An updated histological classification system for multiple sclerosis lesions. Acta Neuropathol. 133, 13–24 (2017).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Dhaeze, T. et al. CD70 defines a subset of proinflammatory and CNS-pathogenic TH1/TH17 lymphocytes and is overexpressed in multiple sclerosis. Cell. Mol. Immunol. 16, 652–665 (2019).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Keough, M. B. et al. An inhibitor of chondroitin sulfate proteoglycan synthesis promotes central nervous system remyelination. Nat. Commun. 7, 11312 (2016).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Leik, C. E. et al. GW3965, a synthetic liver X receptor (LXR) agonist, reduces angiotensin II-mediated pressor responses in Sprague-Dawley rats. Br. J. Pharmacol. 151, 450–456 (2007).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Petrosyan, H. A. et al. Transduction efficiency of neurons and glial cells by AAV-1, -5, -9, -rh10 and -hu11 serotypes in rat spinal cord following contusion injury. Gene Ther. 21, 991–1000 (2014).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Mishra, M. K. et al. Laquinimod reduces neuroaxonal injury through inhibiting microglial activation. Ann. Clin. Transl. Neurol. 1, 409–422 (2014).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cua, R. C. et al. Overcoming neurite-inhibitory chondroitin sulfate proteoglycans in the astrocyte matrix. Glia 61, 972–984 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Rubinson, D. A. et al. A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nat. Genet. 33, 401–406 (2003).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Pelossof, R. et al. Prediction of potent shRNAs with a sequential classification algorithm. Nat. Biotechnol. 35, 350–353 (2017).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Challis, R. C. et al. Systemic AAV vectors for widespread and targeted gene delivery in rodents. Nat. Protoc. 14, 379–414 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol. 36, 411–420 (2018).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hafemeister, C. & Satija, R. Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression. Genome Biol. 20, 296 (2019).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • BUSpaRse: kallisto | BUStools R utilities. R package version 1.4.2. https://github.com/BUStools/BUSpaRse/ (2021).

  • Martin, L. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10–12 (2011).

    Article 

    Google Scholar 

  • Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Near-optimal probabilistic RNA-seq quantification. Nat. Biotechnol. 34, 525–527 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Soneson, C., Love, M. I. & Robinson, M. D. Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences. F1000Res. 4, 1521 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Source link