Preloader

Silencing of vitellogenin gene contributes to the promise of controlling red palm weevil, Rhynchophorus ferrugineus (Olivier)

  • 1.

    MOA. Central Department of Statistics and Information, Annual Statistics Book. Saudi Arabia. (2012).

  • 2.

    FAO. FAO Statistical Year Book 2012. (2012).

  • 3.

    Abraham, V. A., Al-Shuaibi, M., Faleiro, J. R. & Abozuhairah, R. A. An integrated approach for the management of red palm weevil Rhynchophorus ferrugineus Olivier—A key pest of date palm in the Middle East. Sultan Qaboos Univ. J. Sci. Res. Agric. Sci. 3, 77–83 (1998).

    Google Scholar 

  • 4.

    Faleiro, J. R. Insight into the management of red palm weevil Rhynchophorus ferrugineus Olivier: Based on experiences on coconut in India and date palm in Saudi Arabia. Fund. Agroalimed. 06, 35–57 (2006).

    Google Scholar 

  • 5.

    Wai, Y. K., Bakar, A. A. & Azmi, W. A. Fecundity, fertility and survival of red palm weevil (Rhynchophorus ferrugineus) larvae reared on sago palm. Sains Malays. 44, 1371–1375 (2015).

    Article 

    Google Scholar 

  • 6.

    Tufail, M. & Takeda, M. Molecular characteristics of insect vitellogenins. J. Insect Physiol. 54, 1447–1458 (2008).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 7.

    Abbas, M. S. T., Hanounik, S. B., Shahdad, A. S. & Ai-Bagham, S. A. Aggregation pheromone traps, a major component of IPM strategy for the red palm weevil, Rhynchophorus ferrugineus in date palms (Coleoptera: Curculionidae). J. Pest. Sci. 79, 69–73 (2006).

    Article 

    Google Scholar 

  • 8.

    Aldawood, A. S., Alsagan, F., Altuwariqi, H., ALmuteri, A. & Rasool, G. K. Red palm weevil chemical treatments on date palms on date palms in Saudi Arabia: Results of extensive experiment. In AFPP: Colloque Mediterranean Sur Les Ravageurs Des Palmiers (2013).

  • 9.

    Atwa, A. A. & Hegazi, E. M. Comparative susceptibilities of different life stages of the red palm weevil (Coleoptera: Curculionidae) treated by entomopathogenic nematodes. J. Econ. Entomol. 107, 1339–1347 (2014).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 10.

    Abraham, V. A., Abdulla Koya, K. M. & Kurian, C. Evaluation of seven insecticides for control of red palm weevil Rhynchophorus ferrugineus FABR. J. Plant. Crops 3, 71–72 (1975).

    CAS 

    Google Scholar 

  • 11.

    Wilson, C. & Tisdell, C. Why farmers continue to use pesticides despite environmental, health and sustainability costs. Ecol. Econ. 39, 449–462 (2001).

    Article 

    Google Scholar 

  • 12.

    Sharpe, R. M. & Irvine, D. S. How strong is the evidence of a link between environmental chemicals and adverse effects on human reproductive health?. BMJ Br. Med. J. 328, 447 (2004).

    CAS 
    Article 

    Google Scholar 

  • 13.

    Reissig, W. H., Weires, R. W. & Forshey, C. G. Effects of gracillariid leafminers on apple tree growth and production. Environ. Entomol. 11, 958–963 (1982).

    Article 

    Google Scholar 

  • 14.

    Tufail, M., Lee, J., Hatakeyama, M., Oishi, K. & Takeda, M. Cloning of vitellogenin cDNA of the American cockroach, Periplaneta americana (Dictyoptera), and its structural and expression analyses. Arch. Insect Biochem. Physiol. 45, 37–46 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 15.

    Tufail, M. & Takeda, M. Vitellogenin of the cockroach, Leucophaea maderae: nucleotide sequence, structure and analysis of processing in the fat body and oocytes. Insect Biochem. Mol. Biol. 32, 1469–1476 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 16.

    Shu, Y., Zhou, J., Tang, W., Zhou, Q. & Zhang, G. Molecular characterization and expression pattern of Spodoptera litura (Lepidoptera: Noctuidae) vitellogenin, and its response to lead stress. J. Insect Physiol. 55, 608–616 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 17.

    Snigirevskaya, E. S. & Raikhel, A. S. Receptor-mediated endocytosis of yolk proteins in insect oocytes. Progress in vitellogenesis. Reprod. Biol. Invertebr. 12, 199–228 (2005).

    CAS 

    Google Scholar 

  • 18.

    Sappington, T. W. & Raikhel, A. S. Molecular characteristics of insect vitellogenins and vitellogenin receptors. Insect Biochem. Mol. Biol. 28, 277–300 (1998).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 19.

    Tufail, M. & Takeda, M. Molecular cloning, characterization and regulation of the cockroach vitellogenin receptor during oogenesis. Insect Mol. Biol. 14, 389–401 (2005).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 20.

    Tufail, M. & Takeda, M. Molecular cloning and developmental expression pattern of the vitellogenin receptor from the cockroach, Leucophaea maderae. Insect Biochem. Mol. Biol. 37, 235–245 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 21.

    Tufail, M. & Takeda, M. Hemolymph Proteins and Functional Peptides: Recent Advances in Insects and Other Arthropods. Vol. 1 (Bentham Science Publishers, 2012).

  • 22.

    Bell, W. J. Continuous and rhythmic reproductive cycle observed in Periplaneta americana (L.). Biol. Bull. 137, 239–249 (1969).

    Article 

    Google Scholar 

  • 23.

    Hagedorn, H. & Judson, C. Purification and site of synthesis of Aedes aegypti yolk proteins. J. Exp. Zool. 182, 367–377 (1972).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 24.

    Oie, M., Takahashi, S. & IshazakiI, H. Vitellogenin in the eggs of the cockroach, Blattella germanica: Purification and characterization. Dev. Growth Differ. 17, 237–246 (1975).

    CAS 
    Article 

    Google Scholar 

  • 25.

    Tufail, M., Hatakeyama, M. & Takeda, M. Molecular evidence for two vitellogenin genes and processing of vitellogenins in the American cockroach, Periplaneta americana. Arch. Insect Biochem. Physiol. 48, 72–80 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 26.

    Nagaba, Y., Tufail, M., Inui, H. & Takeda, M. Hormonal regulation and effects of four environmental pollutants on vitellogenin gene transcription in the giant water bFfigug, Lethocerus deyrollei (Hemiptera: Belostomatidae). J. Insect Conserv. 15, 421–431 (2011).

    Article 

    Google Scholar 

  • 27.

    Tufail, M. et al. Molecular cloning, transcriptional regulation, and differential expression profiling of vitellogenin in two wing-morphs of the brown planthopper, Nilaparvata lugens Stål (Hemiptera: Delphacidae). Insect Mol. Biol. 19, 787–798 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 28.

    Mansoor, S., Amin, I., Hussain, M., Zafar, Y. & Briddon, R. W. Engineering novel traits in plants through RNA interference. Trends Plant Sci. 11, 559–565 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 29.

    Mello, C. C. & Conte, D. Revealing the world of RNA interference. Nature 431, 338–342 (2004).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 30.

    Price, D. R. & Gatehouse, J. A. RNAi-mediated crop protection against insects. Trends Biotechnol. 26, 393–400 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 31.

    Veerana, M., Kubera, A. & Ngernsiri, L. Analysis of the vitellogenin gene of rice moth, Corcyra cephalonica Stainton. Arch. Insect Biochem. Physiol. 87, 126–147 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 32.

    Rützler, M. & Zwiebel, L. Molecular biology of insect olfaction: Recent progress and conceptual models. J. Comp. Physiol. A. 191, 777–790 (2005).

    Article 
    CAS 

    Google Scholar 

  • 33.

    Kola, V. S. R., Renuka, P., Madhav, M. S. & Mangrauthia, S. K. Key enzymes and proteins of crop insects as candidate for RNAi based gene silencing. Front. Physiol. 6, 119 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 34.

    Antonio, D. S. M., Guidugli-Lazzarini, K. R., Do Nascimento, A. M., Simões, Z. L. P. & Hartfelder, K. RNAi-mediated silencing of vitellogenin gene function turns honeybee (Apis mellifera) workers into extremely precocious foragers. Naturwissenschaften 95, 953–961 (2008).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • 35.

    Raza, A. et al. RNA interference based approach to down regulate osmoregulators of whitefly (Bemisia tabaci): Potential technology for the control of whitefly. PLoS ONE 11, e0153883 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 36.

    Li, H., Guan, R., Guo, H. & Miao, X. New insights into an RNAi approach for plant defence against piercing-sucking and stem-borer insect pests. Plant Cell Environ. 38, 2277–2285 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 37.

    Baum, J. A. et al. Control of coleopteran insect pests through RNA interference. Nat. Biotechnol. 25, 1322–1326 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 38.

    Upadhyay, S. K., Singh, H., Dixit, S., Mendu, V. & Verma, P. C. Molecular characterization of vitellogenin and vitellogenin receptor of Bemisia tabaci. PLoS ONE 11, e0155306 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 39.

    Soffan, A. et al. Silencing the olfactory co-receptor RferOrco reduces the response to pheromones in the red palm weevil, Rhynchophorus ferrugineus. PLoS ONE 11, e0162203 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 40.

    Scott, J. G. et al. Towards the elements of successful insect RNAi. J. Insect Physiol. 59, 1212–1221 (2013).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 41.

    Shukla, J. N. et al. Reduced stability and intracellular transport of dsRNA contribute to poor RNAi response in lepidopteran insects. RNA Biol. 13, 656–669 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 42.

    Mao, Y.-B. et al. Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol. Nat. Biotechnol. 25, 1307–1313 (2007).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 43.

    Zhao, Y., Yang, G., Wang-Pruski, G. & You, M. Phyllotreta striolata (Coleoptera: Chrysomelidae): Arginine kinase cloning and RNAi-based pest control. Eur. J. Entomol. 105, 815 (2008).

    CAS 
    Article 

    Google Scholar 

  • 44.

    Tufail, M., Raikhel, A. S. & Takeda, M. Biosynthesis and processing of insect vitellogenins. Progress in vitellogenesis. Reprod. Biol. Invertebr. 12, 1–32 (2005).

    CAS 

    Google Scholar 

  • 45.

    Tufail, M., Nagaba, Y., Elgendy, A. M. & Takeda, M. Regulation of vitellogenin genes in insects. Entomol. Sci. 17, 269–282 (2014).

    Article 

    Google Scholar 

  • 46.

    Tufail, M., Bembenek, J., Elgendy, A. M. & Takeda, M. Evidence for two vitellogenin-related genes in Leucophaea maderae: The protein primary structure and its processing. Arch. Insect Biochem. Physiol. 66, 190–203 (2007).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 47.

    Guidugli, K. R. et al. Vitellogenin regulates hormonal dynamics in the worker caste of a eusocial insect. FEBS Lett. 579, 4961–4965 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 48.

    Nelson, C. M., Ihle, K. E., Fondrk, M. K., Page, R. E. Jr. & Amdam, G. V. The gene vitellogenin has multiple coordinating effects on social organization. PLoS Biol. 5, e62 (2007).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 49.

    Chen, J.-S., Cho, W.-L. & Raikhel, A. S. Analysis of mosquito vitellogenin cDNA: Similarity with vertebrate phosvitins and arthropod serum proteins. J. Mol. Biol. 237, 641–647 (1994).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 50.

    Trewitt, P. M., Heilmann, L. J., Degrugillier, S. & Kumaran, A. K. The boll weevil vitellogenin gene: Nucleotide sequence, structure, and evolutionary relationship to nematode and vertebrate vitellogenin genes. J. Mol. Evol. 34, 478–492 (1992).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 51.

    Warr, E. et al. A tapeworm molecule manipulates vitellogenin expression in the beetle Tenebrio molitor. Insect Mol. Biol. 15, 497–505 (2006).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 52.

    Li, J.-L., Tang, B.-Z., Hou, Y.-M. & Xie, Y.-X. Molecular cloning and expression of the vitellogenin gene and its correlation with ovarian development in an invasive pest Octodonta nipae on two host plants. Bull. Entomol. Res. 106, 642–650 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 53.

    Yokoyama, M. N. et al. Storage proteins, vitellogenin and vitellin of wild silkworms, Antheraea yamamai, Antheraea pernyi and their hybrids. Comp. Biochem. Physiol. Part B Comp. Biochem. 106, 163–172 (1993).

    Article 

    Google Scholar 

  • 54.

    Baker, M. Invertebrate vitellogenin is homologous to human von Willebrand factor. Biochem. J. 256, 1059 (1988).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 55.

    Akasaka, M., Harada, Y. & Sawada, H. Vitellogenin C-terminal fragments participate in fertilization as egg-coat binding partners of sperm trypsin-like proteases in the ascidian Halocynthia roretzi. Biochem. Biophys. Res. Commun. 392, 479–484 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 56.

    Donnell, D. M. Vitellogenin of the parasitoid wasp, Encarsia formosa (Hymenoptera: Aphelinidae): Gene organization and differential use by members of the genus. Insect Biochem. Mol. Biol. 34, 951–961 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 57.

    Lewis, D. K. et al. Characterization of vitellogenin in the red imported fire ant, Solenopsis invicta (Hymenoptera: Apocrita: Formicidae). J. Insect Physiol. 47, 543–551 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 58.

    Barr, P. J. Mammalian subtilisins: The long-sought dibasic processing endoproteases. Cell 66, 1–3 (1991).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 59.

    Liu, W. et al. Juvenile hormone facilitates the antagonism between adult reproduction and diapause through the methoprene-tolerant gene in the female Colaphellus bowringi. Insect Biochem. Mol. Biol. 74, 50–60 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 60.

    Mayadas, T. N. & Wagner, D. D. Vicinal cysteines in the prosequence play a role in von Willebrand factor multimer assembly. Proc. Natl. Acad. Sci. 89, 3531–3535 (1992).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 61.

    Mouchel, N., Trichet, V., Betz, A., Le Pennec, J.-P. & Wolff, J. Characterization of vitellogenin from rainbow trout (Oncorhynchus mykiss). Gene 174, 59–64 (1996).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 62.

    Coelho, R. R. et al. Vitellogenin knockdown strongly affects cotton boll weevil egg viability but not the number of eggs laid by females. Meta Gene 9, 173–180 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 63.

    Moriyama, M., Hosokawa, T., Tanahashi, M., Nikoh, N. & Fukatsu, T. Suppression of Bedbug’s reproduction by RNA interference of vitellogenin. PLoS ONE 11, e0153984 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 64.

    Whyard, S., Singh, A. D. & Wong, S. Ingested double-stranded RNAs can act as species-specific insecticides. Insect Biochem. Mol. Biol. 39, 824–832 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 65.

    Zhu, F., Xu, J., Palli, R., Ferguson, J. & Palli, S. R. Ingested RNA interference for managing the populations of the Colorado potato beetle, Leptinotarsa decemlineata. Pest Manag. Sci. 67, 175–182 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 66.

    Turner, C. et al. RNA interference in the light brown apple moth, Epiphyas postvittana (Walker) induced by double-stranded RNA feeding. Insect Mol. Biol. 15, 383–391 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 67.

    Walshe, D., Lehane, S., Lehane, M. & Haines, L. Prolonged gene knockdown in the tsetse fly Glossina by feeding double stranded RNA. Insect Mol. Biol. 18, 11–19 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 68.

    Araujo, R. et al. RNA interference of the salivary gland nitrophorin 2 in the triatomine bug Rhodnius prolixus (Hemiptera: Reduviidae) by dsRNA ingestion or injection. Insect Biochem. Mol. Biol. 36, 683–693 (2006).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 69.

    Tokar, D. R., Veleta, K. A., Canzano, J., Hahn, D. A., & Hatle, J. D.. Vitellogenin RNAi halts ovarian growth and diverts reproductive proteins and lipids in young grasshoppers.Am. Zool. 54, 931–941 (2014).

  • 70.

    Chu, C.-C., Sun, W., Spencer, J. L., Pittendrigh, B. R. & Seufferheld, M. J. Differential effects of RNAi treatments on field populations of the western corn rootworm. Pestic. Biochem. Physiol. 110, 1–6 (2014).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 71.

    Zhang, X. et al. Chitosan/interfering RNA nanoparticle mediated gene silencing in disease vector mosquito larvae. J. vis. Exp. JoVE. https://doi.org/10.3791/52523 (2015).

    Article 
    PubMed 

    Google Scholar 

  • 72.

    Kaakeh, W. Longevity, fecundity, and fertility of the red palm weevil, Rynchophorus ferrugineus Olivier (Coleoptera: Curculionidae) on natural and artificial diets. Emirates J. Food Agric. 17 (2005).

  • 73.

    Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G. The CLUSTAL_X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876–4882 (1997).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 74.

    Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. MEGA6: Molecular evolutionary genetic analysis version 6.0. Mol. Biol. Evolut. 30, 2725–2729 (2013).

    CAS 
    Article 

    Google Scholar 

  • 75.

    SAS, I. SAS/STAT 9.2 User’s Guide. (SAS Institute, 2008).

  • 76.

    Husain, M., Rasool, K. G., Tufail, M. & Aldawood, A. S. Molecular characterization, expression pattern and RNAi-mediated silencing of vitellogenin receptor gene in almond moth, Cadra cautella. Insect Mol. Biol. 29(4), 417–430 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 77.

    Husain, M., Rasool, K. G., Tufail, M., Alwaneen, W. S. & Aldawood, A. S. RNAi-mediated silencing of vitellogenin gene curtails oogenesis in the almond moth Cadra cautella. PLoS ONE 16(2), e0245928 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 78.

    Ye, C. et al. Induction of RNAi core machinery’s gene expression by exogenous dsRNA and the effects of pre-exposure to dsRNA on the gene silencing efficiency in the pea aphid (Acyrthosiphon pisum). Front. Physiol. 9, 1906 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Source link