Preloader

Self-replicating vehicles based on negative strand RNA viruses

  • Lundstrom K. Viral vectors in gene therapy. Diseases. 2018;6:42.

    PubMed Central 

    Google Scholar 

  • Bloom K, van der Berg F, Arbuthnot P. Self-amplifying RNA vaccines for infectious diseases. Gene Ther. 2021;28:117–29.

    CAS 
    PubMed 

    Google Scholar 

  • Samulski R, Muzycka N. AAV-mediated gene therapy for research and therapeutic purposes. Annu Rev Virol. 2014;1:427–51.

    PubMed 

    Google Scholar 

  • Vigna E, Naldini L. Lentiviral vectors: Excellent tools for experimental gene transfer and promising candidates for gene therapy. J Gen Med. 2000;2:308–16.

    CAS 

    Google Scholar 

  • Strauss JH, Strauss EG. The alphaviruses: Gene expression, replication, and evolution. Microbiol Rev. 1994;58:491–562.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Frolov I, Hoffman TA, Pragal BM, Dryga SA, Huang H, Schlesinger S, et al. Alphavirus-based expression vectors: Strategies and applications. Proc Natl Acad Sci USA. 1996;93:11371–7.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liljestrom P, Garoff H. A new generation of animal cell expression vectors based on the Semliki Forest virus replicon. Biotechnology. 1991;9:1356–61.

    CAS 
    PubMed 

    Google Scholar 

  • Xiong C, Levis R, Shen P, Schlesinger S, Rice CM, Huang HV. Sindbis virus: An efficient, broad host range vector for gene expression in animal cells. Science. 1989;243:1188–91.

    CAS 
    PubMed 

    Google Scholar 

  • Davis NL, Willis LV, Smith JF, Johnston RF. In vitro synthesis of infectious Venezuelan equine encephalitis virus RNA from a cDNA clone: Analysis of a viable deletion mutant. Virology. 1989;171:189–204.

    CAS 
    PubMed 

    Google Scholar 

  • Lundstrom K. Self-amplifying RNA viruses as RNA vaccines. Int J Mol Sci. 2020;21:5130.

    CAS 
    PubMed Central 

    Google Scholar 

  • Walpita P, Flick R. Reverse genetics of negative-stranded RNA viruses: A global perspective. FEMS Microbiol Lett. 2005;244:9–18.

    CAS 
    PubMed 

    Google Scholar 

  • Whelan SPJ, Barr JN, Wetz GW. Transcription and Replication of Negative-Strand RNA Viruses. In: Kawoka Y, editor. Biology of negative stranded RNA viruses: The power of reverse genetics. Berlin, Heidelberg, New York: Springer Verlag; 2004. p. 61–119.

  • Radecke F, Spielhofer P, Schneider H, Kaelin K, Huber M, Dötsch C, et al. Rescue of measles viruses from cloned DNA. EMBO J. 1995;14:5773–84.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mühlebach MD. Vaccine platform recombinant measles virus. Virus Genes. 2017;53:733–40.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Schneider H, Spielhofer P, Kaelin K, Dötsch C, Radecke F, Sutter G, et al. Rescue of measles virus using a replication-deficient vaccinia-T7 vector. J Virol Methods. 1997;64:57–64.

    CAS 
    PubMed 

    Google Scholar 

  • Martin A, Staeheli P, Schneider U. RNA polymerase II-controlled expression of antigenomic RNA enhances the rescue efficacies of two different members of the Mononegavirales independently of the site of viral genome replication. J Virol. 2006;80:5708–15.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schnell MJ, Buonocore L, Kretzschmar E, Johnson E, Rose JK. Foreign glycoproteins expressed from recombinant vesicular stomatitis viruses are incorporated efficiently into virus particles. Proc Natl Acad Sci USA. 1996;93:11359–65.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tani H, Morikawa S, Matsuura Y. Development and applications of VSV vectors based on cell tropism. Front Microbiol. 2012;2:272.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hastie E, Grdzelishvili VZ. Vesicular stomatitis virus as a flexible platform for oncolytic virotherapy against cancer. J Gen Virol. 2012;93:2529–45.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Harty RN, Brown ME, Hayes FP, Wright NT, Schnell MJ. Vaccinia virus-free recovery of vesicular stomatitis virus. J Mol Microbiol Biotechnol. 2001;3:513–7.

    CAS 
    PubMed 

    Google Scholar 

  • Poli JG, Zhang L, Bridle BW, Stephenson KB, Rességuir J, Hanson S, et al. Maraba virus as a potent oncolytic vaccine vector. Mol Ther. 2014;22:420–9.

    Google Scholar 

  • Ito N, Takayama-Ito M, Yamada K, Hosokawa J, Sugiyama M, Minamoto N. Improved recovery of rabies virus from cloned cDNA using a vaccinia virus-free reverse genetics system. Microbiol Immunol. 2003;47:613–7.

    CAS 
    PubMed 

    Google Scholar 

  • Osakada F, Callaway EM. Design and generation of recombinant rabies virus vectors. Nat Protoc. 2013;8:1583–601.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Ohara S, Inoue K, Yamada M, Yamawaki T, Koganezawa N, Tsuttsui K, et al. Dual transneural tracing in the rat entorhoinal-hippocampal circuit by intracerebral injection of recombinant rabies virus vectors. Front Neuroanat. 2009;3:1–11.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Kelvin AA. Outbreak of Chikungunya in the Republic of Congo and the global picture. J Infect Dev Ctries. 2011;5:441–4.

    PubMed 

    Google Scholar 

  • Jansen KA. The 2005-7 Chikungunya epidemic in Reunion: Ambiguous etiologies, memories, and meaning-making. Med Anthropol. 2013;32:174–89.

    PubMed 

    Google Scholar 

  • Chattopadhyay A, Aquilar PV, Bopp NE, Yarovinsky TO, Weaver SC, Rose JK. A recombinant virus vaccine that protects both against Chikungunya and Zika virus infections. Vaccine. 2018;36:3894–3900.

    CAS 
    PubMed 

    Google Scholar 

  • Ramsauer K, Tangy F. Chikungunya virus vaccines: Viral vector-based approaches. J Infect Dis. 2016;214:S500–S505.

    CAS 
    PubMed 

    Google Scholar 

  • Brandler S, Ruffie C, Combredet C, Brault J-B, Najburg V, Prevost M-C, et al. A recombinant measles vaccine expressing chikungunya virus-like particles is strongly immunogenic and protects mice from lethal challenge with chikungunya virus. Vaccine. 2013;31:3718–25.

    CAS 
    PubMed 

    Google Scholar 

  • Rossi SL, Comer JE, Wang E, Azar SR, Lawrence WS, Plante JA, et al. Immunogenicity and efficacy of a measles virus-vectored chikungunya vaccine in nonhuman primates. J Infect Dis. 2019;220:735–42.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ramsauer K, Schwameis M, Firbas C, Mullner M, Putnak RJ, Thomas SJ, et al. Immunogenicity, safety, and tolerability of a recombinant measles virus-based chikungunya vaccine: a randomised, double-blind, placebo controlled, active-comparator, first-in-man trial. Lancet Infect Dis. 2015;15:519–27.

    CAS 
    PubMed 

    Google Scholar 

  • Reisinger EC, Tschismarov R, Beubler E, Wiedermann U, Firbas C, Loebermann M, et al. Immunogenicity, safety, and tolerability of the measles-vectored chikungunya virus vaccine MV-CHIK: a double-blind, randomised, placebo-controlled and active-controlled phase 2 trial. Lancet. 2019;392:2718–27.

    PubMed 

    Google Scholar 

  • Nasar F, Matassov D, Seymour RL, Latham T, Gorchakov RV, Novak RM, et al. Recombinant Isfahan virus and vesicular stomatitis virus vaccine vectors provide durable, multivalent, single-dose protection against lethal alphavirus challenges. J Virol. 2017;91:e01729–16.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Safronetz D, Mire C, Rosenke K, Feldmann F, Haddock E, Geissbert T, et al. A recombinant vesicular stomatitis virus-based Lassa fever vaccine protects guinea pigs and macaques against challenge with geographically and genetically distinct Lassa viruses. PLoS Negl Trop Dis. 2015;9:e0003736.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Stein DR, Warner BM, Soule G, Tierney K, Frost KL, Booth S, et al. A recombinant vesicular stomatitis-based Lassa fever vaccine elicits rapid and long-term protection from lethal Lassa virus infection in guinea pigs. NPJ Vaccines. 2019;4:8.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Banadyga L, Stein DR, Qiu X, Safronetz D. Pre-clinical development of a vaccine against Lassa fever. Can Commun Dis Rep. 2018;44:139–47.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Abreu-Mota T, Hagen KR, Cooper K, Jahrling PB, Tan G, Wirblich C, et al. Non-neutralizing antibodies elicited by recombinant Lassa-Rabies vaccine are critical for protection against Lassa fever. Nat Commun. 2018;9:4223.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Mateo M, Reynard S, Carnec X, Journeaux A, Baillet N, Schaeffer J, et al. Vaccines inducing immunity to Lassa fever glycoprotein and nucleoprotein protect macaques after a single shot. Sci Transl Med. 2019;11:eaaw3163.

    PubMed 

    Google Scholar 

  • A Trial to Evaluate the Optimal Dose of MV-LASV. ClinicalTrials.gov NCT04055454. https://clinicaltrials.gov/ct2/show/NCT04055454 (Accessed on August 26, 2021).

  • Shuai L, Wang X, Wen Z, Ge J, Wang J, Zhao D, et al. Genetically modified rabies virus-vectored Ebola virus disease vaccines are safe and induce efficacious immune responses in mice and dogs. Antivir Res. 2017;146:36–44.

    CAS 
    PubMed 

    Google Scholar 

  • Marzi A, Robertson SJ, Haddock E, Feldmann F, Hanley PW, Scott D-P, et al. VSV-EBOV rapidly protects macaques against infection with the 2014/2015 Ebola virus outbreak strain. Science. 2015;349:739–42.

    CAS 
    PubMed 

    Google Scholar 

  • Marzi A, Reynolds P, Mercado-Hernandez R, Callison J, Feldmann F, Rosenke R, et al. Single low-dose VSV-EBOV vaccination protects cynomolgus macaques from lethal Ebola challenge. EBioMedicine. 2019;49:223–31.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Jones SM, Stroher U, Fernando L, Qiu X, Alimonti J, Melito P, et al. Assessment of a vesicular stomatitis virus-based vaccine by use of the mouse model of Ebola virus hemorrhagic fever. J Infect Dis. 2007;196:S404–412.

    CAS 
    PubMed 

    Google Scholar 

  • Jones SM, Feldmann H, Stroher U, Geisbert JB, Fernando L, Grolla A, et al. Live attenuated recombinant vaccine protects nonhuman primates against Ebola and Marburg viruses. Nat Med. 2005;11:786–90.

    CAS 
    PubMed 

    Google Scholar 

  • Henao-Restrepo AM, Longini IM, Egger M, Dean NE, Edmunds WJ, Camacho A, et al. Efficacy and effectiveness of an rVSV-vectored vaccine expressing Ebola surface glycoprotein: Interim results from the Guinea ring vaccination cluster-randomised trial. Lancet. 2015;386:857–66.

    CAS 
    PubMed 

    Google Scholar 

  • Henao-Restrepo AM, Camacho A, Longini IM, Watson CH, Edmunds WJ, Egger M, et al. Efficacy and effectiveness of an rVSV-vectored vaccine in preventing Ebola virus disease: Final results from the Guinea ring vaccination, open-label, cluster-randomised trial (Ebola Ca Suffit!). Lancet. 2017;389:505–18.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Maxmen, A. Ebola vaccine approved for use in ongoing outbreak. Nature. 2017. https://doi.org/10.1038/nature.2017.22024.

  • Hu HM, Chen HW, Hsiao Y, Wu SH, Chung HH, Hsieh CH, et al. The successful induction of T-cell and antibody responses by a recombinant measles virus-vectored tetravalent dengue vaccine provides partial protection against dengue-2 infection. Hum Vaccine Immunother. 2016;12:1678–89.

    Google Scholar 

  • Lauretti F, Chattopadhyay A, de Oliveira França RF, Castro-Jorge L, Rose J, da Fonseca BAL. Recombinant vesicular stomatitis virus-based dengue-2 vaccine candidate induces humoral response and protects mice against lethal infection. Hum Vaccine Immunother. 2016;12:2327–33.

    Google Scholar 

  • Jin H, Jiao C, Cao Z, Huang P, Chi H45, Bai Y, et al. An inactivated recombinant rabies virus displaying the Zika virus prM-E induces protective immunity against both pathogens. PLoS Negl Trop Dis. 2021;15:e0009484.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kurup D, Wirblich, C, Schnell, MJ. Measles-based Zika vaccine induces long-term immunity and requires NS1 antibodies to protect the female reproductive tract in the mouse model of Zika. Preprint at bioRxiv 2020. https://doi.org/10.1101/2020.09.17.301622.

  • Zika-Vaccine Dose Finding Study Regarding Safety, Immunogenicity and Tolerability (V186-001). ClinicalTrials.gov NCT02996890. https://cliniclatriasl.gov/ct2/show/NCT02996890 (Accessed on August 31, 2021).

  • Safety and Immunogenicity of a Novel Vaccine Formulation MV-ZIKA-RSP (V187-001) (MV-ZIKA-RSP) NCT04033068. https://clinicaltrials.gov/ct2/show/NCT04033068 (Accessed on August 31, 2021).

  • Del Valle JR, Devaux P, Hodge G, Wegner NJ, McChesney MB, Cattaneo R. A vectored measles virus induces hepatitis B surface antigen antibodies while protecting macaques against virus challenge. J Virol. 2007;81:10597–605.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Cobleigh MA, Buonocore L, Uprichard SL, Rose JK, Robek MD. A vesicular stomatitis virus-based hepatitis B virus vaccine vector provides protection against challenge in a single dose. J Virol. 2010;84:7513–22.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lorin C, Mollet L, Delebecque F, Combredet C, Hurtrel B, Charneau P, et al. A single injection of recombinant measles virus vaccine expressing human immunodeficiency virus (HIV) type 1 clade B envelope glycoproteins induces neutralizing antibodies and cellular immune responses to HIV. J Virol. 2004;78:146–57.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liniger M, Zuniga A, Azzouz Morin TN, Combardiere B, Marty R, Wiegand M, et al. Recombinant measles viruses expressing single or multiple antigens of human immunodeficiency virus (HIV-1) induce cellular and humoral immune responses. Vaccine. 2009;27:3299–305.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Clarke DK, Cooper D, Egan MA, Hendry RM, Parks CL, Udem SA. Recombinant vesicular stomatitis virus as an HIV vaccine vector. Springer Semin Immunopathol. 2006;28:239–53.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rose NF, Marx PA, Luckay A, Nixon DF, Moretto WJ, Donahoe SM, et al. An effective AIDS vaccine based on live attenuated vesicular stomatitis virus recombinants. Cell. 2001;106:539.

    CAS 
    PubMed 

    Google Scholar 

  • Mangion M, Gélinas J-F, Zadeh Gashti AB, Azizi H, Kiesslich S, Nassoury N, et al. Evaluation of novel HIV vaccine candidates using recombinant vesicular stomatitis virus vector produced in serum-free Vero cell cultures. Vaccine. 2020;38:7949–55.

    CAS 
    PubMed 

    Google Scholar 

  • Schnell MJ, Foley HD, Siler CA, McGettigan JP, Dietzschold B, Pomerantz RJ. Recombinant rabies virus as potential live-viral vaccines for HIV-1. Proc Natl Acad Sci USA. 2000;97:3544–9.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fujiyuki T, Horie R, Yoneda M, Kuraishi T, Yasui F, Kwon H-J, et al. Efficacy of recombinant measles virus expressing highly pathogenic avian influenza virus (HPAIV) antigen against HPAIV infection in monkeys. Sci Rep. 2017;7:12017.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Ito T, Kumagai T, Yamaji Y, Sawada A, Nakayama T. Recombinant Measles AIK-C vaccine strain expressing influenza HA protein. Vaccines. 2020;8:149.

    CAS 
    PubMed Central 

    Google Scholar 

  • Kalhoro NH, Veits J, Rautenschlein S, Zimmer G. A recombinant vesicular stomatitis virus replicon vaccine protects chickens from highly pathogenic avian influenza virus (H7N1). Vaccine. 2009;27:1174–83.

    CAS 
    PubMed 

    Google Scholar 

  • Barefoot BE, Athearn B, Sample CJ, Ramsburg EA. Intramuscular immunization with a vesicular stomatitis virus recombinant expressing the influenza hemagglutinin provides post-exposure protection against lethal influenza challenge. Vaccine. 2009;28:79–89.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Ryder AB, Buonocore L, Vogel L, Nachbagauer R, Krammer F, Rose JK. A viable recombinant rhabdovirus lacking its glycoprotein gene and expressing influenza virus hemagglutinin and neuraminidase is a potent influenza vaccine. J Virol. 2015;89:2820–30.

    PubMed 

    Google Scholar 

  • Furuyama W, Reynolds P, Haddock E, Meade-White K, Le MQ, Kawaoka Y, et al. a single dose of a vesicular stomatitis virus-based influenza vaccine confers rapid protection against H5 viruses from different clades. NPJ Vaccines. 2020;5:4.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sadoff J, Le Gars M, Shukarev G, Heerwegh, Truyers DC, de Groot AM, et al. Interim Results of a Phase 1-2a Trial of Ad26.COV2.S Covid-19 Vaccine. N Engl J Med. 2021;384:1824–35.

    CAS 
    PubMed 

    Google Scholar 

  • Voysey M, Sue Costa Clemens SA, Madhi SA, Weckx LY, Folegatti PM, Aley PK, et al. Safety and efficacy of the AdChOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised trials in Brazil, South Africa and the UK. Lancet. 2021;397:99–111.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Regulatory Approval of COVID-19 Vaccine AstraZeneca—GOV.UK. www.gov.uk (Accessed on September 2, 2021).

  • Ad26.COV2-S FDA Approval Status. drugs.com/history/ad26-cov2-s.html (Accessed on September 2, 2021).

  • Lundstrom K, Barh D, Uhal BD, Takayama K, Aljabali AAA, Mohamed Abd El-Aziz T, et al. COVID-19 vaccines and thrombosis—roadblock of dead-end street? Biomolecules. 2021;11:1020.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liniger M, Zuniga A, Tamin A, Azzouz-Morin TN, Knuchel M, Marty RR, et al. Induction of neutralising antibodies and cellular immune responses against SARS coronavirus by recombinant measles virus. Vaccine. 2008;26:2164–74.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Escriou N, Callendret B, Lorin V, Combredet C, Marianneau P, Février M, et al. Protection from SARS coronavirus conferred by live measles vaccine expressing spike glycoprotein. Virology. 2014;452-3:32–41.

    Google Scholar 

  • Kapadia SU, Rose JK, Lamirande E, Vogel L, Subbarao K, Roberts A. Long-term protection from SARS coronavirus infection conferred by a single immunization with an attenuated VSV-based vaccine. Virology. 2005;340:174–82.

    CAS 
    PubMed 

    Google Scholar 

  • Kapadia SU, Simon ID, Rose JK. SARS vaccine based on a replication-defective recombinant vesicular stomatitis virus is more potent than one based on a replication-competent vector. Virology. 2008;376:165–72.

    CAS 
    PubMed 

    Google Scholar 

  • Malczyk AH, Kupke A, Prüfer S, Scheuplein VA, Hutzler S, Kreuz D, et al. A highly immunigenic and protective middle east respiratory syndrome coronavirus vaccine based on a recombinant measles virus vaccine platform. J Virol. 2015;89:11654–67.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bodmer BS, Fiedler AH, Hanauer JRH, Prüfer S, Mühlebach MD. Live-attenuated bivalent measles virus-derived vaccines targeting Middle East respiratory syndrome coronavirus induce robust and multifunctional T cell responses against both viruses in an appropriate moues model. Virology. 2018;521:99–107.

    CAS 
    PubMed 

    Google Scholar 

  • Liu R, Wang J, Shao Y, Wang X, Zhang H, Shuai L, et al. A recombinant VSV-vectored MERS-CoV vaccine induces neutralizing antibody and T cell responses in rhesus monkeys after single dose immunization. Antivir Res. 2018;150:30–38.

    CAS 
    PubMed 

    Google Scholar 

  • Wirblich C, Coleman CM, Kuryp D, Abraham TS, Bernbaum JG, Jahrling PB, et al. One.Health: a safe, efficient, dual-use vaccine for humans and animals against middle east respiratory syndrome coronavirus and rabies virus. J Virol. 2017;91:e02040–16.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hörner C, Schürmann C, Auste A, Ebenig A, Muraleedharan S, Dinnon KH 3rd, et al. A highly immunogenic and effective measles virus-based Th1-biased COVID-19 Vaccine. Proc Natl Acad Sci USA. 2020;117:32657–66.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Clinical Trial to Evaluate the Safety and Immunogenicity of the COVID-19 Vaccine (COVID-19-101). https://clinicaltrials.gov/ct2/show/NCT04497298 (Accessed on September 2, 2021).

  • Merck Discontinues Development of SARS-CoV-2/COVID-19 Vaccine Candidates; Continues Development of Two Investigational Therapeutic Candidates. www.merck.com/news/merck-discontinues-development-of-sars-cov-2-covid-19-vaccine-candidates-continues-development-of-two-investigational-therapeutic-candidates/ (Accessed on September 2, 2021).

  • Kuryp D, Wirblich C, Ramage H, Schnell MJ. Rabies virus-based COVID-19 vaccine CORAVAX™ induces high levels of neutralizing antibodies against SARS-CoV-2. NPJ Vaccines. 2020;5:98.

    Google Scholar 

  • Brett JB, Rothlauf PW, Chen RE, Kafai NM, Fox JM, Smith BK, et al. Replication-competent vesicular stomatitis virus vaccine vector protects against SARS-CoV-2-mediated pathogenesis in mice. Cell Host Microbe. 2020;28:465–74.

    Google Scholar 

  • Case JB, Rothlauf PW, Chen RE, Kafai NM, Fox JM, Smith BK, et al. Replication-competent vesicular stomatitis virus vaccine vector protects against SARS-CoV-2-mediated pathogenesis in Mice. Cell Host Microbe. 2020;28:465–474e4.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lu M, Zhang Y, Dravid P, Li A, Zeng C, Mahesh KC, et al. A methyltransferase-defective VSV-based SARS-CoV-2 vaccine candidate provides complete protection against SARS-CoV-2 infection in hamsters. J Virol. 2021. https://doi.org/10.1128/JVI.00592-21.

  • Dose Ranging Trial to Assess Safety and Immunogenicity of V590 (COVID-19 Vaccine) in Healthy Adults (V590-001). ClinicalTrials.gov NCT04569786. https;//clinicaltrials.gov/ct2/show/NCT04569786 (Accessed on September 2, 2021).

  • Merck and IAVI Discontinue Development of COVID-19 Vaccine Candidate V590. www.iavi.org/newsresources/press-releases/2021/merck-and-iavi-discontinue-development-of-covid-19-vaccine-candidate-v590 (Accessed on September 2, 2021).

  • Evaluate the Safety, Immunogenicity, and Potential Efficacy of an rVSV-SARS-CoV-2-S Vaccine. https://clinicaltrials.gov/ct2/show/NCT04608305 (Accessed on September 2, 2021).

  • Phase 2b Dose-confirmatory Trial to Evaluate the Safety, Immunogenicity and Potential Efficacy of an VSV-ΔG SARS-CoV-2 Vaccine (BRILIFE001) https://clinicaltrials.gov/ct2/show/NCT04990466 (Accessed on September 2, 2021).

  • Fukuhara H, Ino Y, Todo T. Oncolytic virus therapy: A new era of cancer treatment at dawn. Cancer Sci. 2016;107:1373–9.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Aref S, Bailey K, Fielding A. Measles to the rescue: A review of oncolytic measles virus. Viruses. 2016;8:294.

    PubMed Central 

    Google Scholar 

  • Ebert O, Shinozaki K, Huang T-G, Savontaus MJ, Garcia-Sastre A, Woo SLC. Oncolytic vesicular stomatitis virus for treatment of orthotopic hepatocellular carcinoma in immune-competent rats. Cancer Res. 2003;63:3605–11.

    CAS 
    PubMed 

    Google Scholar 

  • Balachandran S, Barber GN. Vesicular stomatitis virus (VSV) therapy of tumors. IUBMB Life. 2000;50:135–8.

    CAS 
    PubMed 

    Google Scholar 

  • Ozduman K, Wollmann G, Piepmeier JM, van den Pol AN. Systemic vesicular stomatitis virus selectively destroys multifocal glioma and metastatic carcinoma in brain. J Neurosci. 2008;28:1882–93.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wollmann G, Rogulin V, Simon I, Rose JK, van den Pol AN. Some attenuated variants of vesicular stomatitis virus show enhanced oncolytic activity against human glioblastoma cells relative to normal brain cells. J Virol. 2010;84:15163–1573.

    Google Scholar 

  • Zhang X, Mao G, van den Pol AN. Chikungunya-vesicular stomatitis chimeric virus targets and eliminates brain tumors. Virology. 2018;522:244–59.

    CAS 
    PubMed 

    Google Scholar 

  • Jiang B, Huang D, He W, Guo W, Yin X, Forsyth P, et al. Inhibition of glioma using a novel non-neurotoxic vesicular stomatitis virus. Neurosurg Focus. 2021;50:E9.

    PubMed 

    Google Scholar 

  • Allen C, Paraskevakou G, Liu C, Iankov ID, Msaouel P, Zollman P, et al. Oncolytic measles virus strains in the treatment of gliomas. Expert Opin Biol Ther. 2008;8:213–20.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lal S, Carrera D, Phillips JJ, Weiss WA, Raffel C. An oncolytic measles virus-sensitive Group 3 medulloblastoma model in immune-competent mice. Neuro Oncol. 2018;20:1606–15.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Studebaker AW, Kreofsky CR, Pierson CR, Russell SJ, Glanis E, Raffel C. Treatment of medulloblastoma with a modified measles virus. Neuro Oncol. 2010;12:1034–42.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Allen C, Opyrchal M, Aderca I, Schroeder MA, Sarkaria JN, Domingo E, et al. Oncolytic measles virus strains have a significant antitumor activity against glioma stem cells. Gene Ther. 2013;2:444–9.

    Google Scholar 

  • Msaouel P, Dispenzieri A, Galanis E. Clinical testing of engineered oncolytic measles virus strains in the treatment of cancer: An overview. Curr Opin Mol Ther. 2009;11:43–53.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Viral Therapy in Treating Patients with Recurrent Glioblastoma Multiforme. www.clinicaltrials.govNCT00390299 (Accessed on September 7, 2021).

  • Ebert O, Harbaran S, Shinozaki K, Woo SLC. Systemic therapy of experimental breast cancer metastases by mutant vesicular stomatitis virus in immune-competent mice. Cancer Gene Ther. 2005;12:350–8.

    CAS 
    PubMed 

    Google Scholar 

  • Levelle S, Samuel S, Goulet M-L, Hiscott J. Enhancing VSV oncolytic activity with an improved cytosine deaminase suicide gene strategy. Cancer Gene Ther. 2011;18:435–43.

    Google Scholar 

  • Sugiyama T, Yoneda M, Kuraishi T, Hattori S, Inoue Y, Sato H, et al. Measles virus selectively blind to signaling lymphocyte activation molecule as a novel oncolytic virus for breast cancer treatment. Gene Ther. 2013;20:338–47.

    CAS 
    PubMed 

    Google Scholar 

  • Abdullah SA, Al-Shammari AM, Lateef SA. Attenuated measles vaccine strain have potent oncolytic activity against Iraqi patient derived breast cancer cell line. Saudi J Biol Sci. 2020;27:865–72.

    CAS 
    PubMed 

    Google Scholar 

  • Yang B, Shi J, Sun Z, Zhu D, Xu X. Attenuated measles virus overcomes radio- and chemoresistance in human breast cancer cells by inhibiting the non-homologous end joining pathway. Oncol Rep. 2020;44:2253–64.

    CAS 
    PubMed 

    Google Scholar 

  • World Health Organization Human papillomavirus vaccines: WHO position paper, May 2017. Wkly Epidemiol Rec. 2017;92:241–68.

  • Cantarella G, Liniger M, Zuniga A, Schiller JT, Billeter M, Naim HY, et al. Recombinant measles virus-HPV vaccine candidates for prevention of cervical carcinoma. Vaccine. 2009;27:3386–90.

    Google Scholar 

  • Gupta G, Giannino V, Rishi N, Glueck R. Immunogenicity of next-generation HPV vaccines in non-human primates: Measles-vectored HPV vaccine versus Pichia pastoris recombinant protein vaccine. Vaccine. 2016;34:4724–31.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brandsma JL, Shylankevich M, Su Y, Roberts A, Rose JK, Zelterman D, et al. Vesicular stomatitis virus-based therapeutic vaccination targeted to the E1, E2, E6, and E7 proteins of cottontail rabbit papillomavirus. J Virol. 2007;81:5749–58.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liao JB, Publicover J, Rose JK, DiMaio D. Single-dose, therapeutic vaccination of mice with vesicular stomatitis virus expressing human papillomavirus type 16 E7 protein. Clin Vaccine Immunol. 2008;15:817–24.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Grossardt C, Engeland CE, Bossow S, Halama N, Zaoui K, Leber MF, et al. Granulocyte-macrophage colony-stimulating factor-armed oncolytic measles virus is an effective therapeutic cancer vaccine. Hum Gene Ther. 2013;24:644–54.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Backhaus PS, Veinalde R, Hartmann L, Dunder JE, Jeworowski LM, Albert J, et al. Immunological effects and viral gene expression determine the efficacy of oncolytic measles vaccines encoding IL-12 or IL-15 agonists. Viruses. 2019;11:914.

    CAS 
    PubMed Central 

    Google Scholar 

  • Wang, J, Liu, T, Chen, J. Oncolytic measles virus encoding Inreleukin-12 mediated antitumor activity and immunologic control of colon cancer in vivo and ex vivo. Cancer Biother Radiopharm. 2020. https://doi.org/10.1089/cbr.2019.3084.

  • Stephenson KB, Barra NG, Davies E, Ashkar AA, Lichty BD. Expressing human interleikin-15 from oncolytic vesicular stomatitis virus improves survival in a murine metastatic colon adenocarcinoma model through the enhancement of anti-tumor immunity. Cancer Gene Ther. 2012;19:238–46.

    CAS 
    PubMed 

    Google Scholar 

  • Yamaki M, Shinozaki K, Sakaguchi T, Meseck M, Ebert O, Ohdan H, et al. The potential of recombinant vesicular stomatitis virus-mediated virotherapy against metastatic colon cancer. Int J Mol Med. 2013;31:299–306.

    PubMed 

    Google Scholar 

  • Day GL, Bryan ML, Northrup SA, Lyles DS, Westcott MM, Stewart JH 4th. Immune effects of M51R vesicular stomatitis virus treatment of carcinomatosis from colon cancer. J Surg Res. 2020;245:127–35.

    CAS 
    PubMed 

    Google Scholar 

  • Zhao D, Chen P, Yang H, Wu Y, Zeng X, Zhao Y, et al. Live attenuated measles virus vaccine induces apoptosis and promotes tumor regression in lung cancer. Oncol Rep. 2013;29:199–204.

    CAS 
    PubMed 

    Google Scholar 

  • Boisgerault N, Guillerme JB, Pouliquen D, Mesel-Lemoine M, Achard C, Combredet C, et al. Natural oncolytic activity of live-attenuated measles virus against human lung and colorectal adenocarcinomas. Biomed Res Int. 2013;2013:387362.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Patel MR, Jacobson BA, Belgum H, Raza A, Sadiq A, Drees J, et al. Measles vaccine strains for virotherapy of non-small cell lung carcinoma. J Thorac Oncol. 2014;9:1101–10.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Patel MR, Jacobson BA, Ji Y, Drees J, Tang S, Xiong K. Vesicular stomatitis virus expressing interferon-β is oncolytic and promotes antitumor immune responses in a syngeneic murine model of non-small cell lung cancer. Oncotarget. 2015;6:33165–77.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Patel MR, Dash A, Jacobson BA, Ji Y, Baumann D, Ismail K, et al. JAK/STAT inhibition with ruxolitinib enhances oncolytic virotherapy in non-small cell lung cancer models. Cancer Gene Ther. 2019;26:411–8.

    CAS 
    PubMed 

    Google Scholar 

  • Schreiber L-M, Urbiola C, Das K, Spiesschaert B, Kimpel J, Heinemann F, et al. The lytic activity of VSV.GP treatment dominates the therapeutic effects in a syngeneic model of lung cancer. Br J Cancer. 2019;121:647–58.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pasquinucci G. Possible effect of measles on leukaemia. Lancet. 1971;297:136.

    Google Scholar 

  • Zygiert Z. Hodgkin’s disease: Remissions after measles. Lancet. 1971;297:593.

    Google Scholar 

  • Lühl NC, Zimgibl F, Dorneburg C, Wei J, Dahlhaus M, Barth TFE, et al. Attenuated measles virus controls prediatric acute B-lineage lymphoblastic leukemia in NOD/SCID mice. Haematologica. 2014;99:1050–61.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Maurer S, Salih HR, Smirnow I, Lauer UM, Berchtold S. Suicide gene-armed measles vaccine virus for the treatment of AML. Int J Oncol. 2019;55:347–58.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cesaire R, Oliere S, Sharif-Askari E, Loignon M, Lezin A, Olindo S, et al. Oncolytic activity of vesicular stomatitis virus in primary adult T-cell leukemia. Oncogene. 2006;25:349–58.

    CAS 
    PubMed 

    Google Scholar 

  • Shen W, Patnaik MM, Ruiz A, Russell SJ, Peng K-W. Immunotherapy with vesicular stomatitis virus and PD-L1 blockade enhances therapeutic outcome in murine acute myeloid leukemia. Blood. 2016;127:1449–58.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Samuel S, Tumilasci VF, Oliere S, Nguyen TL-A, Shamy A, Bell J, et al. VSV oncolysis in combination with the BCL-2 inhibitor obatoclax overcomes apoptosis resistance in chronic lymphocytic leukemia. Mol Ther. 2010;18:2094–103.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Grote D, Russell SJ, Cornu TI, Cattaneo R, Vile R, Poland GA, et al. Live attenuated measles virus induces regression of human lymphoma xenografts in immunodeficient mice. Blood. 2001;97:3746–54.

    CAS 
    PubMed 

    Google Scholar 

  • Miest TS, Frenzke M, Cattaneo R. Measles virus entry through the signaling lymphocyte activation molecule governs efficacy of mantle cell lymphoma radiovirotherapy. Mol Ther. 2013;21:2019–31.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Heinzerling L, Künzi V, Oberholzer PA, Kündig T, Naim H, Dummer R. Oncolytic measles virus in cutaneous T-cell lymphomas mounts antitumor immune responses in vivo and targets interferon-resistant tumors. Blood. 2005;106:2287–94.

    CAS 
    PubMed 

    Google Scholar 

  • Hanauer JDS, Rengst B, Kleinlützum D, Reul J, Pfeiffer A, Friedel T, et al. CD30-targeted oncolytic viruses as novel therapeutic approach against classical Hodgkin lymphoma. Oncotarget. 2018;9:12971–81.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Kaufmann JK, Bossow S, Grossardt C, Sawall S, Kupsch J, Erbs P, et al. Chemovirotherapy of malignant melanoma with a targeted and armed oncolytic measles virus. J Invest Dermatol. 2013;133:1034–42.

    CAS 
    PubMed 

    Google Scholar 

  • Allaqui F, Achard C, Panterne C, Combredet C, Labarrière N, Dréno B, et al. Modulation of the type I interferon response defines the sensitivity of human melanoma cells to oncolytic measles virus. Curr Gene Ther. 2017;16:419–28.

    Google Scholar 

  • Ammour Y, Ryabaya O, Shchetinina Y, Prokofeva E, Gavrilova M, Khochenkov D, et al. The susceptibility of human melanoma cells to infection with the Leningrad-16 vaccine strain of measles virus. Viruses. 2020;12:173.

    CAS 
    PubMed Central 

    Google Scholar 

  • Galivo F, Diaz RM, Thompson WJ, Kottke T, Barber G, Melcher A, et al. Single-cycle viral gene expression, rather than progressive replication and oncolysis, is required for VSV therapy of B16 melanoma. Gene Ther. 2010;17:158–70.

    CAS 
    PubMed 

    Google Scholar 

  • Kimpel J, Urbiola C, Koske I, Tober R, Banki Z, Wollmann G. The Oncolytic virus VSV-GP is effective against malignant melanoma. Viruses. 2018;10:108.

    PubMed Central 

    Google Scholar 

  • Pol JG, Zhang L, Bridle BW, Stephenson KB, Resséquier J, Hanson S, et al. Maraba virus as a potent oncolytic vaccine vector. Mol Ther. 2014;22:420–9.

    CAS 
    PubMed 

    Google Scholar 

  • Peng K-W, TenEyck CJ, Galanis E, Kalli KR, Hartmann LC, Russell SJ. Intraperitoneal therapy of ovarian cancer using an engineered measles virus. Cancer Res. 2002;62:4656–62.

    CAS 
    PubMed 

    Google Scholar 

  • Hasegawa K, Nakamura T, Harvey M, Ikeda Y, Oberg A, Figini M, et al. The use of a tropism-modified measles virus in folate receptor-targeted virotherapy of ovarian cancer. Clin Cancer Res. 2006;12:6170–8.

    CAS 
    PubMed 

    Google Scholar 

  • Hasegawa K, Pham L, O’Connor MK, Federspiel MJ, Russel SJ, Peng K-W. Dual therapy of ovarian cancer using measles viruses expressing carcinoembryonic antigen and sodium iodide symporter. Clin Cancer Res. 2006;12:1868–75.

    CAS 
    PubMed 

    Google Scholar 

  • Galanis E, Hartmann LC, Cliby WA, Long HJ, Peethambaram PP, Barrette BA, et al. Phase I trial of intraperitoneal administration of an oncolytic measles virus strain engineered to express carcinoembryonic antigen for recurrent ovarian cancer. Cancer Res. 2010;70:875–82.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lin X, Chen X, Wei Y, Zhao J, Fan L, Wen Y, et al. Efficient inhibition of intraperitoneal human ovarian cancer growth and prolonged survival by gene transfer of vesicular stomatitis virus matrix protein in nude mice. Gynecol Oncol. 2007;104:540–6.

    CAS 
    PubMed 

    Google Scholar 

  • Zhong Q, Wen YJ, Yang HS, Luo H, Fu AF, Yang F, et al. Efficient cisplatin-resistant human ovarian cancer growth and prolonged survival by gene transferred vesicular stomatitis virus matrix protein in nude mice. Ann Oncol. 2008;19:1584–91.

    CAS 
    PubMed 

    Google Scholar 

  • Long J, Yang Y, Kang T, Zhao W, Cheng H, Wu Y, et al. Ovarian cancer therapy by VSVMP gene mediated by a paclitaxel-enhanced nanoparticle. ACS Appl Mater Interfaces. 2017;9:39152–64.

    CAS 
    PubMed 

    Google Scholar 

  • Dold C, Rodriguez Urbiola C, Wollmann G, Egerer L, Muik A, Bellmann L, et al. Application of interferon modulators to overcome partial resistance to ovarian cancers to VSV-GP oncolytic viral therapy. Mol Ther Oncolytics. 2016;3:16021.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Awano M, Fuijyki T, Shoji K, Amagai Y, Murakami Y, Furukawa Y, et al. Measles virus selectively blind to signaling lymphocyte activity molecule has oncolytic efficacy against nectin-4 expressing pancreatic cells. Cancer Sci. 2016;107:1647–52.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • May V, Berchtold S, Berger A, Venturelli S, Burkard M, Leischner C, et al. Chemovirotherapy for pancreatic cancer: Gemcitabine plus oncolytic measles vaccine virus. Oncol Lett. 2019;18:5534–42.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Murphy AM, Besmer DM, Moerdyk-Schauwecker M, Moestl N, Ornelles DA, Mukherjee P. Vesicular stomatitis virus as an oncolytic agent against pancreatic ductal adenocarcinoma. J Virol. 2012;86:3073–87.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hastle E, Besmer DM, Shah NR, Murphy AM, Moredyk-Schauwecker M, Molestina C, et al. Oncolytic vesicular stomatitis virus in an immunocompetent model of MUC1-positive or MUC1-nulll pancreatic ductal adenocarcinoma. J Virol. 2013;87:10283–94.

    Google Scholar 

  • Hastie E, Cataldi M, Moerdyk-Schauwecker MJ, Felt SA, Steuerwald N, Grdzelishvili VZ. Novel biomarkers of resistance of pancreatic cancer cells to oncolytic vesicular stomatitis virus. Oncotarget. 2016;7:61601–18.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Nagalo BM, Breton CA, Zhou Y, Arora M, Bogenberger JM, Barro O, et al. Oncolytic virus with attributes of vesicular stomatitis virus and measles virus in hepatobiliary and pancreatic cancers. Mol Ther Oncolytics. 2020;18:546–55.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Msaouel P, Iankov ID, Allen C, Morris JC, von Messling V, Cattaneo R. Engineered measles virus as a novel oncolytic therapy against prostate cancer. Prostate. 2009;69:82–91.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu C, Hasegawa K, Russell SJ, Sadelain M, Peng K-W. Prostate-specific membrane antigen retargeted measles virotherapy for the treatment of prostate cancer. Prostate. 2009;69:1128–41.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Son HA, Zhang L, Cuong BK, Van Tong H, Cuong LD, Hang NT, et al. Combination of vaccine-strain measles and mumps viruses enhances oncolytic activity against human solid malignancies. Cancer Investig. 2018;7:106–17.

    Google Scholar 

  • Zhao X, Huang S, Luo H, Wan X, Gui Y, Li J, et al. Evaluation of vesicular stomatitis virus mutant as an oncolytic agent against prostate cancer. Int J Clin Exp Med. 2014;7:1204–13.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Urbiola C, Santer FR, Petersson M, van der Pluijm G, Horninger W, Erlmann P. Oncolytic activity of the rhabdovirus VSV-GP against prostate cancer. Int J Cancer. 2018;143:1786–96.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fehl DJ, Ahmed M. Curcumin promotes the oncolytic capacity of vesicular stomatitis virus for the treatment of prostate cancers. Virus Res. 2017;228:14–23.

    CAS 
    PubMed 

    Google Scholar 

  • Source link