Lundstrom K. Viral vectors in gene therapy. Diseases. 2018;6:42.
Google Scholar
Bloom K, van der Berg F, Arbuthnot P. Self-amplifying RNA vaccines for infectious diseases. Gene Ther. 2021;28:117–29.
Google Scholar
Samulski R, Muzycka N. AAV-mediated gene therapy for research and therapeutic purposes. Annu Rev Virol. 2014;1:427–51.
Google Scholar
Vigna E, Naldini L. Lentiviral vectors: Excellent tools for experimental gene transfer and promising candidates for gene therapy. J Gen Med. 2000;2:308–16.
Google Scholar
Strauss JH, Strauss EG. The alphaviruses: Gene expression, replication, and evolution. Microbiol Rev. 1994;58:491–562.
Google Scholar
Frolov I, Hoffman TA, Pragal BM, Dryga SA, Huang H, Schlesinger S, et al. Alphavirus-based expression vectors: Strategies and applications. Proc Natl Acad Sci USA. 1996;93:11371–7.
Google Scholar
Liljestrom P, Garoff H. A new generation of animal cell expression vectors based on the Semliki Forest virus replicon. Biotechnology. 1991;9:1356–61.
Google Scholar
Xiong C, Levis R, Shen P, Schlesinger S, Rice CM, Huang HV. Sindbis virus: An efficient, broad host range vector for gene expression in animal cells. Science. 1989;243:1188–91.
Google Scholar
Davis NL, Willis LV, Smith JF, Johnston RF. In vitro synthesis of infectious Venezuelan equine encephalitis virus RNA from a cDNA clone: Analysis of a viable deletion mutant. Virology. 1989;171:189–204.
Google Scholar
Lundstrom K. Self-amplifying RNA viruses as RNA vaccines. Int J Mol Sci. 2020;21:5130.
Google Scholar
Walpita P, Flick R. Reverse genetics of negative-stranded RNA viruses: A global perspective. FEMS Microbiol Lett. 2005;244:9–18.
Google Scholar
Whelan SPJ, Barr JN, Wetz GW. Transcription and Replication of Negative-Strand RNA Viruses. In: Kawoka Y, editor. Biology of negative stranded RNA viruses: The power of reverse genetics. Berlin, Heidelberg, New York: Springer Verlag; 2004. p. 61–119.
Radecke F, Spielhofer P, Schneider H, Kaelin K, Huber M, Dötsch C, et al. Rescue of measles viruses from cloned DNA. EMBO J. 1995;14:5773–84.
Google Scholar
Mühlebach MD. Vaccine platform recombinant measles virus. Virus Genes. 2017;53:733–40.
Google Scholar
Schneider H, Spielhofer P, Kaelin K, Dötsch C, Radecke F, Sutter G, et al. Rescue of measles virus using a replication-deficient vaccinia-T7 vector. J Virol Methods. 1997;64:57–64.
Google Scholar
Martin A, Staeheli P, Schneider U. RNA polymerase II-controlled expression of antigenomic RNA enhances the rescue efficacies of two different members of the Mononegavirales independently of the site of viral genome replication. J Virol. 2006;80:5708–15.
Google Scholar
Schnell MJ, Buonocore L, Kretzschmar E, Johnson E, Rose JK. Foreign glycoproteins expressed from recombinant vesicular stomatitis viruses are incorporated efficiently into virus particles. Proc Natl Acad Sci USA. 1996;93:11359–65.
Google Scholar
Tani H, Morikawa S, Matsuura Y. Development and applications of VSV vectors based on cell tropism. Front Microbiol. 2012;2:272.
Google Scholar
Hastie E, Grdzelishvili VZ. Vesicular stomatitis virus as a flexible platform for oncolytic virotherapy against cancer. J Gen Virol. 2012;93:2529–45.
Google Scholar
Harty RN, Brown ME, Hayes FP, Wright NT, Schnell MJ. Vaccinia virus-free recovery of vesicular stomatitis virus. J Mol Microbiol Biotechnol. 2001;3:513–7.
Google Scholar
Poli JG, Zhang L, Bridle BW, Stephenson KB, Rességuir J, Hanson S, et al. Maraba virus as a potent oncolytic vaccine vector. Mol Ther. 2014;22:420–9.
Ito N, Takayama-Ito M, Yamada K, Hosokawa J, Sugiyama M, Minamoto N. Improved recovery of rabies virus from cloned cDNA using a vaccinia virus-free reverse genetics system. Microbiol Immunol. 2003;47:613–7.
Google Scholar
Osakada F, Callaway EM. Design and generation of recombinant rabies virus vectors. Nat Protoc. 2013;8:1583–601.
Google Scholar
Ohara S, Inoue K, Yamada M, Yamawaki T, Koganezawa N, Tsuttsui K, et al. Dual transneural tracing in the rat entorhoinal-hippocampal circuit by intracerebral injection of recombinant rabies virus vectors. Front Neuroanat. 2009;3:1–11.
Google Scholar
Kelvin AA. Outbreak of Chikungunya in the Republic of Congo and the global picture. J Infect Dev Ctries. 2011;5:441–4.
Google Scholar
Jansen KA. The 2005-7 Chikungunya epidemic in Reunion: Ambiguous etiologies, memories, and meaning-making. Med Anthropol. 2013;32:174–89.
Google Scholar
Chattopadhyay A, Aquilar PV, Bopp NE, Yarovinsky TO, Weaver SC, Rose JK. A recombinant virus vaccine that protects both against Chikungunya and Zika virus infections. Vaccine. 2018;36:3894–3900.
Google Scholar
Ramsauer K, Tangy F. Chikungunya virus vaccines: Viral vector-based approaches. J Infect Dis. 2016;214:S500–S505.
Google Scholar
Brandler S, Ruffie C, Combredet C, Brault J-B, Najburg V, Prevost M-C, et al. A recombinant measles vaccine expressing chikungunya virus-like particles is strongly immunogenic and protects mice from lethal challenge with chikungunya virus. Vaccine. 2013;31:3718–25.
Google Scholar
Rossi SL, Comer JE, Wang E, Azar SR, Lawrence WS, Plante JA, et al. Immunogenicity and efficacy of a measles virus-vectored chikungunya vaccine in nonhuman primates. J Infect Dis. 2019;220:735–42.
Google Scholar
Ramsauer K, Schwameis M, Firbas C, Mullner M, Putnak RJ, Thomas SJ, et al. Immunogenicity, safety, and tolerability of a recombinant measles virus-based chikungunya vaccine: a randomised, double-blind, placebo controlled, active-comparator, first-in-man trial. Lancet Infect Dis. 2015;15:519–27.
Google Scholar
Reisinger EC, Tschismarov R, Beubler E, Wiedermann U, Firbas C, Loebermann M, et al. Immunogenicity, safety, and tolerability of the measles-vectored chikungunya virus vaccine MV-CHIK: a double-blind, randomised, placebo-controlled and active-controlled phase 2 trial. Lancet. 2019;392:2718–27.
Google Scholar
Nasar F, Matassov D, Seymour RL, Latham T, Gorchakov RV, Novak RM, et al. Recombinant Isfahan virus and vesicular stomatitis virus vaccine vectors provide durable, multivalent, single-dose protection against lethal alphavirus challenges. J Virol. 2017;91:e01729–16.
Google Scholar
Safronetz D, Mire C, Rosenke K, Feldmann F, Haddock E, Geissbert T, et al. A recombinant vesicular stomatitis virus-based Lassa fever vaccine protects guinea pigs and macaques against challenge with geographically and genetically distinct Lassa viruses. PLoS Negl Trop Dis. 2015;9:e0003736.
Google Scholar
Stein DR, Warner BM, Soule G, Tierney K, Frost KL, Booth S, et al. A recombinant vesicular stomatitis-based Lassa fever vaccine elicits rapid and long-term protection from lethal Lassa virus infection in guinea pigs. NPJ Vaccines. 2019;4:8.
Google Scholar
Banadyga L, Stein DR, Qiu X, Safronetz D. Pre-clinical development of a vaccine against Lassa fever. Can Commun Dis Rep. 2018;44:139–47.
Google Scholar
Abreu-Mota T, Hagen KR, Cooper K, Jahrling PB, Tan G, Wirblich C, et al. Non-neutralizing antibodies elicited by recombinant Lassa-Rabies vaccine are critical for protection against Lassa fever. Nat Commun. 2018;9:4223.
Google Scholar
Mateo M, Reynard S, Carnec X, Journeaux A, Baillet N, Schaeffer J, et al. Vaccines inducing immunity to Lassa fever glycoprotein and nucleoprotein protect macaques after a single shot. Sci Transl Med. 2019;11:eaaw3163.
Google Scholar
A Trial to Evaluate the Optimal Dose of MV-LASV. ClinicalTrials.gov NCT04055454. https://clinicaltrials.gov/ct2/show/NCT04055454 (Accessed on August 26, 2021).
Shuai L, Wang X, Wen Z, Ge J, Wang J, Zhao D, et al. Genetically modified rabies virus-vectored Ebola virus disease vaccines are safe and induce efficacious immune responses in mice and dogs. Antivir Res. 2017;146:36–44.
Google Scholar
Marzi A, Robertson SJ, Haddock E, Feldmann F, Hanley PW, Scott D-P, et al. VSV-EBOV rapidly protects macaques against infection with the 2014/2015 Ebola virus outbreak strain. Science. 2015;349:739–42.
Google Scholar
Marzi A, Reynolds P, Mercado-Hernandez R, Callison J, Feldmann F, Rosenke R, et al. Single low-dose VSV-EBOV vaccination protects cynomolgus macaques from lethal Ebola challenge. EBioMedicine. 2019;49:223–31.
Google Scholar
Jones SM, Stroher U, Fernando L, Qiu X, Alimonti J, Melito P, et al. Assessment of a vesicular stomatitis virus-based vaccine by use of the mouse model of Ebola virus hemorrhagic fever. J Infect Dis. 2007;196:S404–412.
Google Scholar
Jones SM, Feldmann H, Stroher U, Geisbert JB, Fernando L, Grolla A, et al. Live attenuated recombinant vaccine protects nonhuman primates against Ebola and Marburg viruses. Nat Med. 2005;11:786–90.
Google Scholar
Henao-Restrepo AM, Longini IM, Egger M, Dean NE, Edmunds WJ, Camacho A, et al. Efficacy and effectiveness of an rVSV-vectored vaccine expressing Ebola surface glycoprotein: Interim results from the Guinea ring vaccination cluster-randomised trial. Lancet. 2015;386:857–66.
Google Scholar
Henao-Restrepo AM, Camacho A, Longini IM, Watson CH, Edmunds WJ, Egger M, et al. Efficacy and effectiveness of an rVSV-vectored vaccine in preventing Ebola virus disease: Final results from the Guinea ring vaccination, open-label, cluster-randomised trial (Ebola Ca Suffit!). Lancet. 2017;389:505–18.
Google Scholar
Maxmen, A. Ebola vaccine approved for use in ongoing outbreak. Nature. 2017. https://doi.org/10.1038/nature.2017.22024.
Hu HM, Chen HW, Hsiao Y, Wu SH, Chung HH, Hsieh CH, et al. The successful induction of T-cell and antibody responses by a recombinant measles virus-vectored tetravalent dengue vaccine provides partial protection against dengue-2 infection. Hum Vaccine Immunother. 2016;12:1678–89.
Lauretti F, Chattopadhyay A, de Oliveira França RF, Castro-Jorge L, Rose J, da Fonseca BAL. Recombinant vesicular stomatitis virus-based dengue-2 vaccine candidate induces humoral response and protects mice against lethal infection. Hum Vaccine Immunother. 2016;12:2327–33.
Jin H, Jiao C, Cao Z, Huang P, Chi H45, Bai Y, et al. An inactivated recombinant rabies virus displaying the Zika virus prM-E induces protective immunity against both pathogens. PLoS Negl Trop Dis. 2021;15:e0009484.
Google Scholar
Kurup D, Wirblich, C, Schnell, MJ. Measles-based Zika vaccine induces long-term immunity and requires NS1 antibodies to protect the female reproductive tract in the mouse model of Zika. Preprint at bioRxiv 2020. https://doi.org/10.1101/2020.09.17.301622.
Zika-Vaccine Dose Finding Study Regarding Safety, Immunogenicity and Tolerability (V186-001). ClinicalTrials.gov NCT02996890. https://cliniclatriasl.gov/ct2/show/NCT02996890 (Accessed on August 31, 2021).
Safety and Immunogenicity of a Novel Vaccine Formulation MV-ZIKA-RSP (V187-001) (MV-ZIKA-RSP) NCT04033068. https://clinicaltrials.gov/ct2/show/NCT04033068 (Accessed on August 31, 2021).
Del Valle JR, Devaux P, Hodge G, Wegner NJ, McChesney MB, Cattaneo R. A vectored measles virus induces hepatitis B surface antigen antibodies while protecting macaques against virus challenge. J Virol. 2007;81:10597–605.
Google Scholar
Cobleigh MA, Buonocore L, Uprichard SL, Rose JK, Robek MD. A vesicular stomatitis virus-based hepatitis B virus vaccine vector provides protection against challenge in a single dose. J Virol. 2010;84:7513–22.
Google Scholar
Lorin C, Mollet L, Delebecque F, Combredet C, Hurtrel B, Charneau P, et al. A single injection of recombinant measles virus vaccine expressing human immunodeficiency virus (HIV) type 1 clade B envelope glycoproteins induces neutralizing antibodies and cellular immune responses to HIV. J Virol. 2004;78:146–57.
Google Scholar
Liniger M, Zuniga A, Azzouz Morin TN, Combardiere B, Marty R, Wiegand M, et al. Recombinant measles viruses expressing single or multiple antigens of human immunodeficiency virus (HIV-1) induce cellular and humoral immune responses. Vaccine. 2009;27:3299–305.
Google Scholar
Clarke DK, Cooper D, Egan MA, Hendry RM, Parks CL, Udem SA. Recombinant vesicular stomatitis virus as an HIV vaccine vector. Springer Semin Immunopathol. 2006;28:239–53.
Google Scholar
Rose NF, Marx PA, Luckay A, Nixon DF, Moretto WJ, Donahoe SM, et al. An effective AIDS vaccine based on live attenuated vesicular stomatitis virus recombinants. Cell. 2001;106:539.
Google Scholar
Mangion M, Gélinas J-F, Zadeh Gashti AB, Azizi H, Kiesslich S, Nassoury N, et al. Evaluation of novel HIV vaccine candidates using recombinant vesicular stomatitis virus vector produced in serum-free Vero cell cultures. Vaccine. 2020;38:7949–55.
Google Scholar
Schnell MJ, Foley HD, Siler CA, McGettigan JP, Dietzschold B, Pomerantz RJ. Recombinant rabies virus as potential live-viral vaccines for HIV-1. Proc Natl Acad Sci USA. 2000;97:3544–9.
Google Scholar
Fujiyuki T, Horie R, Yoneda M, Kuraishi T, Yasui F, Kwon H-J, et al. Efficacy of recombinant measles virus expressing highly pathogenic avian influenza virus (HPAIV) antigen against HPAIV infection in monkeys. Sci Rep. 2017;7:12017.
Google Scholar
Ito T, Kumagai T, Yamaji Y, Sawada A, Nakayama T. Recombinant Measles AIK-C vaccine strain expressing influenza HA protein. Vaccines. 2020;8:149.
Google Scholar
Kalhoro NH, Veits J, Rautenschlein S, Zimmer G. A recombinant vesicular stomatitis virus replicon vaccine protects chickens from highly pathogenic avian influenza virus (H7N1). Vaccine. 2009;27:1174–83.
Google Scholar
Barefoot BE, Athearn B, Sample CJ, Ramsburg EA. Intramuscular immunization with a vesicular stomatitis virus recombinant expressing the influenza hemagglutinin provides post-exposure protection against lethal influenza challenge. Vaccine. 2009;28:79–89.
Google Scholar
Ryder AB, Buonocore L, Vogel L, Nachbagauer R, Krammer F, Rose JK. A viable recombinant rhabdovirus lacking its glycoprotein gene and expressing influenza virus hemagglutinin and neuraminidase is a potent influenza vaccine. J Virol. 2015;89:2820–30.
Google Scholar
Furuyama W, Reynolds P, Haddock E, Meade-White K, Le MQ, Kawaoka Y, et al. a single dose of a vesicular stomatitis virus-based influenza vaccine confers rapid protection against H5 viruses from different clades. NPJ Vaccines. 2020;5:4.
Google Scholar
Sadoff J, Le Gars M, Shukarev G, Heerwegh, Truyers DC, de Groot AM, et al. Interim Results of a Phase 1-2a Trial of Ad26.COV2.S Covid-19 Vaccine. N Engl J Med. 2021;384:1824–35.
Google Scholar
Voysey M, Sue Costa Clemens SA, Madhi SA, Weckx LY, Folegatti PM, Aley PK, et al. Safety and efficacy of the AdChOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised trials in Brazil, South Africa and the UK. Lancet. 2021;397:99–111.
Google Scholar
Regulatory Approval of COVID-19 Vaccine AstraZeneca—GOV.UK. www.gov.uk (Accessed on September 2, 2021).
Ad26.COV2-S FDA Approval Status. drugs.com/history/ad26-cov2-s.html (Accessed on September 2, 2021).
Lundstrom K, Barh D, Uhal BD, Takayama K, Aljabali AAA, Mohamed Abd El-Aziz T, et al. COVID-19 vaccines and thrombosis—roadblock of dead-end street? Biomolecules. 2021;11:1020.
Google Scholar
Liniger M, Zuniga A, Tamin A, Azzouz-Morin TN, Knuchel M, Marty RR, et al. Induction of neutralising antibodies and cellular immune responses against SARS coronavirus by recombinant measles virus. Vaccine. 2008;26:2164–74.
Google Scholar
Escriou N, Callendret B, Lorin V, Combredet C, Marianneau P, Février M, et al. Protection from SARS coronavirus conferred by live measles vaccine expressing spike glycoprotein. Virology. 2014;452-3:32–41.
Kapadia SU, Rose JK, Lamirande E, Vogel L, Subbarao K, Roberts A. Long-term protection from SARS coronavirus infection conferred by a single immunization with an attenuated VSV-based vaccine. Virology. 2005;340:174–82.
Google Scholar
Kapadia SU, Simon ID, Rose JK. SARS vaccine based on a replication-defective recombinant vesicular stomatitis virus is more potent than one based on a replication-competent vector. Virology. 2008;376:165–72.
Google Scholar
Malczyk AH, Kupke A, Prüfer S, Scheuplein VA, Hutzler S, Kreuz D, et al. A highly immunigenic and protective middle east respiratory syndrome coronavirus vaccine based on a recombinant measles virus vaccine platform. J Virol. 2015;89:11654–67.
Google Scholar
Bodmer BS, Fiedler AH, Hanauer JRH, Prüfer S, Mühlebach MD. Live-attenuated bivalent measles virus-derived vaccines targeting Middle East respiratory syndrome coronavirus induce robust and multifunctional T cell responses against both viruses in an appropriate moues model. Virology. 2018;521:99–107.
Google Scholar
Liu R, Wang J, Shao Y, Wang X, Zhang H, Shuai L, et al. A recombinant VSV-vectored MERS-CoV vaccine induces neutralizing antibody and T cell responses in rhesus monkeys after single dose immunization. Antivir Res. 2018;150:30–38.
Google Scholar
Wirblich C, Coleman CM, Kuryp D, Abraham TS, Bernbaum JG, Jahrling PB, et al. One.Health: a safe, efficient, dual-use vaccine for humans and animals against middle east respiratory syndrome coronavirus and rabies virus. J Virol. 2017;91:e02040–16.
Google Scholar
Hörner C, Schürmann C, Auste A, Ebenig A, Muraleedharan S, Dinnon KH 3rd, et al. A highly immunogenic and effective measles virus-based Th1-biased COVID-19 Vaccine. Proc Natl Acad Sci USA. 2020;117:32657–66.
Google Scholar
Clinical Trial to Evaluate the Safety and Immunogenicity of the COVID-19 Vaccine (COVID-19-101). https://clinicaltrials.gov/ct2/show/NCT04497298 (Accessed on September 2, 2021).
Merck Discontinues Development of SARS-CoV-2/COVID-19 Vaccine Candidates; Continues Development of Two Investigational Therapeutic Candidates. www.merck.com/news/merck-discontinues-development-of-sars-cov-2-covid-19-vaccine-candidates-continues-development-of-two-investigational-therapeutic-candidates/ (Accessed on September 2, 2021).
Kuryp D, Wirblich C, Ramage H, Schnell MJ. Rabies virus-based COVID-19 vaccine CORAVAX™ induces high levels of neutralizing antibodies against SARS-CoV-2. NPJ Vaccines. 2020;5:98.
Brett JB, Rothlauf PW, Chen RE, Kafai NM, Fox JM, Smith BK, et al. Replication-competent vesicular stomatitis virus vaccine vector protects against SARS-CoV-2-mediated pathogenesis in mice. Cell Host Microbe. 2020;28:465–74.
Case JB, Rothlauf PW, Chen RE, Kafai NM, Fox JM, Smith BK, et al. Replication-competent vesicular stomatitis virus vaccine vector protects against SARS-CoV-2-mediated pathogenesis in Mice. Cell Host Microbe. 2020;28:465–474e4.
Google Scholar
Lu M, Zhang Y, Dravid P, Li A, Zeng C, Mahesh KC, et al. A methyltransferase-defective VSV-based SARS-CoV-2 vaccine candidate provides complete protection against SARS-CoV-2 infection in hamsters. J Virol. 2021. https://doi.org/10.1128/JVI.00592-21.
Dose Ranging Trial to Assess Safety and Immunogenicity of V590 (COVID-19 Vaccine) in Healthy Adults (V590-001). ClinicalTrials.gov NCT04569786. https;//clinicaltrials.gov/ct2/show/NCT04569786 (Accessed on September 2, 2021).
Merck and IAVI Discontinue Development of COVID-19 Vaccine Candidate V590. www.iavi.org/newsresources/press-releases/2021/merck-and-iavi-discontinue-development-of-covid-19-vaccine-candidate-v590 (Accessed on September 2, 2021).
Evaluate the Safety, Immunogenicity, and Potential Efficacy of an rVSV-SARS-CoV-2-S Vaccine. https://clinicaltrials.gov/ct2/show/NCT04608305 (Accessed on September 2, 2021).
Phase 2b Dose-confirmatory Trial to Evaluate the Safety, Immunogenicity and Potential Efficacy of an VSV-ΔG SARS-CoV-2 Vaccine (BRILIFE001) https://clinicaltrials.gov/ct2/show/NCT04990466 (Accessed on September 2, 2021).
Fukuhara H, Ino Y, Todo T. Oncolytic virus therapy: A new era of cancer treatment at dawn. Cancer Sci. 2016;107:1373–9.
Google Scholar
Aref S, Bailey K, Fielding A. Measles to the rescue: A review of oncolytic measles virus. Viruses. 2016;8:294.
Google Scholar
Ebert O, Shinozaki K, Huang T-G, Savontaus MJ, Garcia-Sastre A, Woo SLC. Oncolytic vesicular stomatitis virus for treatment of orthotopic hepatocellular carcinoma in immune-competent rats. Cancer Res. 2003;63:3605–11.
Google Scholar
Balachandran S, Barber GN. Vesicular stomatitis virus (VSV) therapy of tumors. IUBMB Life. 2000;50:135–8.
Google Scholar
Ozduman K, Wollmann G, Piepmeier JM, van den Pol AN. Systemic vesicular stomatitis virus selectively destroys multifocal glioma and metastatic carcinoma in brain. J Neurosci. 2008;28:1882–93.
Google Scholar
Wollmann G, Rogulin V, Simon I, Rose JK, van den Pol AN. Some attenuated variants of vesicular stomatitis virus show enhanced oncolytic activity against human glioblastoma cells relative to normal brain cells. J Virol. 2010;84:15163–1573.
Zhang X, Mao G, van den Pol AN. Chikungunya-vesicular stomatitis chimeric virus targets and eliminates brain tumors. Virology. 2018;522:244–59.
Google Scholar
Jiang B, Huang D, He W, Guo W, Yin X, Forsyth P, et al. Inhibition of glioma using a novel non-neurotoxic vesicular stomatitis virus. Neurosurg Focus. 2021;50:E9.
Google Scholar
Allen C, Paraskevakou G, Liu C, Iankov ID, Msaouel P, Zollman P, et al. Oncolytic measles virus strains in the treatment of gliomas. Expert Opin Biol Ther. 2008;8:213–20.
Google Scholar
Lal S, Carrera D, Phillips JJ, Weiss WA, Raffel C. An oncolytic measles virus-sensitive Group 3 medulloblastoma model in immune-competent mice. Neuro Oncol. 2018;20:1606–15.
Google Scholar
Studebaker AW, Kreofsky CR, Pierson CR, Russell SJ, Glanis E, Raffel C. Treatment of medulloblastoma with a modified measles virus. Neuro Oncol. 2010;12:1034–42.
Google Scholar
Allen C, Opyrchal M, Aderca I, Schroeder MA, Sarkaria JN, Domingo E, et al. Oncolytic measles virus strains have a significant antitumor activity against glioma stem cells. Gene Ther. 2013;2:444–9.
Msaouel P, Dispenzieri A, Galanis E. Clinical testing of engineered oncolytic measles virus strains in the treatment of cancer: An overview. Curr Opin Mol Ther. 2009;11:43–53.
Google Scholar
Viral Therapy in Treating Patients with Recurrent Glioblastoma Multiforme. www.clinicaltrials.govNCT00390299 (Accessed on September 7, 2021).
Ebert O, Harbaran S, Shinozaki K, Woo SLC. Systemic therapy of experimental breast cancer metastases by mutant vesicular stomatitis virus in immune-competent mice. Cancer Gene Ther. 2005;12:350–8.
Google Scholar
Levelle S, Samuel S, Goulet M-L, Hiscott J. Enhancing VSV oncolytic activity with an improved cytosine deaminase suicide gene strategy. Cancer Gene Ther. 2011;18:435–43.
Sugiyama T, Yoneda M, Kuraishi T, Hattori S, Inoue Y, Sato H, et al. Measles virus selectively blind to signaling lymphocyte activation molecule as a novel oncolytic virus for breast cancer treatment. Gene Ther. 2013;20:338–47.
Google Scholar
Abdullah SA, Al-Shammari AM, Lateef SA. Attenuated measles vaccine strain have potent oncolytic activity against Iraqi patient derived breast cancer cell line. Saudi J Biol Sci. 2020;27:865–72.
Google Scholar
Yang B, Shi J, Sun Z, Zhu D, Xu X. Attenuated measles virus overcomes radio- and chemoresistance in human breast cancer cells by inhibiting the non-homologous end joining pathway. Oncol Rep. 2020;44:2253–64.
Google Scholar
World Health Organization Human papillomavirus vaccines: WHO position paper, May 2017. Wkly Epidemiol Rec. 2017;92:241–68.
Cantarella G, Liniger M, Zuniga A, Schiller JT, Billeter M, Naim HY, et al. Recombinant measles virus-HPV vaccine candidates for prevention of cervical carcinoma. Vaccine. 2009;27:3386–90.
Gupta G, Giannino V, Rishi N, Glueck R. Immunogenicity of next-generation HPV vaccines in non-human primates: Measles-vectored HPV vaccine versus Pichia pastoris recombinant protein vaccine. Vaccine. 2016;34:4724–31.
Google Scholar
Brandsma JL, Shylankevich M, Su Y, Roberts A, Rose JK, Zelterman D, et al. Vesicular stomatitis virus-based therapeutic vaccination targeted to the E1, E2, E6, and E7 proteins of cottontail rabbit papillomavirus. J Virol. 2007;81:5749–58.
Google Scholar
Liao JB, Publicover J, Rose JK, DiMaio D. Single-dose, therapeutic vaccination of mice with vesicular stomatitis virus expressing human papillomavirus type 16 E7 protein. Clin Vaccine Immunol. 2008;15:817–24.
Google Scholar
Grossardt C, Engeland CE, Bossow S, Halama N, Zaoui K, Leber MF, et al. Granulocyte-macrophage colony-stimulating factor-armed oncolytic measles virus is an effective therapeutic cancer vaccine. Hum Gene Ther. 2013;24:644–54.
Google Scholar
Backhaus PS, Veinalde R, Hartmann L, Dunder JE, Jeworowski LM, Albert J, et al. Immunological effects and viral gene expression determine the efficacy of oncolytic measles vaccines encoding IL-12 or IL-15 agonists. Viruses. 2019;11:914.
Google Scholar
Wang, J, Liu, T, Chen, J. Oncolytic measles virus encoding Inreleukin-12 mediated antitumor activity and immunologic control of colon cancer in vivo and ex vivo. Cancer Biother Radiopharm. 2020. https://doi.org/10.1089/cbr.2019.3084.
Stephenson KB, Barra NG, Davies E, Ashkar AA, Lichty BD. Expressing human interleikin-15 from oncolytic vesicular stomatitis virus improves survival in a murine metastatic colon adenocarcinoma model through the enhancement of anti-tumor immunity. Cancer Gene Ther. 2012;19:238–46.
Google Scholar
Yamaki M, Shinozaki K, Sakaguchi T, Meseck M, Ebert O, Ohdan H, et al. The potential of recombinant vesicular stomatitis virus-mediated virotherapy against metastatic colon cancer. Int J Mol Med. 2013;31:299–306.
Google Scholar
Day GL, Bryan ML, Northrup SA, Lyles DS, Westcott MM, Stewart JH 4th. Immune effects of M51R vesicular stomatitis virus treatment of carcinomatosis from colon cancer. J Surg Res. 2020;245:127–35.
Google Scholar
Zhao D, Chen P, Yang H, Wu Y, Zeng X, Zhao Y, et al. Live attenuated measles virus vaccine induces apoptosis and promotes tumor regression in lung cancer. Oncol Rep. 2013;29:199–204.
Google Scholar
Boisgerault N, Guillerme JB, Pouliquen D, Mesel-Lemoine M, Achard C, Combredet C, et al. Natural oncolytic activity of live-attenuated measles virus against human lung and colorectal adenocarcinomas. Biomed Res Int. 2013;2013:387362.
Google Scholar
Patel MR, Jacobson BA, Belgum H, Raza A, Sadiq A, Drees J, et al. Measles vaccine strains for virotherapy of non-small cell lung carcinoma. J Thorac Oncol. 2014;9:1101–10.
Google Scholar
Patel MR, Jacobson BA, Ji Y, Drees J, Tang S, Xiong K. Vesicular stomatitis virus expressing interferon-β is oncolytic and promotes antitumor immune responses in a syngeneic murine model of non-small cell lung cancer. Oncotarget. 2015;6:33165–77.
Google Scholar
Patel MR, Dash A, Jacobson BA, Ji Y, Baumann D, Ismail K, et al. JAK/STAT inhibition with ruxolitinib enhances oncolytic virotherapy in non-small cell lung cancer models. Cancer Gene Ther. 2019;26:411–8.
Google Scholar
Schreiber L-M, Urbiola C, Das K, Spiesschaert B, Kimpel J, Heinemann F, et al. The lytic activity of VSV.GP treatment dominates the therapeutic effects in a syngeneic model of lung cancer. Br J Cancer. 2019;121:647–58.
Google Scholar
Pasquinucci G. Possible effect of measles on leukaemia. Lancet. 1971;297:136.
Zygiert Z. Hodgkin’s disease: Remissions after measles. Lancet. 1971;297:593.
Lühl NC, Zimgibl F, Dorneburg C, Wei J, Dahlhaus M, Barth TFE, et al. Attenuated measles virus controls prediatric acute B-lineage lymphoblastic leukemia in NOD/SCID mice. Haematologica. 2014;99:1050–61.
Google Scholar
Maurer S, Salih HR, Smirnow I, Lauer UM, Berchtold S. Suicide gene-armed measles vaccine virus for the treatment of AML. Int J Oncol. 2019;55:347–58.
Google Scholar
Cesaire R, Oliere S, Sharif-Askari E, Loignon M, Lezin A, Olindo S, et al. Oncolytic activity of vesicular stomatitis virus in primary adult T-cell leukemia. Oncogene. 2006;25:349–58.
Google Scholar
Shen W, Patnaik MM, Ruiz A, Russell SJ, Peng K-W. Immunotherapy with vesicular stomatitis virus and PD-L1 blockade enhances therapeutic outcome in murine acute myeloid leukemia. Blood. 2016;127:1449–58.
Google Scholar
Samuel S, Tumilasci VF, Oliere S, Nguyen TL-A, Shamy A, Bell J, et al. VSV oncolysis in combination with the BCL-2 inhibitor obatoclax overcomes apoptosis resistance in chronic lymphocytic leukemia. Mol Ther. 2010;18:2094–103.
Google Scholar
Grote D, Russell SJ, Cornu TI, Cattaneo R, Vile R, Poland GA, et al. Live attenuated measles virus induces regression of human lymphoma xenografts in immunodeficient mice. Blood. 2001;97:3746–54.
Google Scholar
Miest TS, Frenzke M, Cattaneo R. Measles virus entry through the signaling lymphocyte activation molecule governs efficacy of mantle cell lymphoma radiovirotherapy. Mol Ther. 2013;21:2019–31.
Google Scholar
Heinzerling L, Künzi V, Oberholzer PA, Kündig T, Naim H, Dummer R. Oncolytic measles virus in cutaneous T-cell lymphomas mounts antitumor immune responses in vivo and targets interferon-resistant tumors. Blood. 2005;106:2287–94.
Google Scholar
Hanauer JDS, Rengst B, Kleinlützum D, Reul J, Pfeiffer A, Friedel T, et al. CD30-targeted oncolytic viruses as novel therapeutic approach against classical Hodgkin lymphoma. Oncotarget. 2018;9:12971–81.
Google Scholar
Kaufmann JK, Bossow S, Grossardt C, Sawall S, Kupsch J, Erbs P, et al. Chemovirotherapy of malignant melanoma with a targeted and armed oncolytic measles virus. J Invest Dermatol. 2013;133:1034–42.
Google Scholar
Allaqui F, Achard C, Panterne C, Combredet C, Labarrière N, Dréno B, et al. Modulation of the type I interferon response defines the sensitivity of human melanoma cells to oncolytic measles virus. Curr Gene Ther. 2017;16:419–28.
Ammour Y, Ryabaya O, Shchetinina Y, Prokofeva E, Gavrilova M, Khochenkov D, et al. The susceptibility of human melanoma cells to infection with the Leningrad-16 vaccine strain of measles virus. Viruses. 2020;12:173.
Google Scholar
Galivo F, Diaz RM, Thompson WJ, Kottke T, Barber G, Melcher A, et al. Single-cycle viral gene expression, rather than progressive replication and oncolysis, is required for VSV therapy of B16 melanoma. Gene Ther. 2010;17:158–70.
Google Scholar
Kimpel J, Urbiola C, Koske I, Tober R, Banki Z, Wollmann G. The Oncolytic virus VSV-GP is effective against malignant melanoma. Viruses. 2018;10:108.
Google Scholar
Pol JG, Zhang L, Bridle BW, Stephenson KB, Resséquier J, Hanson S, et al. Maraba virus as a potent oncolytic vaccine vector. Mol Ther. 2014;22:420–9.
Google Scholar
Peng K-W, TenEyck CJ, Galanis E, Kalli KR, Hartmann LC, Russell SJ. Intraperitoneal therapy of ovarian cancer using an engineered measles virus. Cancer Res. 2002;62:4656–62.
Google Scholar
Hasegawa K, Nakamura T, Harvey M, Ikeda Y, Oberg A, Figini M, et al. The use of a tropism-modified measles virus in folate receptor-targeted virotherapy of ovarian cancer. Clin Cancer Res. 2006;12:6170–8.
Google Scholar
Hasegawa K, Pham L, O’Connor MK, Federspiel MJ, Russel SJ, Peng K-W. Dual therapy of ovarian cancer using measles viruses expressing carcinoembryonic antigen and sodium iodide symporter. Clin Cancer Res. 2006;12:1868–75.
Google Scholar
Galanis E, Hartmann LC, Cliby WA, Long HJ, Peethambaram PP, Barrette BA, et al. Phase I trial of intraperitoneal administration of an oncolytic measles virus strain engineered to express carcinoembryonic antigen for recurrent ovarian cancer. Cancer Res. 2010;70:875–82.
Google Scholar
Lin X, Chen X, Wei Y, Zhao J, Fan L, Wen Y, et al. Efficient inhibition of intraperitoneal human ovarian cancer growth and prolonged survival by gene transfer of vesicular stomatitis virus matrix protein in nude mice. Gynecol Oncol. 2007;104:540–6.
Google Scholar
Zhong Q, Wen YJ, Yang HS, Luo H, Fu AF, Yang F, et al. Efficient cisplatin-resistant human ovarian cancer growth and prolonged survival by gene transferred vesicular stomatitis virus matrix protein in nude mice. Ann Oncol. 2008;19:1584–91.
Google Scholar
Long J, Yang Y, Kang T, Zhao W, Cheng H, Wu Y, et al. Ovarian cancer therapy by VSVMP gene mediated by a paclitaxel-enhanced nanoparticle. ACS Appl Mater Interfaces. 2017;9:39152–64.
Google Scholar
Dold C, Rodriguez Urbiola C, Wollmann G, Egerer L, Muik A, Bellmann L, et al. Application of interferon modulators to overcome partial resistance to ovarian cancers to VSV-GP oncolytic viral therapy. Mol Ther Oncolytics. 2016;3:16021.
Google Scholar
Awano M, Fuijyki T, Shoji K, Amagai Y, Murakami Y, Furukawa Y, et al. Measles virus selectively blind to signaling lymphocyte activity molecule has oncolytic efficacy against nectin-4 expressing pancreatic cells. Cancer Sci. 2016;107:1647–52.
Google Scholar
May V, Berchtold S, Berger A, Venturelli S, Burkard M, Leischner C, et al. Chemovirotherapy for pancreatic cancer: Gemcitabine plus oncolytic measles vaccine virus. Oncol Lett. 2019;18:5534–42.
Google Scholar
Murphy AM, Besmer DM, Moerdyk-Schauwecker M, Moestl N, Ornelles DA, Mukherjee P. Vesicular stomatitis virus as an oncolytic agent against pancreatic ductal adenocarcinoma. J Virol. 2012;86:3073–87.
Google Scholar
Hastle E, Besmer DM, Shah NR, Murphy AM, Moredyk-Schauwecker M, Molestina C, et al. Oncolytic vesicular stomatitis virus in an immunocompetent model of MUC1-positive or MUC1-nulll pancreatic ductal adenocarcinoma. J Virol. 2013;87:10283–94.
Hastie E, Cataldi M, Moerdyk-Schauwecker MJ, Felt SA, Steuerwald N, Grdzelishvili VZ. Novel biomarkers of resistance of pancreatic cancer cells to oncolytic vesicular stomatitis virus. Oncotarget. 2016;7:61601–18.
Google Scholar
Nagalo BM, Breton CA, Zhou Y, Arora M, Bogenberger JM, Barro O, et al. Oncolytic virus with attributes of vesicular stomatitis virus and measles virus in hepatobiliary and pancreatic cancers. Mol Ther Oncolytics. 2020;18:546–55.
Google Scholar
Msaouel P, Iankov ID, Allen C, Morris JC, von Messling V, Cattaneo R. Engineered measles virus as a novel oncolytic therapy against prostate cancer. Prostate. 2009;69:82–91.
Google Scholar
Liu C, Hasegawa K, Russell SJ, Sadelain M, Peng K-W. Prostate-specific membrane antigen retargeted measles virotherapy for the treatment of prostate cancer. Prostate. 2009;69:1128–41.
Google Scholar
Son HA, Zhang L, Cuong BK, Van Tong H, Cuong LD, Hang NT, et al. Combination of vaccine-strain measles and mumps viruses enhances oncolytic activity against human solid malignancies. Cancer Investig. 2018;7:106–17.
Zhao X, Huang S, Luo H, Wan X, Gui Y, Li J, et al. Evaluation of vesicular stomatitis virus mutant as an oncolytic agent against prostate cancer. Int J Clin Exp Med. 2014;7:1204–13.
Google Scholar
Urbiola C, Santer FR, Petersson M, van der Pluijm G, Horninger W, Erlmann P. Oncolytic activity of the rhabdovirus VSV-GP against prostate cancer. Int J Cancer. 2018;143:1786–96.
Google Scholar
Fehl DJ, Ahmed M. Curcumin promotes the oncolytic capacity of vesicular stomatitis virus for the treatment of prostate cancers. Virus Res. 2017;228:14–23.
Google Scholar

