Preloader

Safety and tolerability of AAV8 delivery of a broadly neutralizing antibody in adults living with HIV: a phase 1, dose-escalation trial

  • Fuchs, S. P. & Desrosiers, R. C. Promise and problems associated with the use of recombinant AAV for the delivery of anti-HIV antibodies. Mol. Ther. Methods Clin. Dev. 3, 16068 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Rerks-Ngarm, S. et al. Vaccination with ALVAC and AIDSVAX to prevent HIV-1 infection in Thailand. N. Engl. J. Med. 361, 2209–2220 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • Gift, S. K., Leaman, D. P., Zhang, L., Kim, A. S. & Zwick, M. B. Functional stability of HIV-1 envelope trimer affects accessibility to broadly neutralizing antibodies at its apex. J. Virol. 91, e01216–17 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Torrents de la Pena, A. et al. Improving the immunogenicity of native-like HIV-1 envelope trimers by hyperstabilization. Cell Rep. 20, 1805–1817 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Klein, J. S. & Bjorkman, P. J. Few and far between: how HIV may be evading antibody avidity. PLoS Pathog. 6, e1000908 (2010).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Schiller, J. & Chackerian, B. Why HIV virions have low numbers of envelope spikes: implications for vaccine development. PLoS Pathog. 10, e1004254 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Burton, D. R. & Mascola, J. R. Antibody responses to envelope glycoproteins in HIV-1 infection. Nat. Immunol. 16, 571–576 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pancera, M. et al. Structural basis for diverse N-glycan recognition by HIV-1-neutralizing V1–V2-directed antibody PG16. Nat. Struct. Mol. Biol. 20, 804–813 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wei, X. et al. Antibody neutralization and escape by HIV-1. Nature 422, 307–312 (2003).

    CAS 
    PubMed 

    Google Scholar 

  • Hartley, O., Klasse, P. J., Sattentau, Q. J. & Moore, J. P. V3: HIV’s switch-hitter. AIDS Res Hum. Retroviruses 21, 171–189 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • Bonsignori, M. et al. Antibody-virus co-evolution in HIV infection: paths for HIV vaccine development. Immunol. Rev. 275, 145–160 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Korber, B. et al. Evolutionary and immunological implications of contemporary HIV-1 variation. Br. Med. Bull. 58, 19–42 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • Huang, J. et al. Identification of a CD4-binding-site antibody to HIV that evolved near-pan neutralization breadth. Immunity 45, 1108–1121 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Huang, J. et al. Broad and potent neutralization of HIV-1 by a gp41-specific human antibody. Nature 491, 406–412 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mouquet, H. et al. Complex-type N-glycan recognition by potent broadly neutralizing HIV antibodies. Proc. Natl Acad. Sci. USA 109, E3268–3277 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sok, D. et al. Recombinant HIV envelope trimer selects for quaternary-dependent antibodies targeting the trimer apex. Proc. Natl Acad. Sci. USA 111, 17624–17629 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wu, X. HIV broadly neutralizing antibodies: VRC01 and beyond. Adv. Exp. Med. Biol. 1075, 53–72 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Liu, J. et al. Antibody-mediated protection against SHIV challenge includes systemic clearance of distal virus. Science 353, 1045–1049 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mascola, J. R. et al. Protection of macaques against pathogenic simian/human immunodeficiency virus 89.6PD by passive transfer of neutralizing antibodies. J. Virol. 73, 4009–4018 (1999).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rudicell, R. S. et al. Enhanced potency of a broadly neutralizing HIV-1 antibody in vitro improves protection against lentiviral infection in vivo. J. Virol. 88, 12669–12682 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Saunders, K. O. et al. Sustained delivery of a broadly neutralizing antibody in nonhuman primates confers long-term protection against simian/human immunodeficiency virus infection. J. Virol. 89, 5895–5903 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Caskey, M. et al. Viraemia suppressed in HIV-1-infected humans by broadly neutralizing antibody 3BNC117. Nature 522, 487–491 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lynch, R. M. et al. Virologic effects of broadly neutralizing antibody VRC01 administration during chronic HIV-1 infection. Sci. Transl. Med. 7, 319ra206 (2015).

    PubMed 

    Google Scholar 

  • Mendoza, P. et al. Combination therapy with anti-HIV-1 antibodies maintains viral suppression. Nature 561, 479–484 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Burton, D. R. & Hangartner, L. Broadly neutralizing antibodies to HIV and their role in vaccine design. Annu Rev. Immunol. 34, 635–659 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kwong, P. D., Mascola, J. R. & Nabel, G. J. Rational design of vaccines to elicit broadly neutralizing antibodies to HIV-1. Cold Spring Harb. Perspect. Med. 1, a007278 (2011).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Balazs, A. B. et al. Antibody-based protection against HIV infection by vectored immunoprophylaxis. Nature 481, 81–84 (2011).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Johnson, P. R. et al. Vector-mediated gene transfer engenders long-lived neutralizing activity and protection against SIV infection in monkeys. Nat. Med. 15, 901–906 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sharon, D. & Kamen, A. Advancements in the design and scalable production of viral gene transfer vectors. Biotechnol. Bioeng. 115, 25–40 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Daya, S. & Berns, K. I. Gene therapy using adeno-associated virus vectors. Clin. Microbiol. Rev. 21, 583–593 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Duan, D. et al. Circular intermediates of recombinant adeno-associated virus have defined structural characteristics responsible for long-term episomal persistence in muscle tissue. J. Virol. 72, 8568–8577 (1998).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nowrouzi, A. et al. Integration frequency and intermolecular recombination of rAAV vectors in non-human primate skeletal muscle and liver. Mol. Ther. 20, 1177–1186 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Penaud-Budloo, M. et al. Adeno-associated virus vector genomes persist as episomal chromatin in primate muscle. J. Virol. 82, 7875–7885 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brady, J. M., Baltimore, D. & Balazs, A. B. Antibody gene transfer with adeno-associated viral vectors as a method for HIV prevention. Immunol. Rev. 275, 324–333 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schnepp, B. C. & Johnson, P. R. Adeno-associated virus delivery of broadly neutralizing antibodies. Curr. Opin. HIV AIDS 9, 250–256 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Calcedo, R., Vandenberghe, L. H., Gao, G., Lin, J. & Wilson, J. M. Worldwide epidemiology of neutralizing antibodies to adeno-associated viruses. J. Infect. Dis. 199, 381–390 (2009).

    PubMed 

    Google Scholar 

  • Srivastava, A. In vivo tissue-tropism of adeno-associated viral vectors. Curr. Opin. Virol. 21, 75–80 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Balazs, A. B. et al. Vectored immunoprophylaxis protects humanized mice from mucosal HIV transmission. Nat. Med. 20, 296–300 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Saunders, K. O. et al. Broadly neutralizing human immunodeficiency virus type 1 antibody gene transfer protects nonhuman primates from mucosal simian-human immunodeficiency virus infection. J. Virol. 89, 8334–8345 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Welles, H. C. et al. Vectored delivery of anti-SIV envelope targeting mAb via AAV8 protects rhesus macaques from repeated limiting dose intrarectal swarm SIVsmE660 challenge. PLoS Pathog. 14, e1007395 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Martinez-Navio, J. M. et al. Adeno-associated virus delivery of anti-HIV monoclonal antibodies can drive long-term virologic suppression. Immunity 50, 567–575 e565 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Priddy, F. H. et al. Adeno-associated virus vectored immunoprophylaxis to prevent HIV in healthy adults: a phase 1 randomised controlled trial. Lancet HIV 6, e230–e239 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Szymczak, A. L. et al. Correction of multi-gene deficiency in vivo using a single ‘self-cleaving’ 2A peptide-based retroviral vector. Nat. Biotechnol. 22, 589–594 (2004).

    CAS 
    PubMed 

    Google Scholar 

  • Manno, C. S. et al. Successful transduction of liver in hemophilia by AAV-Factor IX and limitations imposed by the host immune response. Nat. Med. 12, 342–347 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • Rangarajan, S. et al. AAV5-Factor VIII gene transfer in severe hemophilia A. N. Engl. J. Med. 377, 2519–2530 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Jefferis, R. & Lefranc, M. P. Human immunoglobulin allotypes: possible implications for immunogenicity. MAbs 1, 332–338 (2009).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Ledgerwood, J. E. et al. Safety, pharmacokinetics and neutralization of the broadly neutralizing HIV-1 human monoclonal antibody VRC01 in healthy adults. Clin. Exp. Immunol. 182, 289–301 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sarzotti-Kelsoe, M. et al. Optimization and validation of the TZM-bl assay for standardized assessments of neutralizing antibodies against HIV-1. J. Immunol. Methods 409, 131–146 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Nathwani, A. C. et al. Long-term safety and efficacy of Factor IX gene therapy in hemophilia B. N. Engl. J. Med. 371, 1994–2004 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Lisowski, L., Tay, S. S. & Alexander, I. E. Adeno-associated virus serotypes for gene therapeutics. Curr. Opin. Pharm. 24, 59–67 (2015).

    CAS 

    Google Scholar 

  • Fuchs, S. P. et al. AAV-delivered antibody mediates significant protective effects against SIVmac239 challenge in the absence of neutralizing activity. PLoS Pathog. 11, e1005090 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Fuchs, S. P., Martinez-Navio, J. M., Rakasz, E. G., Gao, G. & Desrosiers, R. C. Liver-directed but not muscle-directed AAV-antibody gene transfer limits humoral immune responses in rhesus monkeys. Mol. Ther. Methods Clin. Dev. 16, 94–102 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Bar, K. J. et al. Effect of HIV antibody VRC01 on viral rebound after treatment interruption. N. Engl. J. Med. 375, 2037–2050 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cale, E. M. et al. Neutralizing antibody VRC01 failed to select for HIV-1 mutations upon viral rebound. J. Clin. Invest. 130, 3299–3304 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Crowell, T. A. et al. Safety and efficacy of VRC01 broadly neutralising antibodies in adults with acutely treated HIV (RV397): a phase 2, randomised, double-blind, placebo-controlled trial. Lancet HIV 6, e297–e306 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Cunningham, C. K. et al. Safety, tolerability, and pharmacokinetics of the broadly neutralizing human immunodeficiency virus (HIV)-1 monoclonal antibody VRC01 in HIV-exposed newborn infants. J. Infect. Dis. 222, 628–636 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Riddler, S. A. et al. Randomized clinical trial to assess the impact of the broadly neutralizing HIV-1 monoclonal antibody VRC01 on HIV-1 persistence in individuals on effective ART. Open Forum Infect. Dis. 5, ofy242 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Gaudinski, M. R. et al. Safety and pharmacokinetics of the Fc-modified HIV-1 human monoclonal antibody VRC01LS: a phase 1 open-label clinical trial in healthy adults. PLoS Med. 15, e1002493 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Gaudinski, M. R. et al. Safety and pharmacokinetics of broadly neutralising human monoclonal antibody VRC07-523LS in healthy adults: a phase 1 dose-escalation clinical trial. Lancet HIV 6, e667–e679 (2019).

    PubMed 

    Google Scholar 

  • Caskey, M. et al. Antibody 10-1074 suppresses viremia in HIV-1-infected individuals. Nat. Med. 23, 185–191 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fang, J. et al. Stable antibody expression at therapeutic levels using the 2A peptide. Nat. Biotechnol. 23, 584–590 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • Zhou, T. et al. Multidonor analysis reveals structural elements, genetic determinants, and maturation pathway for HIV-1 neutralization by VRC01-class antibodies. Immunity 39, 245–258 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fang, J. et al. An antibody delivery system for regulated expression of therapeutic levels of monoclonal antibodies in vivo. Mol. Ther. 15, 1153–1159 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • Schambach, A. et al. Woodchuck hepatitis virus post-transcriptional regulatory element deleted from X protein and promoter sequences enhances retroviral vector titer and expression. Gene Ther. 13, 641–645 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • Casazza, J. P. et al. Therapeutic vaccination expands and improves the function of the HIV-specific memory T-cell repertoire. J. Infect. Dis. 207, 1829–1840 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Prabhakaran, M. et al. A sensitive method to quantify HIV-1 antibodies in mucosal samples. J. Immunol. Methods 491, 112995 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Seaman, M. S. et al. Optimization and qualification of a functional anti-drug antibody assay for HIV-1 bnAbs. J. Immunol. Methods 479, 112736 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pandey, J. P. et al. Immunoglobulin genes and immunity to HSV1 in Alzheimer’s disease. J. Alzheimers Dis. 70, 917–924 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Schanfield, M. & van Logem, E. in Handbook of Experimental Immunology Vol. 94 (ed. Weir, D.) 1–18 (Blackwell, 1986).

  • Source link