Dolmetsch, R. & Geschwind, D. H. The human brain in a dish: The promise of iPSC-derived neurons. Cell 145, 831–834. https://doi.org/10.1016/j.cell.2011.05.034 (2011).
Google Scholar
Reddy, A. P., Ravichandran, J. & Carkaci-Salli, N. Neural regeneration therapies for Alzheimer’s and Parkinson’s disease-related disorders. Biochimica et Biophysica Acta Mol. Basis Dis. 1866, 165506. https://doi.org/10.1016/j.bbadis.2019.06.020 (2020).
Google Scholar
Leenaars, C. H. C. et al. Animal to human translation: a systematic scoping review of reported concordance rates. J. Transl. Med. 17, 223. https://doi.org/10.1186/s12967-019-1976-2 (2019).
Google Scholar
Smits, L. M. et al. Modeling Parkinsons disease in midbrain-like organoids. npj Parkinsons Dis. 5, 5. https://doi.org/10.1038/s41531-019-0078-4 (2019).
Google Scholar
Appelt-Menzel, A. et al. Human iPSC-derived blood-brain barrier models: Valuable tools for preclinical drug discovery and development? Curr. Protoc. Stem Cell Biol. 55, e122. https://doi.org/10.1002/cpsc.122 (2020).
Google Scholar
Bardy, C. et al. Predicting the functional states of human iPSC-derived neurons with single-cell RNA-seq and electrophysiology. Mol. Psychiatry 21, 1573–1588. https://doi.org/10.1038/mp.2016.158 (2016).
Google Scholar
Armentano, I. et al. Nanostructured biopolymer-based materials for regenerative medicine applications. Curr. Org. Chem. 22, 1193–1204. https://doi.org/10.2174/1385272822666180517095551 (2018).
Google Scholar
Lestrell, E., O’Brien, C. M., Elnathan, R. & Voelcker, N. H. Vertically aligned nanostructured topographies for human neural stem cell differentiation and neuronal cell interrogation. Adv. Ther. 2100061, https://doi.org/10.1002/adtp.202100061 (2021).
Ning, D. et al. Mechanical and morphological analysis of cancer cells on nanostructured substrates. Langmuir 32, 2718–2723. https://doi.org/10.1021/acs.langmuir.5b04469 (2016).
Google Scholar
Koitmäe, A. et al. Approaching integrated hybrid neural circuits: Axon guiding on optically active semiconductor microtube arrays. Adv. Mater. Interfaces 3, 1600746. https://doi.org/10.1002/admi.201600746 (2016).
Google Scholar
Koitmäe, A. et al. Designer neural networks with embedded semiconductor microtube arrays. Langmuir 34, 1528–1534. https://doi.org/10.1021/acs.langmuir.7b03311 (2018).
Google Scholar
Fendler, C. et al. Neurite guidance and neuro-caging on steps and grooves in 2.5 dimensions. Nanoscale Adv. 2, 5192–5200. https://doi.org/10.1039/D0NA00549E (2020).
Google Scholar
Leclech, C. & Villard, C. Cellular and subcellular contact guidance on microfabricated substrates. Front. Bioeng. Biotechnol. 8, 1198. https://doi.org/10.3389/fbioe.2020.551505 (2020).
Google Scholar
Elnathan, R., Kwiat, M., Patolsky, F. & Voelcker, N. H. Engineering vertically aligned semiconductor nanowire arrays for applications in the life sciences. Nano Today 9, 172–196. https://doi.org/10.1016/j.nantod.2014.04.001 (2014).
Google Scholar
Bonde, S. et al. Exploring arrays of vertical one-dimensional nanostructures for cellular investigations. Nanotechnology 25, 362001. https://doi.org/10.1088/0957-4484/25/36/362001 (2014).
Google Scholar
Buch-Månson, N. et al. Towards a better prediction of cell settling on nanostructure arrays-simple means to complicated ends. Adv. Func. Mater. 25, 3246–3255. https://doi.org/10.1002/adfm.201500399 (2015).
Google Scholar
Bonde, S. et al. Tuning InAs nanowire density for HEK293 cell viability, adhesion, and morphology: Perspectives for nanowire-based biosensors. ACS Appl. Mater. Interfaces 5, 10510–10519. https://doi.org/10.1021/am402070k (2013).
Google Scholar
Piret, G., Perez, M.-T. & Prinz, C. N. Neurite outgrowth and synaptophysin expression of postnatal CNS neurons on GaP nanowire arrays in long-term retinal cell culture. Biomaterials 34, 875–887. https://doi.org/10.1016/j.biomaterials.2012.10.042 (2013).
Google Scholar
Li, Z. et al. Single cell analysis of proliferation and movement of cancer and normal-like cells on nanowire array substrates. J. Mater. Chem. B 6, 7042–7049. https://doi.org/10.1039/C8TB02049C (2018).
Google Scholar
Li, Z., Persson, H., Adolfsson, K., Oredsson, S. & Prinz, C. N. Morphology of living cells cultured on nanowire arrays with varying nanowire densities and diameters. Sci. China Life Sci. 61, 427–435. https://doi.org/10.1007/s11427-017-9264-2 (2018).
Google Scholar
Hansel, C. S. et al. Nanoneedle-mediated stimulation of cell mechanotransduction machinery. ACS Nano 13, 2913–2926. https://doi.org/10.1021/acsnano.8b06998 (2019).
Google Scholar
Harberts, J. et al. Culturing and patch clamping of Jurkat T cells and neurons on Al(_2)O(_3) coated nanowire arrays of altered morphology. RSC Adv. 9, 11194–11201. https://doi.org/10.1039/C8RA05320K (2019).
Google Scholar
Li, Z. et al. Cellular traction forces: A useful parameter in cancer research. Nanoscale 9, 19039–19044. https://doi.org/10.1039/C7NR06284B (2017).
Google Scholar
Hanson, L. et al. Vertical nanopillars for in situ probing of nuclear mechanics in adherent cells. Nat. Nanotechnol. 10, 554–562. https://doi.org/10.1038/nnano.2015.88 (2015).
Google Scholar
Persson, H., Li, Z., Tegenfeldt, J. O., Oredsson, S. & Prinz, C. N. From immobilized cells to motile cells on a bed-of-nails: Effects of vertical nanowire array density on cell behaviour. Sci. Rep. 5, 18535. https://doi.org/10.1038/srep18535 (2015).
Google Scholar
Buch-Månson, N. et al. Mapping cell behavior across a wide range of vertical silicon nanocolumn densities. Nanoscale 9, 5517–5527. https://doi.org/10.1039/C6NR09700F (2017).
Google Scholar
Piret, G. G., Perez, M.-T. & Prinz, C. N. Support of neuronal growth over glial growth and guidance of optic nerve axons by vertical nanowire arrays. Appl. Mater. Interfaces 7, 7–11. https://doi.org/10.1021/acsami.5b03798 (2015).
Google Scholar
Milos, F., Belu, A., Mayer, D., Maybeck, V. & Offenhäusser, A. Polymer nanopillars induce increased paxillin adhesion assembly and promote axon growth in primary cortical neurons. Adv. Biol. 5, 2000248. https://doi.org/10.1002/adbi.202000248 (2021).
Google Scholar
Chen, Y. et al. Cellular deformations induced by conical silicon nanowire arrays facilitate gene delivery. Small 15, 1904819. https://doi.org/10.1002/smll.201904819 (2019).
Google Scholar
Gopal, S. et al. Porous silicon nanoneedles modulate endocytosis to deliver biological payloads. Adv. Mater. 31, 1806788. https://doi.org/10.1002/adma.201806788 (2019).
Google Scholar
Tay, A. & Melosh, N. Nanostructured materials for intracellular cargo delivery. Acc. Chem. Res. 52, 2462–2471. https://doi.org/10.1021/acs.accounts.9b00272 (2019).
Google Scholar
Liu, R. et al. High density individually addressable nanowire arrays record intracellular activity from primary rodent and human stem cell derived neurons. Nano Lett. 17, 2757–2764. https://doi.org/10.1021/acs.nanolett.6b04752 (2017).
Google Scholar
Parameswaran, R. et al. Photoelectrochemical modulation of neuronal activity with free-standing coaxial silicon nanowires. Nat. Nanotechnol. 13, 260–266. https://doi.org/10.1038/s41565-017-0041-7 (2018).
Google Scholar
Liu, Z. et al. Photoelectric cardiac pacing by flexible and degradable amorphous Si radial junction stimulators. Adv. Healthcare Mater. 9, 1901342. https://doi.org/10.1002/adhm.201901342 (2020).
Google Scholar
Verardo, D. et al. Nanowires for biosensing: Lightguiding of fluorescence as a function of diameter and wavelength. Nano Lett. 18, 4796–4802. https://doi.org/10.1021/acs.nanolett.8b01360 (2018).
Google Scholar
Lard, M., Linke, H. & Prinz, C. N. Biosensing using arrays of vertical semiconductor nanowires: Mechanosensing and biomarker detection. Nanotechnology 30, 214003. https://doi.org/10.1088/1361-6528/ab0326 (2019).
Google Scholar
Chen, S. et al. Near-infrared deep brain stimulation via upconversion nanoparticle-mediated optogenetics. Science 359, 679–684. https://doi.org/10.1126/science.aaq1144 (2018).
Google Scholar
Chiappini, C. Nanoneedle-based sensing in biological systems. ACS Sens. 2, 1086–1102. https://doi.org/10.1021/acssensors.7b00350 (2017).
Google Scholar
Li, X. et al. Vertical nanowire array-based biosensors: Device design strategies and biomedical applications. J. Mater. Chem. B 8, 7609–7632. https://doi.org/10.1039/D0TB00990C (2020).
Google Scholar
Lou, H.-Y., Zhao, W., Zeng, Y. & Cui, B. The role of membrane curvature in nanoscale topography-induced intracellular signaling. Acc. Chem. Res. 51, 1046–1053. https://doi.org/10.1021/acs.accounts.7b00594 (2018).
Google Scholar
Liu, R. & Ding, J. Chromosomal repositioning and gene regulation of cells on a micropillar array. ACS Appl. Mater. Interfaces 12, 35799–35812. https://doi.org/10.1021/acsami.0c05883 (2020).
Google Scholar
Kim, H., Kim, I., Choi, H.-J., Kim, S. Y. & Yang, E. G. Neuron-like differentiation of mesenchymal stem cells on silicon nanowires. Nanoscale 7, 17131–17138. https://doi.org/10.1039/C5NR05787F (2015).
Google Scholar
Rasmussen, C. H. et al. Enhanced differentiation of human embryonic stem cells toward definitive endoderm on ultrahigh aspect ratio nanopillars. Adv. Func. Mater. 26, 815–823. https://doi.org/10.1002/adfm.201504204 (2016).
Google Scholar
Crowder, S. W., Leonardo, V., Whittaker, T., Papathanasiou, P. & Stevens, M. M. Material cues as potent regulators of epigenetics and stem cell function. Cell Stem Cell 18, 39–52. https://doi.org/10.1016/j.stem.2015.12.012 (2016).
Google Scholar
Harberts, J. et al. Interfacing human induced pluripotent stem cell-derived neurons with designed nanowire arrays as a future platform for medical applications. Biomater. Sci. 8, 2434–2446. https://doi.org/10.1039/D0BM00182A (2020).
Google Scholar
Tang, J. et al. Nanowire arrays restore vision in blind mice. Nat. Commun. 9, 786. https://doi.org/10.1038/s41467-018-03212-0 (2018).
Google Scholar
Fairfield, J. A. Nanostructured materials for neural electrical interfaces. Adv. Func. Mater. 28, 1701145. https://doi.org/10.1002/adfm.201701145 (2018).
Google Scholar
Rahong, S., Yasui, T., Kaji, N. & Baba, Y. Recent developments in nanowires for bio-applications from molecular to cellular levels. Lab Chip 16, 1126–1138. https://doi.org/10.1039/C5LC01306B (2016).
Google Scholar
Misra, S., Yu, L., Foldyna, M. & Roca i Cabarrocas, P. High efficiency and stable hydrogenated amorphous silicon radial junction solar cells built on VLS-grown silicon nanowires. Sol. Energy Mater. Sol. Cells 118, 90–95. https://doi.org/10.1016/j.solmat.2013.07.036 (2013).
Google Scholar
Zhang, S. et al. Coupled boron-doping and geometry control of tin-catalyzed silicon nanowires for high performance radial junction photovoltaics. Opt. Express 27, 37248. https://doi.org/10.1364/OE.27.037248 (2019).
Google Scholar
Acaron Ledesma, H. & Tian, B. Nanoscale silicon for subcellular biointerfaces. J. Mater. Chem. B 5, 4276–4289. https://doi.org/10.1039/C7TB00151G (2017).
Google Scholar
Reinhardt, P. et al. Derivation and expansion using only small molecules of human neural progenitors for neurodegenerative disease modeling. PLoS ONE 8, e59252. https://doi.org/10.1371/journal.pone.0059252 (2013).
Google Scholar
Kim, S.-M. et al. Strong contact coupling of neuronal growth cones with height-controlled vertical silicon nanocolumns. Nano Res. 11, 2532–2543. https://doi.org/10.1007/s12274-017-1878-7 (2018).
Google Scholar
Wierzbicki, R. et al. Mapping the complex morphology of cell interactions with nanowire substrates using FIB-SEM. PLoS ONE 8, e53307. https://doi.org/10.1371/journal.pone.0053307 (2013).
Google Scholar
Seong, H. et al. Size-tunable nanoneedle arrays for influencing stem cell morphology, gene expression, and nuclear membrane curvature. ACS Nano 14, 5371–5381. https://doi.org/10.1021/acsnano.9b08689 (2020).
Google Scholar
Xie, Y. et al. Reproducible and efficient generation of functionally active neurons from human hiPSCs for preclinical disease modeling. Stem Cell Res. 26, 84–94. https://doi.org/10.1016/j.scr.2017.12.003 (2018).
Google Scholar
Gunhanlar, N. et al. A simplified protocol for differentiation of electrophysiologically mature neuronal networks from human induced pluripotent stem cells. Mol. Psychiatry 23, 1336–1344. https://doi.org/10.1038/mp.2017.56 (2018).
Google Scholar
Harberts, J., Kusch, M., O’Sullivan, J., Zierold, R. & Blick, R. H. A temperature-controlled patch clamp platform demonstrated on Jurkat T lymphocytes and human induced pluripotent stem cell-derived neurons. Bioengineering 7, 46. https://doi.org/10.3390/bioengineering7020046 (2020).
Harberts, J. et al. Toward brain-on-a-chip: Human induced pluripotent stem cell-derived guided neuronal networks in tailor-made 3D nanoprinted microscaffolds. ACS Nano 14, 13091–13102. https://doi.org/10.1021/acsnano.0c04640 (2020).
Google Scholar
Higgins, S. G. et al. High-aspect-ratio nanostructured surfaces as biological metamaterials. Adv. Mater. 32, 1903862. https://doi.org/10.1002/adma.201903862 (2020).
Google Scholar

