Preloader

Robust neuronal differentiation of human iPSC-derived neural progenitor cells cultured on densely-spaced spiky silicon nanowire arrays

  • 1.

    Dolmetsch, R. & Geschwind, D. H. The human brain in a dish: The promise of iPSC-derived neurons. Cell 145, 831–834. https://doi.org/10.1016/j.cell.2011.05.034 (2011).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 2.

    Reddy, A. P., Ravichandran, J. & Carkaci-Salli, N. Neural regeneration therapies for Alzheimer’s and Parkinson’s disease-related disorders. Biochimica et Biophysica Acta Mol. Basis Dis. 1866, 165506. https://doi.org/10.1016/j.bbadis.2019.06.020 (2020).

    CAS 
    Article 

    Google Scholar 

  • 3.

    Leenaars, C. H. C. et al. Animal to human translation: a systematic scoping review of reported concordance rates. J. Transl. Med. 17, 223. https://doi.org/10.1186/s12967-019-1976-2 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 4.

    Smits, L. M. et al. Modeling Parkinsons disease in midbrain-like organoids. npj Parkinsons Dis. 5, 5. https://doi.org/10.1038/s41531-019-0078-4 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 5.

    Appelt-Menzel, A. et al. Human iPSC-derived blood-brain barrier models: Valuable tools for preclinical drug discovery and development? Curr. Protoc. Stem Cell Biol. 55, e122. https://doi.org/10.1002/cpsc.122 (2020).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 6.

    Bardy, C. et al. Predicting the functional states of human iPSC-derived neurons with single-cell RNA-seq and electrophysiology. Mol. Psychiatry 21, 1573–1588. https://doi.org/10.1038/mp.2016.158 (2016).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 7.

    Armentano, I. et al. Nanostructured biopolymer-based materials for regenerative medicine applications. Curr. Org. Chem. 22, 1193–1204. https://doi.org/10.2174/1385272822666180517095551 (2018).

    CAS 
    Article 

    Google Scholar 

  • 8.

    Lestrell, E., O’Brien, C. M., Elnathan, R. & Voelcker, N. H. Vertically aligned nanostructured topographies for human neural stem cell differentiation and neuronal cell interrogation. Adv. Ther. 2100061, https://doi.org/10.1002/adtp.202100061 (2021).

  • 9.

    Ning, D. et al. Mechanical and morphological analysis of cancer cells on nanostructured substrates. Langmuir 32, 2718–2723. https://doi.org/10.1021/acs.langmuir.5b04469 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 10.

    Koitmäe, A. et al. Approaching integrated hybrid neural circuits: Axon guiding on optically active semiconductor microtube arrays. Adv. Mater. Interfaces 3, 1600746. https://doi.org/10.1002/admi.201600746 (2016).

    Article 

    Google Scholar 

  • 11.

    Koitmäe, A. et al. Designer neural networks with embedded semiconductor microtube arrays. Langmuir 34, 1528–1534. https://doi.org/10.1021/acs.langmuir.7b03311 (2018).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 12.

    Fendler, C. et al. Neurite guidance and neuro-caging on steps and grooves in 2.5 dimensions. Nanoscale Adv. 2, 5192–5200. https://doi.org/10.1039/D0NA00549E (2020).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 13.

    Leclech, C. & Villard, C. Cellular and subcellular contact guidance on microfabricated substrates. Front. Bioeng. Biotechnol. 8, 1198. https://doi.org/10.3389/fbioe.2020.551505 (2020).

    Article 

    Google Scholar 

  • 14.

    Elnathan, R., Kwiat, M., Patolsky, F. & Voelcker, N. H. Engineering vertically aligned semiconductor nanowire arrays for applications in the life sciences. Nano Today 9, 172–196. https://doi.org/10.1016/j.nantod.2014.04.001 (2014).

    CAS 
    Article 

    Google Scholar 

  • 15.

    Bonde, S. et al. Exploring arrays of vertical one-dimensional nanostructures for cellular investigations. Nanotechnology 25, 362001. https://doi.org/10.1088/0957-4484/25/36/362001 (2014).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 16.

    Buch-Månson, N. et al. Towards a better prediction of cell settling on nanostructure arrays-simple means to complicated ends. Adv. Func. Mater. 25, 3246–3255. https://doi.org/10.1002/adfm.201500399 (2015).

    CAS 
    Article 

    Google Scholar 

  • 17.

    Bonde, S. et al. Tuning InAs nanowire density for HEK293 cell viability, adhesion, and morphology: Perspectives for nanowire-based biosensors. ACS Appl. Mater. Interfaces 5, 10510–10519. https://doi.org/10.1021/am402070k (2013).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 18.

    Piret, G., Perez, M.-T. & Prinz, C. N. Neurite outgrowth and synaptophysin expression of postnatal CNS neurons on GaP nanowire arrays in long-term retinal cell culture. Biomaterials 34, 875–887. https://doi.org/10.1016/j.biomaterials.2012.10.042 (2013).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 19.

    Li, Z. et al. Single cell analysis of proliferation and movement of cancer and normal-like cells on nanowire array substrates. J. Mater. Chem. B 6, 7042–7049. https://doi.org/10.1039/C8TB02049C (2018).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 20.

    Li, Z., Persson, H., Adolfsson, K., Oredsson, S. & Prinz, C. N. Morphology of living cells cultured on nanowire arrays with varying nanowire densities and diameters. Sci. China Life Sci. 61, 427–435. https://doi.org/10.1007/s11427-017-9264-2 (2018).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 21.

    Hansel, C. S. et al. Nanoneedle-mediated stimulation of cell mechanotransduction machinery. ACS Nano 13, 2913–2926. https://doi.org/10.1021/acsnano.8b06998 (2019).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 22.

    Harberts, J. et al. Culturing and patch clamping of Jurkat T cells and neurons on Al(_2)O(_3) coated nanowire arrays of altered morphology. RSC Adv. 9, 11194–11201. https://doi.org/10.1039/C8RA05320K (2019).

    CAS 
    Article 

    Google Scholar 

  • 23.

    Li, Z. et al. Cellular traction forces: A useful parameter in cancer research. Nanoscale 9, 19039–19044. https://doi.org/10.1039/C7NR06284B (2017).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 24.

    Hanson, L. et al. Vertical nanopillars for in situ probing of nuclear mechanics in adherent cells. Nat. Nanotechnol. 10, 554–562. https://doi.org/10.1038/nnano.2015.88 (2015).

    CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • 25.

    Persson, H., Li, Z., Tegenfeldt, J. O., Oredsson, S. & Prinz, C. N. From immobilized cells to motile cells on a bed-of-nails: Effects of vertical nanowire array density on cell behaviour. Sci. Rep. 5, 18535. https://doi.org/10.1038/srep18535 (2015).

    CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • 26.

    Buch-Månson, N. et al. Mapping cell behavior across a wide range of vertical silicon nanocolumn densities. Nanoscale 9, 5517–5527. https://doi.org/10.1039/C6NR09700F (2017).

    Article 
    PubMed 

    Google Scholar 

  • 27.

    Piret, G. G., Perez, M.-T. & Prinz, C. N. Support of neuronal growth over glial growth and guidance of optic nerve axons by vertical nanowire arrays. Appl. Mater. Interfaces 7, 7–11. https://doi.org/10.1021/acsami.5b03798 (2015).

    CAS 
    Article 

    Google Scholar 

  • 28.

    Milos, F., Belu, A., Mayer, D., Maybeck, V. & Offenhäusser, A. Polymer nanopillars induce increased paxillin adhesion assembly and promote axon growth in primary cortical neurons. Adv. Biol. 5, 2000248. https://doi.org/10.1002/adbi.202000248 (2021).

    CAS 
    Article 

    Google Scholar 

  • 29.

    Chen, Y. et al. Cellular deformations induced by conical silicon nanowire arrays facilitate gene delivery. Small 15, 1904819. https://doi.org/10.1002/smll.201904819 (2019).

    CAS 
    Article 

    Google Scholar 

  • 30.

    Gopal, S. et al. Porous silicon nanoneedles modulate endocytosis to deliver biological payloads. Adv. Mater. 31, 1806788. https://doi.org/10.1002/adma.201806788 (2019).

    CAS 
    Article 

    Google Scholar 

  • 31.

    Tay, A. & Melosh, N. Nanostructured materials for intracellular cargo delivery. Acc. Chem. Res. 52, 2462–2471. https://doi.org/10.1021/acs.accounts.9b00272 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 32.

    Liu, R. et al. High density individually addressable nanowire arrays record intracellular activity from primary rodent and human stem cell derived neurons. Nano Lett. 17, 2757–2764. https://doi.org/10.1021/acs.nanolett.6b04752 (2017).

    CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • 33.

    Parameswaran, R. et al. Photoelectrochemical modulation of neuronal activity with free-standing coaxial silicon nanowires. Nat. Nanotechnol. 13, 260–266. https://doi.org/10.1038/s41565-017-0041-7 (2018).

    CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • 34.

    Liu, Z. et al. Photoelectric cardiac pacing by flexible and degradable amorphous Si radial junction stimulators. Adv. Healthcare Mater. 9, 1901342. https://doi.org/10.1002/adhm.201901342 (2020).

    CAS 
    Article 

    Google Scholar 

  • 35.

    Verardo, D. et al. Nanowires for biosensing: Lightguiding of fluorescence as a function of diameter and wavelength. Nano Lett. 18, 4796–4802. https://doi.org/10.1021/acs.nanolett.8b01360 (2018).

    CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • 36.

    Lard, M., Linke, H. & Prinz, C. N. Biosensing using arrays of vertical semiconductor nanowires: Mechanosensing and biomarker detection. Nanotechnology 30, 214003. https://doi.org/10.1088/1361-6528/ab0326 (2019).

    CAS 
    Article 
    PubMed 
    ADS 

    Google Scholar 

  • 37.

    Chen, S. et al. Near-infrared deep brain stimulation via upconversion nanoparticle-mediated optogenetics. Science 359, 679–684. https://doi.org/10.1126/science.aaq1144 (2018).

    CAS 
    Article 
    PubMed 
    ADS 

    Google Scholar 

  • 38.

    Chiappini, C. Nanoneedle-based sensing in biological systems. ACS Sens. 2, 1086–1102. https://doi.org/10.1021/acssensors.7b00350 (2017).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 39.

    Li, X. et al. Vertical nanowire array-based biosensors: Device design strategies and biomedical applications. J. Mater. Chem. B 8, 7609–7632. https://doi.org/10.1039/D0TB00990C (2020).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 40.

    Lou, H.-Y., Zhao, W., Zeng, Y. & Cui, B. The role of membrane curvature in nanoscale topography-induced intracellular signaling. Acc. Chem. Res. 51, 1046–1053. https://doi.org/10.1021/acs.accounts.7b00594 (2018).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 41.

    Liu, R. & Ding, J. Chromosomal repositioning and gene regulation of cells on a micropillar array. ACS Appl. Mater. Interfaces 12, 35799–35812. https://doi.org/10.1021/acsami.0c05883 (2020).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 42.

    Kim, H., Kim, I., Choi, H.-J., Kim, S. Y. & Yang, E. G. Neuron-like differentiation of mesenchymal stem cells on silicon nanowires. Nanoscale 7, 17131–17138. https://doi.org/10.1039/C5NR05787F (2015).

    CAS 
    Article 
    PubMed 
    ADS 

    Google Scholar 

  • 43.

    Rasmussen, C. H. et al. Enhanced differentiation of human embryonic stem cells toward definitive endoderm on ultrahigh aspect ratio nanopillars. Adv. Func. Mater. 26, 815–823. https://doi.org/10.1002/adfm.201504204 (2016).

    CAS 
    Article 

    Google Scholar 

  • 44.

    Crowder, S. W., Leonardo, V., Whittaker, T., Papathanasiou, P. & Stevens, M. M. Material cues as potent regulators of epigenetics and stem cell function. Cell Stem Cell 18, 39–52. https://doi.org/10.1016/j.stem.2015.12.012 (2016).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 45.

    Harberts, J. et al. Interfacing human induced pluripotent stem cell-derived neurons with designed nanowire arrays as a future platform for medical applications. Biomater. Sci. 8, 2434–2446. https://doi.org/10.1039/D0BM00182A (2020).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 46.

    Tang, J. et al. Nanowire arrays restore vision in blind mice. Nat. Commun. 9, 786. https://doi.org/10.1038/s41467-018-03212-0 (2018).

    CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • 47.

    Fairfield, J. A. Nanostructured materials for neural electrical interfaces. Adv. Func. Mater. 28, 1701145. https://doi.org/10.1002/adfm.201701145 (2018).

    CAS 
    Article 

    Google Scholar 

  • 48.

    Rahong, S., Yasui, T., Kaji, N. & Baba, Y. Recent developments in nanowires for bio-applications from molecular to cellular levels. Lab Chip 16, 1126–1138. https://doi.org/10.1039/C5LC01306B (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 49.

    Misra, S., Yu, L., Foldyna, M. & Roca i Cabarrocas, P. High efficiency and stable hydrogenated amorphous silicon radial junction solar cells built on VLS-grown silicon nanowires. Sol. Energy Mater. Sol. Cells 118, 90–95. https://doi.org/10.1016/j.solmat.2013.07.036 (2013).

    CAS 
    Article 

    Google Scholar 

  • 50.

    Zhang, S. et al. Coupled boron-doping and geometry control of tin-catalyzed silicon nanowires for high performance radial junction photovoltaics. Opt. Express 27, 37248. https://doi.org/10.1364/OE.27.037248 (2019).

    CAS 
    Article 
    PubMed 
    ADS 

    Google Scholar 

  • 51.

    Acaron Ledesma, H. & Tian, B. Nanoscale silicon for subcellular biointerfaces. J. Mater. Chem. B 5, 4276–4289. https://doi.org/10.1039/C7TB00151G (2017).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 52.

    Reinhardt, P. et al. Derivation and expansion using only small molecules of human neural progenitors for neurodegenerative disease modeling. PLoS ONE 8, e59252. https://doi.org/10.1371/journal.pone.0059252 (2013).

    CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • 53.

    Kim, S.-M. et al. Strong contact coupling of neuronal growth cones with height-controlled vertical silicon nanocolumns. Nano Res. 11, 2532–2543. https://doi.org/10.1007/s12274-017-1878-7 (2018).

    CAS 
    Article 

    Google Scholar 

  • 54.

    Wierzbicki, R. et al. Mapping the complex morphology of cell interactions with nanowire substrates using FIB-SEM. PLoS ONE 8, e53307. https://doi.org/10.1371/journal.pone.0053307 (2013).

    CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • 55.

    Seong, H. et al. Size-tunable nanoneedle arrays for influencing stem cell morphology, gene expression, and nuclear membrane curvature. ACS Nano 14, 5371–5381. https://doi.org/10.1021/acsnano.9b08689 (2020).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 56.

    Xie, Y. et al. Reproducible and efficient generation of functionally active neurons from human hiPSCs for preclinical disease modeling. Stem Cell Res. 26, 84–94. https://doi.org/10.1016/j.scr.2017.12.003 (2018).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 57.

    Gunhanlar, N. et al. A simplified protocol for differentiation of electrophysiologically mature neuronal networks from human induced pluripotent stem cells. Mol. Psychiatry 23, 1336–1344. https://doi.org/10.1038/mp.2017.56 (2018).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 58.

    Harberts, J., Kusch, M., O’Sullivan, J., Zierold, R. & Blick, R. H. A temperature-controlled patch clamp platform demonstrated on Jurkat T lymphocytes and human induced pluripotent stem cell-derived neurons. Bioengineering 7, 46. https://doi.org/10.3390/bioengineering7020046 (2020).

  • 59.

    Harberts, J. et al. Toward brain-on-a-chip: Human induced pluripotent stem cell-derived guided neuronal networks in tailor-made 3D nanoprinted microscaffolds. ACS Nano 14, 13091–13102. https://doi.org/10.1021/acsnano.0c04640 (2020).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 60.

    Higgins, S. G. et al. High-aspect-ratio nanostructured surfaces as biological metamaterials. Adv. Mater. 32, 1903862. https://doi.org/10.1002/adma.201903862 (2020).

    CAS 
    Article 

    Google Scholar 

  • Source link