Preloader

Review of gene therapies for age-related macular degeneration

  • 1.

    Friedmann T, Roblin R. Gene therapy for human genetic disease? Science. 1972;175:949–55.

    PubMed 

    Google Scholar 

  • 2.

    Blaese RM, Culver KW, Miller AD, Carter CS, Fleisher T, Clerici M, et al. T lymphocyte-directed gene therapy for ADA- SCID: initial trial results after 4 years. Science. 1995;270:475–80.

    PubMed 

    Google Scholar 

  • 3.

    Tamura R, Toda M. Historic overview of genetic engineering technologies for human gene therapy. Neurol Med Chir. 2020;60:483–91.

    Google Scholar 

  • 4.

    Hacein-Bey-Abina S, von Kalle C, Schmidt M, Le Deist F, Wulffraat N, McIntyre E, et al. A serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency. N. Engl J Med. 2003;348:255–6.

    PubMed 

    Google Scholar 

  • 5.

    Dunbar CE, High KA, Joung JK, Kohn DB, Ozawa K, Sadelain, M. Gene therapy comes of age. Science. 2018;359.

  • 6.

    Scheller EL, Krebsbach PH. Gene therapy: design and prospects for craniofacial regeneration. J Dent Res. 2009;88:585–96.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 7.

    Athanasopoulos T, Munye MM, Yáñez-Muñoz RJ. Nonintegrating gene therapy vectors. Hematol Oncol Clin North Am. 2017;31:753–70.

    PubMed 

    Google Scholar 

  • 8.

    Nienhuis AW, Dunbar CE, Sorrentino BP. Genotoxicity of retroviral integration in hematopoietic cells. Mol Ther. 2006;13:1031–49.

    PubMed 

    Google Scholar 

  • 9.

    Kessler PD, Podsakoff GM, Chen X, McQuiston SA, Colosi PC, Matelis LA, et al. Gene delivery to skeletal muscle results in sustained expression and systemic delivery of a therapeutic protein. Proc Natl Acad Sci USA. 1996;93:14082–7.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 10.

    Xiao X, Li J, Samulski RJ. Efficient long-term gene transfer into muscle tissue of immunocompetent mice by adeno-associated virus vector. J Virol. 1996;70:8098–108.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 11.

    Naso MF, Tomkowicz B, Perry WL 3rd, Strohl WR. Adeno-associated virus (AAV) as a vector for gene therapy. BioDrugs. 2017;31:317–34.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 12.

    Kotin RM, Siniscalco M, Samulski RJ, Zhu XD, Hunter L, Laughlin CA, et al. Site-specific integration by adeno-associated virus. Proc Natl Acad Sci USA. 1990;87:2211–5.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 13.

    Carter B, Burstein H, Peluso R. Adeno-associated virus and AAV vectors for gene delivery. Gene Therapy. CRC Press; Boca Raton, FL; 2003, pp. 71–101.

  • 14.

    Pillay S, Zou W, Cheng F, Puschnik AS, Meyer NL, Ganaie SS, et al. Adeno-associated virus (AAV) serotypes have distinctive interactions with domains of the cellular AAV receptor. J Virol. 2017;91. https://doi.org/10.1128/JVI.00391-17.

  • 15.

    Bessis N, GarciaCozar FJ, Boissier M-C. Immune responses to gene therapy vectors: influence on vector function and effector mechanisms. Gene Ther. 2004;11:S10–7.

    PubMed 

    Google Scholar 

  • 16.

    Rodrigues GA, Shalaev E, Karami TK, Cunningham J, Slater NKH, Rivers HM. Pharmaceutical development of AAV-based gene therapy products for the eye. Pharm Res. 2018;36:29.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 17.

    Bainbridge JWB, Smith AJ, Barker SS, Robbie S, Henderson R, Balaggan K, et al. Effect of gene therapy on visual function in Leber’s congenital amaurosis. N. Engl J Med. 2008;358:2231–9.

    PubMed 

    Google Scholar 

  • 18.

    Maguire AM, Simonelli F, Pierce EA, Pugh EN Jr, Mingozzi F, Bennicelli J, et al. Safety and efficacy of gene transfer for Leber’s congenital amaurosis. N. Engl J Med. 2008;358:2240–8.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 19.

    Hauswirth WW, Aleman TS, Kaushal S, Cideciyan AV, Schwartz SB, Wang L, et al. Treatment of Leber congenital amaurosis due to RPE65Mutations by ocular subretinal injection of adeno-associated virus gene vector: Short-term results of a phase I trial. Hum Gene Ther. 2008;19:979–90.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 20.

    Chacon-Camacho OF, Zenteno JC. Review and update on the molecular basis of Leber congenital amaurosis. World J Clin Cases. 2015;3:112–24.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 21.

    Pennesi ME, Stover NB, Stone EM, Chiang P-W, Weleber RG. Residual electroretinograms in young Leber congenital amaurosis patients with mutations of AIPL1. Investig Ophthalmol Vis Sci. 2011;52:8166–73.

    Google Scholar 

  • 22.

    Gao J, Hussain RM, Weng CY. Voretigene neparvovec in retinal diseases: A review of the current clinical evidence. Clin Ophthalmol. 2020;14:3855–69.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 23.

    Jacobson SG, Cideciyan AV, Ratnakaram R, Heon E, Schwartz SB, Roman AJ, et al. Gene therapy for leber congenital amaurosis caused by RPE65 mutations: safety and efficacy in 15 children and adults followed up to 3 years: Safety and efficacy in 15 children and adults followed up to 3 years. Arch Ophthalmol. 2012;130:9–24.

    PubMed 

    Google Scholar 

  • 24.

    Weleber RG, Pennesi ME, Wilson DJ, Kaushal S, Erker LR, Jensen L, McBride MT, et al. Results at 2 years after gene therapy for RPE65-deficient Leber congenital amaurosis and severe early-childhood-onset retinal dystrophy. Ophthalmology. 2016;123:1606–20.

    PubMed 

    Google Scholar 

  • 25.

    Chung DC, McCague S, Yu Z-F, Thill S, DiStefano-Pappas J, Bennett J, Cross D, et al. Novel mobility test to assess functional vision in patients with inherited retinal dystrophies. Clin Exp Ophthalmol. 2018;46:247–59.

    PubMed 

    Google Scholar 

  • 26.

    Bennett J, Wellman J, Marshall KA, McCague S, Ashtari M, DiStefano-Pappas J, et al. Safety and durability of effect of contralateral-eye administration of AAV2 gene therapy in patients with childhood-onset blindness caused by RPE65 mutations: a follow-on phase 1 trial. Lancet. 2016;388:661–72.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 27.

    Bainbridge JWB, Mehat MS, Sundaram V, Robbie SJ, Barker SE, Ripamonti C, et al. Long-term effect of gene therapy on Leber’s congenital amaurosis. N. Engl J Med. 2015;372:1887–97.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 28.

    Russell S, Bennett J, Wellman JA, Chung DC, Yu Z-F, Tillman A, et al. Efficacy and safety of voretigene neparvovec (AAV2-hRPE65v2) in patients with RPE65-mediated inherited retinal dystrophy: a randomised, controlled, open-label, phase 3 trial. Lancet. 2017;390:849–60.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 29.

    Grishanin R, Vuillemenot B, Sharma P, Keravala A, Greengard J, Gelfman C, et al. Preclinical evaluation of ADVM-022, a novel gene therapy approach to treating wet age-related macular degeneration. Mol Ther. 2019;27:118–29.

    PubMed 

    Google Scholar 

  • 30.

    Kiss S, Oresic Bender K, Grishanin RN, Hanna KM, Nieves JD, Sharma P, et al. Long-term safety evaluation of continuous intraocular delivery of aflibercept by the intravitreal gene therapy candidate ADVM-022 in nonhuman primates. Transl Vis Sci Technol. 2021;10:34.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 31.

    Gelfman CM, Grishanin R, Bender KO, Nguyen A, Greengard J, Sharma P, et al. Comprehensive preclinical assessment of ADVM-022, an intravitreal anti-VEGF gene therapy for the treatment of neovascular AMD and diabetic macular edema. J Ocul Pharm Ther. 2021;37:181–90.

    Google Scholar 

  • 32.

    Kiss S, Roller CH, Turpcu A, Chung C, Osborne A. ADVM-022 Intravitreal Gene Therapy for Neovascular AMD—Results from the Phase 1 OPTIC Study, Presented at the American Society of Gene and Cellular Therapy (ASGCT) 24th Annual Meeting. 2021.

  • 33.

    Khanani AM, Kiss S, Turpcu A, Hoang C, Osborne A; Phase 1 Study of Intravitreal Gene Therapy ADVM-022 for neovascular AMD (OPTIC Trial). Invest. Ophthalmol. Vis. Sci. 2020;61:1154.

  • 34.

    Busbee BG, Boyer DS, Khanani AM, et al; Phase 1 Study of Intravitreal Gene Therapy with ADVM-022 for neovascular AMD (OPTIC Trial). Invest. Ophthalmol. Vis. Sci. 2021;62:352.

  • 35.

    Kiss S, Grishanin R, Nguyen A, Rosario R, Greengard JS, Nieves J, et al. Analysis of aflibercept expression in NHPs following intravitreal administration of ADVM-022, a potential gene therapy for nAMD. Mol Ther Methods Clin Dev. 2020;18:345–53.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 36.

    Biotechnologies A. Adverum Provides Update on ADVM-022 and the INFINITY Trial in Patients with Diabetic Macular Edema. 2021.

  • 37.

    Siddiqui FA, Aziz AA, Khanani AM. Gene Therapy for Neovascular AMD An update on ongoing clinical trials. Retinal Physician. 2020.

  • 38.

    REGENXBIO Announces Additional Positive Interim Phase I/IIa and Long-Term Follow-Up Data of RGX-314 for the Treatment of Wet AMD. Prnewswire.com. Accessed 1 Apr 2021. http://www.prnewswire.com/news-releases/regenxbio-announces-additional-positive-interim-phase-iiia-and-long-term-follow-up-data-of-rgx-314-for-the-treatment-of-wet-amd-301228344.html.

  • 39.

    Bahadorani S, Singer M. Recent advances in the management and understanding of macular degeneration. F1000Res. 2017;6:519.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 40.

    Nozaki M, Raisler BJ, Sakurai E, Sarma JV, Barnum SR, Lambris JD, et al. Drusen complement components C3a and C5a promote choroidal neovascularization. Am J Ophthalmol. 2006;142:201.

    Google Scholar 

  • 41.

    Dreismann AK, McClements ME, Barnard AR, Orhan E, Hughes JP, Lachmann PJ, et al. Functional expression of complement factor I following AAV-mediated gene delivery in the retina of mice and human cells. Gene Ther. 2021;28:265–76.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 42.

    Waheed NK. FOCUS Interim Results: GT005 Gene Therapy Phase I/II Study for the Treatment of Geographic Atrophy. Presented virtually at Angiogenesis, Exudation, and Degeneration 2021. 2021 Feb 12.

  • 43.

    Tan LX, Toops KA, Lakkaraju A. Protective responses to sublytic complement in the retinal pigment epithelium. Proc Natl Acad Sci USA. 2016;113:8789–94.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 44.

    AAVCAGsCD59 for the Treatment of Wet AMD. Clinicaltrials.gov, Accessed 16 Aug 2021. https://clinicaltrials.gov/ct2/show/NCT03585556.

  • 45.

    Treatment of Advanced Dry Age Related Macular Degeneration With AAVCAGsCD59. Clinicaltrials.gov. Accessed 20 Aug 2021. https://clinicaltrials.gov/ct2/show/NCT03144999?term=NCT03144999&rank=1

  • 46.

    Duker JS. Update on Gene Therapy for Complement Inhibition: 1 Year Results of a Phase 1 Study. Presented at Angiogenesis, Exudation, and Degeneration 2019, Miami, FL. 2019 Feb 9.

  • 47.

    Peng Y, Tang L, Zhou Y. Subretinal injection: A review on the novel route of therapeutic delivery for vitreoretinal diseases. Ophthalmic Res. 2017;58:217–26.

    PubMed 

    Google Scholar 

  • 48.

    Yiu G, Chung SH, Mollhoff IN, Nguyen UT, Thomasy SM, Yoo J, et al. Suprachoroidal and subretinal injections of AAV using transscleral microneedles for retinal gene delivery in nonhuman primates. Mol Ther Methods Clin Dev. 2020;16:179–91.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 49.

    de Smet MD, Lynch JL, Dejneka NS, Keane M, Khan IJ. A subretinal cell delivery method via suprachoroidal access in minipigs: Safety and surgical outcomes. Investig Ophthalmol Vis Sci. 2018;59:311–20.

    Google Scholar 

  • 50.

    Moisseiev E, Loewenstein A, Yiu G. The suprachoroidal space: from potential space to a space with potential. Clin Ophthalmol. 2016;10:173–8.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 51.

    Willoughby AS, Vuong VS, Cunefare D, Farsiu S, Noronha G, Danis RP, et al. Choroidal changes after Suprachoroidal Injection of Triamcinolone Acetonide in eyes with macular edema secondary to Retinal Vein Occlusion. Am J Ophthalmol. 2018;186:144–51.

    PubMed 

    Google Scholar 

  • 52.

    Emami-Naeini P, Yiu G. Medical and surgical applications for the suprachoroidal space. Int Ophthalmol Clin. 2019;59:195–207.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 53.

    Yiu G, Pecen P, Sarin N, Chiu SJ, Farsiu S, Mruthyunjaya P, et al. Characterization of the choroid-scleral junction and suprachoroidal layer in healthy individuals on enhanced-depth imaging optical coherence tomography. JAMA Ophthalmol. 2014;132:174–81.

    PubMed 

    Google Scholar 

  • 54.

    Ding K, Shen J, Hafiz Z, Hackett SF, Lima E, Silva R, Khan M, et al. AAV8-vectored suprachoroidal gene transfer produces widespread ocular transgene expression. J Clin Investig. 2019;129:4901–11.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 55.

    Shen J, Kim J, Tzeng SY, Ding K, Hafiz Z, Long D, et al. Suprachoroidal gene transfer with nonviral nanoparticles. Sci Adv. 2020;6. https://doi.org/10.1126/sciadv.aba1606.

  • 56.

    Chung SH, Mollhoff IN, Mishra A, Sin T-N, Ngo T, Ciulla T, et al. Host immune responses after suprachoroidal delivery of AAV8 in nonhuman primate eyes. Hum Gene Ther. 2021;32:682–93.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 57.

    Mehta N, Robbins DA, Yiu G. Ocular inflammation and treatment emergent adverse events in retinal gene therapy. Int Ophthalmol Clin. 2021;61:151–77.

    PubMed 

    Google Scholar 

  • 58.

    Zaiss A-K, Liu Q, Bowen GP, Wong NCW, Bartlett JS, Muruve DA. Differential activation of innate immune responses by adenovirus and adeno-associated virus vectors. J Virol. 2002;76:4580–90.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 59.

    Vandamme C, Adjali O, Mingozzi F. Unraveling the complex story of immune responses to AAV vectors trial after trial. Hum Gene Ther. 2017;28:1061–74.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 60.

    Khabou H, Cordeau C, Pacot L, Fisson S, Dalkara D. Dosage thresholds and influence of transgene cassette in adeno-associated virus-related toxicity. Hum Gene Ther. 2018;29:1235–41.

    PubMed 

    Google Scholar 

  • 61.

    Mendell JR, Campbell K, Rodino-Klapac L, Sahenk Z, Shilling C, Lewis S, et al. Dystrophin immunity in Duchenne’s muscular dystrophy. N. Engl J Med. 2010;363:1429–37.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 62.

    Xiong W, Wu DM, Xue Y, Wang SK, Chung MJ, Rana P, et al. AAV cis-regulatory sequences are correlated with ocular toxicity. Proc Natl Acad Sci USA. 2019;116:5785–94.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 63.

    Heier JS, Kherani S, Desai S, Dugel P, Kaushal S, Cheng SH, et al. Intravitreous injection of AAV2-sFLT01 in patients with advanced neovascular age-related macular degeneration: a phase 1, open-label trial. Lancet. 2017;390:50–61.

    PubMed 

    Google Scholar 

  • 64.

    Maguire AM, Russell S, Wellman JA, Chung DC, Yu Z-F, Tillman A, et al. Efficacy, safety, and durability of voretigene neparvovec-rzyl in RPE65 mutation-associated inherited retinal dystrophy: Results of phase 1 and 3 trials. Ophthalmology. 2019;126:1273–85.

    PubMed 

    Google Scholar 

  • 65.

    Xue K, Jolly JK, Barnard AR, Rudenko A, Salvetti AP, Patrício MI, et al. Beneficial effects on vision in patients undergoing retinal gene therapy for choroideremia. Nat Med. 2018;24:1507–12.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 66.

    Seitz IP, Michalakis S, Wilhelm B, Reichel FF, Ochakovski GA, Zrenner E, et al. Superior retinal gene transfer and biodistribution profile of subretinal versus intravitreal delivery of AAV8 in nonhuman primates. Investig Ophthalmol Vis Sci. 2017;58:5792–801.

    Google Scholar 

  • 67.

    Yiu G. Genome editing in retinal diseases using CRISPR technology. Ophthalmol Retin. 2018;2:1–3.

    Google Scholar 

  • 68.

    Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature. 2016;533:420–4.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 69.

    Gaudelli NM, Komor AC, Rees HA, Packer MS, Badran AH, Bryson DI, et al. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature. 2017;551:464–71.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 70.

    Anzalone AV, Randolph PB, Davis JR, Sousa AA, Koblan LW, Levy JM, et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature. 2019;576:149–57.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 71.

    Latella MC, Di Salvo MT, Cocchiarella F, Benati D, Grisendi G, Comitato A, et al. In vivo editing of the human mutant Rhodopsin gene by electroporation of Plasmid-based CRISPR/Cas9 in the mouse retina. Mol Ther Nucleic Acids. 2016;5:e389.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 72.

    Tsai Y-T, Wu W-H, Lee T-T, Wu W-P, Xu CL, Park KS, et al. Clustered regularly interspaced short palindromic repeats-based genome surgery for the treatment of autosomal dominant retinitis pigmentosa. Ophthalmology. 2018;125:1421–30.

    PubMed 

    Google Scholar 

  • 73.

    Hollander AI, Koenekoop RK, Yzer S, Lopez I, Arends ML, Voesenek KEJ, et al. Mutations in the CEP290 (NPHP6) gene are a frequent cause of Leber congenital. Am J Hum Gen. 2006;79:556–61.

    Google Scholar 

  • 74.

    Ruan G-X, Barry E, Yu D, Lukason M, Cheng SH, Scaria A. CRISPR/Cas9-mediated genome editing as a therapeutic approach for Leber congenital amaurosis 10. Mol Ther. 2017;25:331–41.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 75.

    Yiu G, Tieu E, Nguyen AT, Wong B, Smit-McBride Z. Genomic disruption of VEGF-A expression in human retinal pigment epithelial cells using CRISPR-Cas9 endonuclease. Investig Ophthalmol Vis Sci. 2016;57:5490–7.

    Google Scholar 

  • 76.

    Chung SH, Mollhoff IN, Nguyen U, Nguyen A, Stucka N, Tieu E, et al. Factors impacting efficacy of AAV-mediated CRISPR-based genome editing for treatment of choroidal neovascularization. Mol Ther Methods Clin Dev. 2020;17:409–17.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 77.

    Keeler AM, Flotte TR. Recombinant adeno-associated virus gene therapy in light of luxturna (and zolgensma and glybera): Where are we, and how did we get here. Annu Rev Virol. 2019;6:601–21.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Source link