Preloader

Reply to: Questions about the role of P3HT nanoparticles in retinal stimulation

  • 1.

    Maya-Vetencourt, J. F. et al. Subretinally injected semiconducting polymer nanoparticles rescue vision in a rat model of retinal dystrophy. Nat. Nanotechnol. 15, 698–708 (2020).

    CAS 
    Article 

    Google Scholar 

  • 2.

    A liquid retinal prosthesis. Nat. Rev. Mat. 5, 559 (2020).

  • 3.

    LaVail, M. M. & Battelle, B. A. Influence of eye pigmentation and light deprivation on inherited retinal dystrophy in the rat. Exp. Eye Res. 21, 167–192 (1975).

    CAS 
    Article 

    Google Scholar 

  • 4.

    Trejo, L. J. & Cicerone, C. M. Retinal sensitivity measured by the pupillary light reflex in RCS and albino rats. Vision Res. 22, 1163–1171 (1982).

    CAS 
    Article 

    Google Scholar 

  • 5.

    Jacobs, G. H., Fenwick, J. A. & Williams, G. A. Cone-based vision of rats for ultraviolet and visible lights. J. Exp. Biol. 204, 2439–2446 (2001).

    CAS 
    Article 

    Google Scholar 

  • 6.

    Rocha, F. A. et al. Spectral sensitivity measured with electroretinogram using a constant response method. PLoS ONE 11, e0147318 (2016).

    Article 

    Google Scholar 

  • 7.

    Stujenske, J. M., Spellman, T. & Gordon, J. A. Modeling the spatiotemporal dynamics of light and heat propagation for in vivo optogenetics. Cell Rep. 12, 525–534 (2015).

    CAS 
    Article 

    Google Scholar 

  • 8.

    Beltramo, R. et al. Layer-specific excitatory circuits differentially control recurrent network dynamics in the neocortex. Nat. Neurosci. 16, 227–234 (2013).

    CAS 
    Article 

    Google Scholar 

  • 9.

    Campbell, J. et al. Spatially selective photoconductive stimulation of live neurons. Front. Cell Neurosci. 8, 142 (2014).

    Google Scholar 

  • 10.

    Mathieson, K. et al. Photovoltaic retinal prosthesis with high pixel density. Nat. Photon. 6, 391–397 (2012).

    CAS 
    Article 

    Google Scholar 

  • 11.

    Ho, E. et al. Characteristics of prosthetic vision in rats with subretinal flat and pillar electrode arrays. J. Neural Eng. 16, 066027 (2019).

    Article 

    Google Scholar 

  • 12.

    Prévot, P. H. et al. Behavioral responses to a photovoltaic subretinal prosthesis implanted in non-human primates. Nat. Biomed. Eng. 4, 172–180 (2020).

    Article 

    Google Scholar 

  • 13.

    Martino, N. et al. Photothermal cellular stimulation in functional biopolymer interfaces. Sci. Rep. 5, 8911 (2015).

    CAS 
    Article 

    Google Scholar 

  • 14.

    Ren, Y.-M., Weng, C. H., Zhao, C. J. & Yin, Z. Q. Changes in intrinsic excitability of ganglion cells in degenerated retinas of RCS rats. Int. J. Ophthalmol. 11, 756–765 (2018).

    Google Scholar 

  • 15.

    Lorach, H. et al. Photovoltaic restoration of sight with high visual acuity. Nat. Med. 21, 476–482 (2015).

    CAS 
    Article 

    Google Scholar 

  • 16.

    Mandel, Y. et al. Cortical responses elicited by photovoltaic subretinal prostheses exhibit similarities to visually evoked potentials. Nat. Commun. 4, 1980 (2013).

    Article 

    Google Scholar 

  • 17.

    Lanzani, G. The Photophysics behind Photovoltaics and Photonics (Wiley-VCH Verlag & Co., 2012).

  • 18.

    Sacco, R., Guidoboni, G. & Mauri A. G. A Comprehensive Physically Based Approach to Modeling in Bioengineering and Life Sciences (Academic, 2019).

  • 19.

    Palanker, D., Głowacki, E. D. & Ghezzi, D. Questions about the role of P3HT nanoparticles in retinal stimulation. Nat. Nanotechnol. https://doi.org/10.1038/s41565-021-01044-6 (2021).

  • 20.

    Lin, B., Masland, R. H. & Strettoi, E. Remodeling of cone photoreceptor cells after rod degeneration in rd mice. Exp. Eye Res. 88, 589–599 (2009).

    CAS 
    Article 

    Google Scholar 

  • 21.

    Werginz, P., Benav, H., Zrenner, E. & Rattay, F. Modeling the response of on and off retinal bipolar cells during electric stimulation. Vision Res. 111, 170–181 (2015).

    CAS 
    Article 

    Google Scholar 

  • 22.

    Lorach, H. et al. Long-term rescue of photoreceptors in a rodent model of retinitis pigmentosa associated with MERTK mutation. Sci. Rep. 8, 11312 (2018).

    CAS 
    Article 

    Google Scholar 

  • 23.

    Pu, M., Xu, L. & Zhang, H. Visual response properties of retinal ganglion cells in the Royal College of Surgeons dystrophic rat. Invest. Ophthalmol. Vis. Sci. 47, 3579–3585 (2006).

    Article 

    Google Scholar 

  • 24.

    McGill, T. J., Douglas, R. M., Lund, R. D. & Prusky, G. T. Quantification of spatial vision in the Royal College of Surgeons rat. Invest. Ophthalmol. Vis. Sci. 45, 932–936 (2004).

    Article 

    Google Scholar 

  • 25.

    Benfenati, F. & Lanzani, G. Clinical translation of nanoparticles for neural stimulation. Nat. Rev. Mater. 6, 1–4 (2021).

    Article 

    Google Scholar 

  • 26.

    Rommelfanger, N. J. & Hong, G. Conjugated polymers enable a liquid retina prosthesis. Trends Chem. 2, 961–964 (2020).

    CAS 
    Article 

    Google Scholar 

  • Source link