Maya-Vetencourt, J. F. et al. Subretinally injected semiconducting polymer nanoparticles rescue vision in a rat model of retinal dystrophy. Nat. Nanotechnol. 15, 698–708 (2020).
Google Scholar
A liquid retinal prosthesis. Nat. Rev. Mat. 5, 559 (2020).
LaVail, M. M. & Battelle, B. A. Influence of eye pigmentation and light deprivation on inherited retinal dystrophy in the rat. Exp. Eye Res. 21, 167–192 (1975).
Google Scholar
Trejo, L. J. & Cicerone, C. M. Retinal sensitivity measured by the pupillary light reflex in RCS and albino rats. Vision Res. 22, 1163–1171 (1982).
Google Scholar
Jacobs, G. H., Fenwick, J. A. & Williams, G. A. Cone-based vision of rats for ultraviolet and visible lights. J. Exp. Biol. 204, 2439–2446 (2001).
Google Scholar
Rocha, F. A. et al. Spectral sensitivity measured with electroretinogram using a constant response method. PLoS ONE 11, e0147318 (2016).
Google Scholar
Stujenske, J. M., Spellman, T. & Gordon, J. A. Modeling the spatiotemporal dynamics of light and heat propagation for in vivo optogenetics. Cell Rep. 12, 525–534 (2015).
Google Scholar
Beltramo, R. et al. Layer-specific excitatory circuits differentially control recurrent network dynamics in the neocortex. Nat. Neurosci. 16, 227–234 (2013).
Google Scholar
Campbell, J. et al. Spatially selective photoconductive stimulation of live neurons. Front. Cell Neurosci. 8, 142 (2014).
Mathieson, K. et al. Photovoltaic retinal prosthesis with high pixel density. Nat. Photon. 6, 391–397 (2012).
Google Scholar
Ho, E. et al. Characteristics of prosthetic vision in rats with subretinal flat and pillar electrode arrays. J. Neural Eng. 16, 066027 (2019).
Google Scholar
Prévot, P. H. et al. Behavioral responses to a photovoltaic subretinal prosthesis implanted in non-human primates. Nat. Biomed. Eng. 4, 172–180 (2020).
Google Scholar
Martino, N. et al. Photothermal cellular stimulation in functional biopolymer interfaces. Sci. Rep. 5, 8911 (2015).
Google Scholar
Ren, Y.-M., Weng, C. H., Zhao, C. J. & Yin, Z. Q. Changes in intrinsic excitability of ganglion cells in degenerated retinas of RCS rats. Int. J. Ophthalmol. 11, 756–765 (2018).
Lorach, H. et al. Photovoltaic restoration of sight with high visual acuity. Nat. Med. 21, 476–482 (2015).
Google Scholar
Mandel, Y. et al. Cortical responses elicited by photovoltaic subretinal prostheses exhibit similarities to visually evoked potentials. Nat. Commun. 4, 1980 (2013).
Google Scholar
Lanzani, G. The Photophysics behind Photovoltaics and Photonics (Wiley-VCH Verlag & Co., 2012).
Sacco, R., Guidoboni, G. & Mauri A. G. A Comprehensive Physically Based Approach to Modeling in Bioengineering and Life Sciences (Academic, 2019).
Palanker, D., Głowacki, E. D. & Ghezzi, D. Questions about the role of P3HT nanoparticles in retinal stimulation. Nat. Nanotechnol. https://doi.org/10.1038/s41565-021-01044-6 (2021).
Lin, B., Masland, R. H. & Strettoi, E. Remodeling of cone photoreceptor cells after rod degeneration in rd mice. Exp. Eye Res. 88, 589–599 (2009).
Google Scholar
Werginz, P., Benav, H., Zrenner, E. & Rattay, F. Modeling the response of on and off retinal bipolar cells during electric stimulation. Vision Res. 111, 170–181 (2015).
Google Scholar
Lorach, H. et al. Long-term rescue of photoreceptors in a rodent model of retinitis pigmentosa associated with MERTK mutation. Sci. Rep. 8, 11312 (2018).
Google Scholar
Pu, M., Xu, L. & Zhang, H. Visual response properties of retinal ganglion cells in the Royal College of Surgeons dystrophic rat. Invest. Ophthalmol. Vis. Sci. 47, 3579–3585 (2006).
Google Scholar
McGill, T. J., Douglas, R. M., Lund, R. D. & Prusky, G. T. Quantification of spatial vision in the Royal College of Surgeons rat. Invest. Ophthalmol. Vis. Sci. 45, 932–936 (2004).
Google Scholar
Benfenati, F. & Lanzani, G. Clinical translation of nanoparticles for neural stimulation. Nat. Rev. Mater. 6, 1–4 (2021).
Google Scholar
Rommelfanger, N. J. & Hong, G. Conjugated polymers enable a liquid retina prosthesis. Trends Chem. 2, 961–964 (2020).
Google Scholar

