Brittain, G. C. et al. A novel semiconductor-based flow cytometer with enhanced light-scatter sensitivity for the analysis of biological nanoparticles. Sci. Rep. 9(1), 16039 (2019).
Google Scholar
Van der Pol, E., van Leeuwen, T. G. & Yan, X. Misinterpretation of solid sphere equivalent refractive index measurements and smallest detectable diameters of extracellular vesicles by flow cytometry. Sci. Rep. https://doi.org/10.1038/s41598-021-03015-2 (2021).
Tinker, D. O. Light scattering by phospholipid dispersions: Theory of light scattering by hollow spherical particles. Chem. Phys. Lipids 8(3), 230–257 (1972).
Google Scholar
Roth, J. & Dignam, M. J. Scattering and extinction cross sections for a spherical particle coated with an oriented molecular layer. J. Opt. Soc. Am. 63(3), 308–311 (1973).
Google Scholar
Pecora, R. & Aragón, S. R. Theory of light scattering from hollow spheres. Chem. Phys. Lipids 13(1), 1–10 (1974).
Google Scholar
Bohren, C. F. Scattering of electromagnetic waves by an optically active spherical shell. J. Chem. Phys. 62(4), 1566–1571 (1975).
Google Scholar
Bickel, W. S., Davidson, J. F., Huffman, D. R. & Kilkson, R. Application of polarization effects in light scattering: A new biophysical tool. Proc. Natl. Acad. Sci. U.S.A. 73(2), 486–490 (1976).
Google Scholar
Aragón, S. R. & Pecora, R. Anisotropic light scattering from phospholipid vesicles. J. Colloid Interface Sci. 89(1), 170–184 (1982).
Google Scholar
Aragón, S. R. & Elwenspoek, M. Mie scattering from thin spherical bubbles. J. Chem. Phys. 77(7), 3406–3413 (1982).
Google Scholar
Lange, B. & Aragón, S. R. Mie scattering from thin anisotropic spherical shells. J. Chem. Phys. 92(8), 4643–4650 (1990).
Google Scholar
Hahn, D. K. & Aragon, S. R. Mie scattering from anisotropic thick spherical shells. J. Chem. Phys. 101(10), 8409–8417 (1994).
Google Scholar
Liu, D. H., Xu, C. & Hiu, P. M. Effects of a coating of spherically anisotropic material in core–shell particles. Appl. Phys. Lett. 92, 181901. https://doi.org/10.1063/1.2911724 (2008).
Google Scholar
Lentz, B. R., Barenholz, Y. & Thompson, T. E. Fluorescence depolarization studies of phase transitions and fluidity in phospholipid bilayers. 2. Two-component phosphatidylcholine liposomes. Biochemistry 15(20), 4529–4537 (1976).
Google Scholar
Brumm, T., Jørgensen, K., Mouritsen, O. G. & Bayer, T. M. The effect of increasing membrane curvature on the phase transition and mixing behavior of a dimyristoyl-sn-glycero-3-phosphatidylcholine/distearoyl-sn-glycero-3-phosphatidylcholine lipid mixture as studied by Fourier transform infrared spectroscopy and differential scanning calorimetry. Biophys. J. 70(3), 1373–1379 (1996).
Google Scholar
Martinsen, Ø. G., Grimnes, S. & Schwan, H. P. Interface phenomena and dielectric properties of biological tissue. In Encyclopedia of Surface and Colloid Science (ed. Hubbard, A. T.) 2643–2652 (Marcel Dekker Inc., 2002).
Ahmed, S. & Wunder, S. L. Effect of high surface curvature on the main phase transition of supported phospholipid bilayers on SiO2 nanoparticles. Langmuir 25(6), 3682–3691 (2009).
Google Scholar
Heimburg, T. The capacitance and electromechanical coupling of lipid membranes close to transitions: The effect of electrostriction. Biophys. J. 103(5), 918–929 (2012).
Google Scholar
Karmakar, S. Particle size distribution and zeta potential based on dynamic light scattering: Techniques to characterize stability and surface charge distribution of charged colloids. In Recent Trends in Materials: Physics and Chemistry, Ch 5 (ed. Sur, U. J.) 117–159 (Studium Press (India) Pvt Ltd, 2019).
Hackley, V. A. & Clogston, J. D. Measuring the size of nanoparticles in aqueous media using batch-mode dynamic light scattering. NIST-NCL joint assay protocol, PCC-1, v1.2. NIST Special Publication 1200-6, 1–14 (2015).
Koppel, D. E. Analysis of macromolecular polydispersity in intensity correlation spectroscopy: The method of cumulants. J. Chem. Phys. 57(11), 4814–4819 (1972).
Google Scholar
Badran, M. Formulation and in vitro evaluation of flufenamic acid loaded deformable liposomes for improved skin delivery. Dig. J. Nanomater. Biostructures 9(1), 83–91 (2014).
Kesimer, M. & Gupta, R. Physical characterization and profiling of airway epithelial derived exosomes using light scattering. Methods 87, 59–63 (2015).
Google Scholar
Danaei, M. et al. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics 10(2), 57. https://doi.org/10.3390/pharmaceutics10020057 (2018).
Google Scholar
Mailer, A. G., Clegg, P. S. & Pusey, P. N. Particle sizing by dynamic light scattering: Non-linear cumulant analysis. J. Phys. Condens. Matter 27(14), 145102. https://doi.org/10.1088/0953-8984/27/14/145102 (2015).
Google Scholar
der Pol, V. et al. Optical and non-optical methods for detection and characterization of microparticles and exosomes. J. Thromb. Haemost. 8(12), 2596–2607 (2010).
Google Scholar
Anderson, W., Kozak, D., Coleman, V. A., Jämting, Å. K. & Trau, M. A comparative study of submicron particle sizing platforms: Accuracy, precision and resolution analysis of polydisperse particle size distributions. J. Colloid Interface Sci. 405, 322–330 (2013).
Google Scholar
Doane, D. P. & Seward, L. E. Measuring Skewness: A forgotten statistic?. J. Stat. Educ. 19(2), 1–18 (2011).
Google Scholar
Kim, H.-Y. Statistical notes for clinical researchers: Assessing normal distribution (2) using skewness and kurtosis. Restor. Dent. Endod. 38(1), 52–54 (2013).
Google Scholar
Zhu, S. et al. Light-scattering detection below the level of single fluorescent molecules for high-resolution characterization of functional nanoparticles. ACS Nano 8, 10998–11006 (2014).
Google Scholar
Goodwin, P. M. et al. Rapid sizing of individual fluorescently stained DNA fragments by flow cytometry. Nucleic Acids Res. 21(4), 803–806 (1993).
Google Scholar
Yan, X. et al. Characteristics of different nucleic acid staining dyes for DNA fragment sizing by flow cytometry. Anal. Chem. 71, 5470–5480 (1999).
Google Scholar

