Preloader

Reply to: Misinterpretation of solid sphere equivalent refractive index measurements and smallest detectable diameters of extracellular vesicles by flow cytometry

  • 1.

    Brittain, G. C. et al. A novel semiconductor-based flow cytometer with enhanced light-scatter sensitivity for the analysis of biological nanoparticles. Sci. Rep. 9(1), 16039 (2019).

    ADS 
    MathSciNet 
    Article 

    Google Scholar 

  • 2.

    Van der Pol, E., van Leeuwen, T. G. & Yan, X. Misinterpretation of solid sphere equivalent refractive index measurements and smallest detectable diameters of extracellular vesicles by flow cytometry. Sci. Rep. https://doi.org/10.1038/s41598-021-03015-2 (2021).

  • 3.

    Tinker, D. O. Light scattering by phospholipid dispersions: Theory of light scattering by hollow spherical particles. Chem. Phys. Lipids 8(3), 230–257 (1972).

    CAS 
    Article 

    Google Scholar 

  • 4.

    Roth, J. & Dignam, M. J. Scattering and extinction cross sections for a spherical particle coated with an oriented molecular layer. J. Opt. Soc. Am. 63(3), 308–311 (1973).

    ADS 
    Article 

    Google Scholar 

  • 5.

    Pecora, R. & Aragón, S. R. Theory of light scattering from hollow spheres. Chem. Phys. Lipids 13(1), 1–10 (1974).

    CAS 
    Article 

    Google Scholar 

  • 6.

    Bohren, C. F. Scattering of electromagnetic waves by an optically active spherical shell. J. Chem. Phys. 62(4), 1566–1571 (1975).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 7.

    Bickel, W. S., Davidson, J. F., Huffman, D. R. & Kilkson, R. Application of polarization effects in light scattering: A new biophysical tool. Proc. Natl. Acad. Sci. U.S.A. 73(2), 486–490 (1976).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 8.

    Aragón, S. R. & Pecora, R. Anisotropic light scattering from phospholipid vesicles. J. Colloid Interface Sci. 89(1), 170–184 (1982).

    ADS 
    Article 

    Google Scholar 

  • 9.

    Aragón, S. R. & Elwenspoek, M. Mie scattering from thin spherical bubbles. J. Chem. Phys. 77(7), 3406–3413 (1982).

    ADS 
    Article 

    Google Scholar 

  • 10.

    Lange, B. & Aragón, S. R. Mie scattering from thin anisotropic spherical shells. J. Chem. Phys. 92(8), 4643–4650 (1990).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 11.

    Hahn, D. K. & Aragon, S. R. Mie scattering from anisotropic thick spherical shells. J. Chem. Phys. 101(10), 8409–8417 (1994).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 12.

    Liu, D. H., Xu, C. & Hiu, P. M. Effects of a coating of spherically anisotropic material in core–shell particles. Appl. Phys. Lett. 92, 181901. https://doi.org/10.1063/1.2911724 (2008).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 13.

    Lentz, B. R., Barenholz, Y. & Thompson, T. E. Fluorescence depolarization studies of phase transitions and fluidity in phospholipid bilayers. 2. Two-component phosphatidylcholine liposomes. Biochemistry 15(20), 4529–4537 (1976).

    CAS 
    Article 

    Google Scholar 

  • 14.

    Brumm, T., Jørgensen, K., Mouritsen, O. G. & Bayer, T. M. The effect of increasing membrane curvature on the phase transition and mixing behavior of a dimyristoyl-sn-glycero-3-phosphatidylcholine/distearoyl-sn-glycero-3-phosphatidylcholine lipid mixture as studied by Fourier transform infrared spectroscopy and differential scanning calorimetry. Biophys. J. 70(3), 1373–1379 (1996).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 15.

    Martinsen, Ø. G., Grimnes, S. & Schwan, H. P. Interface phenomena and dielectric properties of biological tissue. In Encyclopedia of Surface and Colloid Science (ed. Hubbard, A. T.) 2643–2652 (Marcel Dekker Inc., 2002).

    Google Scholar 

  • 16.

    Ahmed, S. & Wunder, S. L. Effect of high surface curvature on the main phase transition of supported phospholipid bilayers on SiO2 nanoparticles. Langmuir 25(6), 3682–3691 (2009).

    CAS 
    Article 

    Google Scholar 

  • 17.

    Heimburg, T. The capacitance and electromechanical coupling of lipid membranes close to transitions: The effect of electrostriction. Biophys. J. 103(5), 918–929 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 18.

    Karmakar, S. Particle size distribution and zeta potential based on dynamic light scattering: Techniques to characterize stability and surface charge distribution of charged colloids. In Recent Trends in Materials: Physics and Chemistry, Ch 5 (ed. Sur, U. J.) 117–159 (Studium Press (India) Pvt Ltd, 2019).

    Google Scholar 

  • 19.

    Hackley, V. A. & Clogston, J. D. Measuring the size of nanoparticles in aqueous media using batch-mode dynamic light scattering. NIST-NCL joint assay protocol, PCC-1, v1.2. NIST Special Publication 1200-6, 1–14 (2015).

  • 20.

    Koppel, D. E. Analysis of macromolecular polydispersity in intensity correlation spectroscopy: The method of cumulants. J. Chem. Phys. 57(11), 4814–4819 (1972).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 21.

    Badran, M. Formulation and in vitro evaluation of flufenamic acid loaded deformable liposomes for improved skin delivery. Dig. J. Nanomater. Biostructures 9(1), 83–91 (2014).

    Google Scholar 

  • 22.

    Kesimer, M. & Gupta, R. Physical characterization and profiling of airway epithelial derived exosomes using light scattering. Methods 87, 59–63 (2015).

    CAS 
    Article 

    Google Scholar 

  • 23.

    Danaei, M. et al. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics 10(2), 57. https://doi.org/10.3390/pharmaceutics10020057 (2018).

    CAS 
    Article 
    PubMed Central 

    Google Scholar 

  • 24.

    Mailer, A. G., Clegg, P. S. & Pusey, P. N. Particle sizing by dynamic light scattering: Non-linear cumulant analysis. J. Phys. Condens. Matter 27(14), 145102. https://doi.org/10.1088/0953-8984/27/14/145102 (2015).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 25.

    der Pol, V. et al. Optical and non-optical methods for detection and characterization of microparticles and exosomes. J. Thromb. Haemost. 8(12), 2596–2607 (2010).

    Article 

    Google Scholar 

  • 26.

    Anderson, W., Kozak, D., Coleman, V. A., Jämting, Å. K. & Trau, M. A comparative study of submicron particle sizing platforms: Accuracy, precision and resolution analysis of polydisperse particle size distributions. J. Colloid Interface Sci. 405, 322–330 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 27.

    Doane, D. P. & Seward, L. E. Measuring Skewness: A forgotten statistic?. J. Stat. Educ. 19(2), 1–18 (2011).

    Article 

    Google Scholar 

  • 28.

    Kim, H.-Y. Statistical notes for clinical researchers: Assessing normal distribution (2) using skewness and kurtosis. Restor. Dent. Endod. 38(1), 52–54 (2013).

    Article 

    Google Scholar 

  • 29.

    Zhu, S. et al. Light-scattering detection below the level of single fluorescent molecules for high-resolution characterization of functional nanoparticles. ACS Nano 8, 10998–11006 (2014).

    CAS 
    Article 

    Google Scholar 

  • 30.

    Goodwin, P. M. et al. Rapid sizing of individual fluorescently stained DNA fragments by flow cytometry. Nucleic Acids Res. 21(4), 803–806 (1993).

    CAS 
    Article 

    Google Scholar 

  • 31.

    Yan, X. et al. Characteristics of different nucleic acid staining dyes for DNA fragment sizing by flow cytometry. Anal. Chem. 71, 5470–5480 (1999).

    CAS 
    Article 

    Google Scholar 

  • Source link