Preloader

Rational design of a helical peptide inhibitor targeting c-Myb–KIX interaction

  • 1.

    Wright, P. E. & Dyson, H. J. Intrinsically unstructured proteins: Re-assessing the protein structure-function paradigm. J. Mol. Biol. 293, 321–331 (1999).

    CAS 
    PubMed 

    Google Scholar 

  • 2.

    Dunker, A. K. et al. Intrinsically disordered protein. J. Mol. Graph. Model. 19, 26–59 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • 3.

    Dyson, H. J. & Wright, P. E. Intrinsically unstructured proteins and their functions. Nat. Rev. Mol. Cell. Biol. 6, 197–208 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • 4.

    Wright, P. E. & Dyson, H. J. Intrinsically disordered proteins in cellular signalling and regulation. Nat. Rev. Mol. Cell. Biol. 16, 18–29 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 5.

    Uversky, V. N., Oldfield, C. J. & Dunker, A. K. Intrinsically disordered proteins in human diseases: Introducing the D2 concept. Annu. Rev. Biophys. 37, 215–246 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • 6.

    Greig, K. T., Carotta, S. & Nutt, S. L. Critical roles for c-Myb in hematopoietic progenitor cells. Semin. Immunol. 20, 247–256 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • 7.

    Ramsay, R. G. & Gonda, T. J. MYB function in normal and cancer cells. Nat. Rev. Cancer 8, 523–534 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • 8.

    Wang, X., Angelis, N. & Thein, S. L. MYB: A regulatory factor in hematopoiesis. Gene 665, 6–17 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 9.

    Oh, I. H. & Reddy, E. P. The myb gene family in cell growth, differentiation and apoptosis. Oncogene 18, 3017–3033 (1999).

    CAS 
    PubMed 

    Google Scholar 

  • 10.

    Biroccio, A. et al. c-Myb and Bcl-x overexpression predicts poor prognosis in colorectal cancer: Clinical and experimental findings. Am. J. Pathol. 158, 1289–1299 (2001).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 11.

    Drabsch, Y. et al. Mechanism of and requirement for estrogen-regulated MYB expression in estrogen-receptor-positive breast cancer cells. Proc. Natl. Acad. Sci. USA 104, 13762–13767 (2007).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • 12.

    Miao, R. Y. et al. MYB is essential for mammary tumorigenesis. Cancer Res. 71, 7029–7037 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • 13.

    Zuber, J. et al. An integrated approach to dissecting oncogene addiction implicates a Myb-coordinated self-renewal program as essential for leukemia maintenance. Genes Dev. 25, 1628–1640 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 14.

    Pattabiraman, D. R. & Gonda, T. J. Role and potential for therapeutic targeting of MYB in leukemia. Leukemia 27, 269–277 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • 15.

    Liu, X., Gold, K. A. & Dmitrovsky, E. The Myb-p300 interaction is a novel molecular pharmacologic target. Mol. Cancer Ther. 14, 1273–1275 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 16.

    Mitra, P. Transcription regulation of MYB: A potential and novel therapeutic target in cancer. Ann. Transl. Med. 6, 443 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 17.

    Ciciro, Y. & Sala, A. MYB oncoproteins: Emerging players and potential therapeutic targets in human cancer. Oncogenesis 10, 19 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 18.

    Best, J. L. et al. Identification of small-molecule antagonists that inhibit an activator: coactivator interaction. Proc. Natl. Acad. Sci. USA 101, 17622–17627 (2004).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • 19.

    Li, B. X. & Xiao, X. Discovery of a small-molecule inhibitor of the KIX-KID interaction. ChemBioChem 10, 2721–2724 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 20.

    Uttarkar, S. et al. Targeting acute myeloid leukemia with a small molecule inhibitor of the Myb/p300 interaction. Blood 127, 1173–1182 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 21.

    Lu, H. et al. Recent advances in the development of protein-protein interactions modulators: mechanisms and clinical trials. Signal Transduct. Target. Ther. 5, 213. https://doi.org/10.1038/s41392-020-00315-3 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 22.

    Tsomaia, N. Peptide therapeutics: Targeting the undruggable space. Eur. J. Med. Chem. 94, 459–470 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 23.

    Lee, A. C., Harris, J. L., Khanna, K. K. & Hong, J. H. A comprehensive review on current advances in peptide drug development and design. Int. J. Mol. Sci. 20, 2383. https://doi.org/10.3390/ijms20102383 (2019).

    CAS 
    Article 
    PubMed Central 

    Google Scholar 

  • 24.

    Sakura, H. et al. Delineation of three functional domains of the transcriptional activator encoded by the c-myb protooncogene. Proc. Natl. Acad. Sci. USA 86, 5758–5762 (1989).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • 25.

    Ogata, K. et al. Solution structure of a DNA-binding unit of Myb: A helix-turn-helix-related motif with conserved tryptophans forming a hydrophobic core. Proc. Natl. Acad. Sci. USA 89, 6428–6432 (1992).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • 26.

    Aziz, N. et al. Modulation of c-Myb-induced transcription activation by a phosphorylation site near the negative regulatory domain. Proc. Natl. Acad. Sci. USA 92, 6429–6433 (1995).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • 27.

    Bies, J. & Wolff, L. Oncogenic activation of c-Myb by carboxyl-terminal truncation leads to decreased proteolysis by the ubiquitin-26S proteasome pathway. Oncogene 14, 203–212 (1997).

    CAS 
    PubMed 

    Google Scholar 

  • 28.

    Bies, J., Markus, J. & Wolff, L. Covalent attachment of the SUMO-1 protein to the negative regulatory domain of the c-Myb transcription factor modifies its stability and transactivation capacity. J. Biol. Chem. 277, 8999–9009 (2002).

    CAS 
    PubMed 

    Google Scholar 

  • 29.

    Radhakrishnan, I. et al. Solution structure of the KIX domain of CBP bound to the transactivation domain of CREB: A model for activator:coactivator interactions. Cell 91, 741–752 (1997).

    CAS 
    PubMed 

    Google Scholar 

  • 30.

    Zor, T., De Guzman, R. N., Dyson, H. J. & Wright, P. E. Solution structure of the KIX domain of CBP bound to the transactivation domain of c-Myb. J. Mol. Biol. 337, 521–534 (2004).

    CAS 
    PubMed 

    Google Scholar 

  • 31.

    Lee, C. W., Arai, M., Martinez-Yamout, M. A., Dyson, H. J. & Wright, P. E. Mapping the interactions of the p53 transactivation domain with the KIX domain of CBP. Biochemistry 48, 2115–2124 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • 32.

    Van Orden, K., Giebler, H. A., Lemasson, I., Gonzales, M. & Nyborg, J. K. Binding of p53 to the KIX domain of CREB binding protein: A potential link to human T-cell leukemia virus, type I-associated leukemogenesis. J. Biol. Chem. 274, 26321–26328 (1999).

    PubMed 

    Google Scholar 

  • 33.

    Campbell, K. M. & Lumb, K. J. Structurally distinct modes of recognition of the KIX domain of CBP by Jun and CREB. Biochemistry 41, 13956–13964 (2002).

    CAS 
    PubMed 

    Google Scholar 

  • 34.

    Vendel, A. C. & Lumb, K. J. Molecular recognition of the human coactivator CBP by the HIV-1 transcriptional activator Tat. Biochemistry 42, 910–916 (2003).

    CAS 
    PubMed 

    Google Scholar 

  • 35.

    De Guzman, R. N., Goto, N. K., Dyson, H. J. & Wright, P. E. Structural basis for cooperative transcription factor binding to the CBP coactivator. J. Mol. Biol. 355, 1005–1013 (2006).

    PubMed 

    Google Scholar 

  • 36.

    Yang, K. et al. Structural basis for cooperative regulation of KIX-mediated transcription pathways by the HTLV-1 HBZ activation domain. Proc. Natl. Acad. Sci. USA 115, 10040–10045 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 37.

    Zor, T., Mayr, B. M., Dyson, H. J., Montminy, M. R. & Wright, P. E. Roles of phosphorylation and helix propensity in the binding of the KIX domain of CREB-binding protein by constitutive (c-Myb) and inducible (CREB) activators. J. Biol. Chem. 277, 42241–42248 (2002).

    CAS 
    PubMed 

    Google Scholar 

  • 38.

    Arai, M., Sugase, K., Dyson, H. J. & Wright, P. E. Conformational propensities of intrinsically disordered proteins influence the mechanism of binding and folding. Proc. Natl. Acad. Sci. USA 112, 9614–9619 (2015).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • 39.

    Poosapati, A., Gregory, E., Borcherds, W. M., Chemes, L. B. & Daughdrill, G. W. Uncoupling the folding and binding of an intrinsically disordered protein. J. Mol. Biol. 430, 2389–2402 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 40.

    Arai, M. Unified understanding of folding and binding mechanisms of globular and intrinsically disordered proteins. Biophys. Rev. 10, 163–181 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 41.

    Muñoz, V. & Serrano, L. Elucidating the folding problem of helical peptides using empirical parameters. Nat. Struct. Biol. 1, 399–409 (1994).

    PubMed 

    Google Scholar 

  • 42.

    Muñoz, V. & Serrano, L. Elucidating the folding problem of helical peptides using empirical parameters II. Helix macrodipole effects and rational modification of the helical content of natural peptides. J. Mol. Biol. 245, 275–296 (1995).

    PubMed 

    Google Scholar 

  • 43.

    Lacroix, E., Viguera, A. R. & Serrano, L. Elucidating the folding problem of α-helices: Local motifs, long-range electrostatics, ionic-strength dependence and prediction of NMR parameters. J. Mol. Biol. 284, 173–191 (1998).

    CAS 
    PubMed 

    Google Scholar 

  • 44.

    Petukhov, M. et al. Design of stable α-helices using global sequence optimization. J. Pept. Sci. 15, 359–365 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • 45.

    Garcia-Aranda, M. I. et al. Helical peptides from VEGF and Vammin hotspots for modulating the VEGF-VEGFR interaction. Org. Biomol. Chem. 11, 1896–1905 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • 46.

    Bonache, M. A. et al. De novo designed library of linear helical peptides: An exploratory tool in the discovery of protein-protein interaction modulators. ACS Comb. Sci. 16, 250–258 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • 47.

    Karoyan, P. et al. Human ACE2 peptide-mimics block SARS-CoV-2 pulmonary cells infection. Commun. Biol. 4, 197. https://doi.org/10.1038/s42003-021-01736-8 (2021).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 48.

    Parker, D. et al. Role of secondary structure in discrimination between constitutive and inducible activators. Mol. Cell. Biol. 19, 5601–5607 (1999).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 49.

    Langlois, C. et al. Structure-based design of a potent artificial transactivation domain based on p53. J. Am. Chem. Soc. 134, 1715–1723 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • 50.

    Borcherds, W. et al. Disorder and residual helicity alter p53-Mdm2 binding affinity and signaling in cells. Nat. Chem. Biol. 10, 1000–1002 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • 51.

    Iešmantavičius, V., Dogan, J., Jemth, P., Teilum, K. & Kjaergaard, M. Helical propensity in an intrinsically disordered protein accelerates ligand binding. Angew. Chem. Int. Ed. Engl. 53, 1548–1551 (2014).

    PubMed 

    Google Scholar 

  • 52.

    Crabtree, M. D. et al. Conserved helix-flanking prolines modulate intrinsically disordered protein: Target affinity by altering the lifetime of the bound complex. Biochemistry 56, 2379–2384 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • 53.

    Dahal, L., Kwan, T. O. C., Hollins, J. J. & Clarke, J. Promiscuous and selective: How intrinsically disordered BH3 proteins interact with their pro-survival partner MCL-1. J. Mol. Biol. 430, 2468–2477 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 54.

    Tompa, P. & Fuxreiter, M. Fuzzy complexes: Polymorphism and structural disorder in protein-protein interactions. Trends Biochem. Sci. 33, 2–8 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • 55.

    Wolny, M. et al. Characterization of long and stable de novo single alpha-helix domains provides novel insight into their stability. Sci. Rep. 7, 44341. https://doi.org/10.1038/srep44341 (2017).

    CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • 56.

    Mohan, A. et al. Analysis of molecular recognition features (MoRFs). J. Mol. Biol. 362, 1043–1059 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • 57.

    Guharoy, M. & Chakrabarti, P. Secondary structure based analysis and classification of biological interfaces: Identification of binding motifs in protein-protein interactions. Bioinformatics 23, 1909–1918 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • 58.

    Jochim, A. L. & Arora, P. S. Assessment of helical interfaces in protein-protein interactions. Mol. Biosyst. 5, 924–926 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 59.

    Klein, M. A. Stabilized helical peptides: A strategy to target protein-protein interactions. ACS Med. Chem. Lett. 5, 838–839 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 60.

    Klein, M. Stabilized helical peptides: Overview of the technologies and its impact on drug discovery. Expert Opin. Drug Discov. 12, 1117–1125 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • 61.

    Ramaswamy, K. et al. Peptidomimetic blockade of MYB in acute myeloid leukemia. Nat. Commun. 9, 110. https://doi.org/10.1038/s41467-017-02618-6 (2018).

    CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • 62.

    Wang, F. et al. Recent progress of cell-penetrating peptides as new carriers for intracellular cargo delivery. J. Control. Release 174, 126–136 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • 63.

    Yang, N. J. & Hinner, M. J. Getting across the cell membrane: An overview for small molecules, peptides, and proteins. Methods Mol. Biol. 1266, 29–53 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 64.

    Matsson, P. & Kihlberg, J. How big is too big for cell permeability?. J. Med. Chem. 60, 1662–1664 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • 65.

    Fraczkiewicz, R. & Braun, W. Exact and efficient analytical calculation of the accessible surface areas and their gradients for macromolecules. J. Comput. Chem. 19, 319–333 (1998).

    CAS 

    Google Scholar 

  • 66.

    Hoover, D. M. & Lubkowski, J. DNAWorks: An automated method for designing oligonucleotides for PCR-based gene synthesis. Nucleic Acids Res. 30, e43 (2002).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 67.

    Chen, Y. H., Yang, J. T. & Martinez, H. M. Determination of the secondary structures of proteins by circular dichroism and optical rotatory dispersion. Biochemistry 11, 4120–4131 (1972).

    CAS 
    PubMed 

    Google Scholar 

  • Source link