Here, we summarized the development of the remote care platform aligning with the 3-step iterative biodesign process. We collected VOC data during prototype development to identify user needs and aligned our development efforts accordingly. Subsequently, we tested the remote care platform in a clinical environment with a proof-of-concept study to establish feasibility and characterize safety in a real-world setting. We then integrated features based on lessons learned from the study into subsequent development which was validated along with the workflow with human factors usability testing. The development efforts resulted in first regulatory approval (in the United States) and subsequent product launch of the remote care platform in March 2021 (Fig. 1). This was followed by CE-mark and TGA approvals of the remote care platform leading to product launch in Europe and Australia in October 2021.
The VOC data, during prototype development, helped us identify thresholds for video quality and needs priorities for clinicians. The video quality stress test demonstrated that to be below the bit-rate threshold, artificial throttling, not usual in typical use cases, was required. Through patient interviews, we established that patients are familiar with base technology upon which the remote care platform was developed. Specifically, responses relating to experience with video-conferencing enabled the development team to design an interface that would be easy-to-adopt for patients. These findings served as the foundation for a user-centric design of the remote care platform.
In the pilot study, where patients and clinicians engaged with the remote platform in a real-world setting, ten subjects were able to successfully connect with their remote clinician using the remote care platform. The remote clinician could modulate a range of programming parameters including, amplitude, frequency, pulse width and contact selection (longitudinal, radial, and directional) in real time simultaneous with audio-visual assessment. The remote clinician also tested the feasibility of this system with successful connections from variable settings (a different room in the clinic, a remote urban and a rural setting). The primary objective of the study was to characterize the safety of remote–care-related AEs; therefore, a group-level comparison between the RC and SOC groups was not within the scope of this study. During the primary endpoint duration, only one subject reported remote–care-related AEs, specifically due to loss of connectivity between the CP and PC devices. The AEs experienced by this subject were anticipated, categorized as worsening of the clinical condition, and resolved without sequalae. Protected recovery program in the prototype version of the platform, employed in study, was defined as the last saved checkpoint on the IPG. For this patient, the checkpoint was saved with DBS off, resulting in the observed adverse event. This PRP feature was improved during final product development to enable the clinician to define a more optimal program. There were no unanticipated or serious AEs reported during the study.
During the final product development, novel features were integrated to mitigate the challenges identified through VOC analysis and real-world feasibility data from the pilot experience. The usability analysis also demonstrated that the workflow associated with the addition of the remote care feature can be seamlessly adopted by patients and clinicians. For both populations, the failure rate for tasks was about 1%, implying that with increased use and familiarity, this rate may drop further. Additionally, none of the failures occurred for tasks that could lead to patient harm.
The development culminated into a limited market release of the remote care platform. A preliminary assessment of the data collected within the first 4 weeks demonstrates the performance of the remote care system in an uncontrolled setting. Additionally, it underscores the value of a scalable backend. Though the users supported tripled the anticipated number in the first four weeks, the rate for unsuccessful remote session connections remained low. Lastly, the increased number of users further illustrates the growing need and overall willingness to adopt this digital health technology to mitigate current and previously existing challenges with neuromodulation care.
We developed the remote care platform, currently available on iOS, to address the growing care access burden for patients, clinicians, and caregivers. The platform was uniquely architected to leverage existing mobile platforms without the need for any extra hardware components, enabling a shallow learning curve for patients and clinicians. External sensors, such as built-in mobile cameras, enabled high-resolution audio–video sessions and facilitated real-time evaluation of symptoms. Our development efforts were iterative; we identified an unmet patient need with respect to care access burden, designed the initial technology for use in the pilot study and subsequently, integrated features informed by lessons learned in the study to advance towards a patient-centric remote care platform that was further evaluated with a preliminary limited market release experience. In the study, issues related to connectivity were most common among the technical concerns related to the platform. In response, the PRP feature was refined to address unanticipated network interruptions, and a color-coded network monitor was added to the UI to mitigate the need for robustness of system connectivity. Additionally, nuances of system usability were refined for a more robust and comfortable remote care experience. Usability testing, pilot testing, and real-world adoption demonstrate that the system provides a mechanism for patients to access diagnostic or treatment services for their neuromodulation system when they do not have access to in-person services. Further, use of the system may be expected to provide rapid treatment in cases where in-person treatment is delayed (ex: patients needing to travel long distances to see their care provider).
Technological progress in the field of neuromodulation has thus far depended on hardware-based improvements such as implantable device miniaturization and improved geometry of electrodes. However, currently, there is a need for digital solutions that can extend care beyond the clinic to address growing care-access burden and to evaluate patient concerns in real-world scenarios. Previous systems that have attempted to remotely connect patients and clinicians are cumbersome and often contain multiple components. Most systems only provide a video platform, requiring the patient to adjust their own programming settings within previously programmed parameter ranges. Other platforms, such as the PINS and SceneRay systems recently investigated in China, require multiple hardware components to integrate the video interaction with therapy adjustments28,29. In contrast, our remote care system leverages existing mobile technology to initiate an audio/video interaction simultaneously to activating a data channel for sending therapy commands. Though two channels are activated to ensure safety of data while in rest or transit, the users only need to interact with a single interface, minimizing overall burden of use. Moreover, our platform can be used with patient’s personal mobile devices (ex: personal iPhone) further minimizing the user burden of multiple device management. Currently, there are no other remote care systems that are completely wireless, and enable simultaneous modulation and monitoring as demonstrated in the platform presented here28,29. Novel technical features integrated in the remote care system described, and the overall user experience, are focused on empowering the patient during the remote session: (1) Patient-initiated process ensures that the patient is always in control of their therapy; (2) Addition of remote care features on existing interface allows for seamless adoption of the new platform; (3) Safety-first foundation of the system is architected with multiple layers of security to adequately protect patient data and session communication; (4) Color-coded indication about session connectivity is presented with the network monitor to communicate the quality of the connection; (5) Ability for the clinician to comprehensively prescribe programming changes remotely to account for fluctuating symptoms and side-effects; and (6) A fail-safe mechanism with the PRP feature that can be customized by the clinician to ensure that patient is on optimal settings regardless of unanticipated communication loss during the session.
Certain limitations were associated with the pilot study; it only evaluated the feasibility of the remote care platform and characterized the remote–care-related safety. Future studies, that are appropriately powered will characterize the clinical, psychosocial, and economic benefits over time with the use of the remote care platform. Additionally, COVID-19-related restrictions led to several disruptions during the data collection phase. Endpoint measures at the 3-week visit were captured over the phone for many subjects due to pandemic-related travel and clinic attendance restrictions. However, the pandemic has emphasized the importance of such remote care platforms and the need to address the imminent challenge of safely accessing healthcare options. The crisis has impacted the management of several chronic conditions, including PD and chronic pain, and has magnified the existing limitations several folds. Visiting care providers for a routine check or iterative adjustments to programming settings is measured against the risk of exposure to the virus. Often, the patient cohort receiving neuromodulation therapy falls in the vulnerable category, especially the elderly with challenging mobility, comorbid medical conditions, and compromised immune systems30. While the COVID-19 pandemic has introduced new challenges, it is worth noting existing gaps in care access that existed previously will remain if such technologies are not available and accessible to patients and clinicians.
This remote care platform is a major milestone to springboard patient-centric neuromodulation innovation. The field recognizes the heterogeneity of patients who are candidates for neuromodulation therapy. Therefore, patient assessments in real-world settings are essential to help clinicians better understand clinical outcomes and aid in appropriate patient selection. Future versions of the remote care platform may be integrated with remote monitoring. Current evidence on using remote monitoring with wearables, on-mobile sensors, and body-worn sensors to classify disease-related states is promising10,31,32. An integrated therapy application that is available on the patient’s mobile device is an opportunity to this data as it becomes integral to clinical decision-making in neuromodulation33. These data sets can be analyzed to further improve future therapeutics and to identify user-specific gaps and personalize care.

