An, H. E., Lee, K. H., Jang, Y. W., Kim, C. B. & Yoo, H. Y. Improved glucose recovery from Sicyos angulatus by NaOH pretreatment and application to bioethanol production. Processes 9(2), 245. https://doi.org/10.3390/pr9020245 (2021).
Google Scholar
Lee, J. H. et al. Continuous production of bioethanol using microalgal sugars extracted from Nannochloropsis gaditana. Korean J. Chem. Eng. 36(1), 71–76. https://doi.org/10.1007/s11814-018-0173-y (2019).
Google Scholar
Lee, K. H. et al. Improvement of enzymatic glucose conversion from chestnut shells through optimization of KOH pretreatment. Int. J. Environ. Res. Public Health 18(7), 3772. https://doi.org/10.3390/ijerph18073772 (2021).
Google Scholar
Ragauskas, A. J. et al. The path forward for biofuels and biomaterials. Science 311, 484–489. https://doi.org/10.1126/science.1114736 (2006).
Google Scholar
Couto, S. R. & Sanromána, M. A. Application of solid-state fermentation to food industry—A review. J. Food Eng. 76(3), 291–302. https://doi.org/10.1016/j.jfoodeng.2005.05.022 (2006).
Google Scholar
Mussagy, C. U., Winterburn, J., Santos-Ebinuma, V. C. & Pereira, J. F. B. Production and extraction of carotenoids produced by microorganisms. Appl. Microbiol. Biotechnol. 103, 1095–1114. https://doi.org/10.1007/s00253-018-9557-5 (2019).
Google Scholar
BCC Research. Biorefinery Products; Global Markets. BCC Research. EGY117C. https://doi.org/10.1080/17457300.2018.1426702 (2021).
Machida, M. Progress of Aspergillus oryzae genomics. Adv. Appl. Microbiol. 51, 81–106. https://doi.org/10.1016/s0065-2164(02)51002-9 (2002).
Google Scholar
Jung, D. U. et al. Optimization of medium composition for enhanced cellulose production by mutant Penicillium brasilianum KUEB15 using statistical method. J. Ind. Eng. Chem. 25, 145–150. https://doi.org/10.1016/j.jiec.2014.10.026 (2015).
Google Scholar
Yang, X. et al. Improved production of 1,3-propanediol from biodiesel-derived crude glycerol by Klebsiella pneumoniae in fed-batch fermentation. Chem. Eng. J. 349, 25–36. https://doi.org/10.1016/j.cej.2018.05.042 (2018).
Google Scholar
Cha, S. H. et al. Morphological characteristics of Cordyceps sinensis 16 and production of mycelia and exo-biopolymer from molasses in submerged culture. J. Ind. Eng. Chem. 12, 115–120 (2006).
Google Scholar
Kim, J. C., Lim, J. S., Kim, J. M., Kim, C. & Kim, S. W. Relationship between morphology and viscosity of the main culture broth of Cephalosporium acremonium M25. Korea-Aust. Rheol. J. 17(1), 15–20 (2005).
Lim, J. S. et al. Relationship between fractal dimension and morphological features of Cephalosporium acremonium M25 in a 30-l bioreactor culture. J. Microbiol. Biotechnol. 15(5), 971–976 (2005).
Papagianni, M. Fungal morphology and metabolite production in submerged mycelial processes. Biotechnol. Adv. 22, 189–259. https://doi.org/10.1016/j.biotechadv.2003.09.005 (2004).
Google Scholar
Veiter, L., Rajamanickam, V. & Herwig, C. The filamentous fungal pellet—relationship between morphology and productivity. Appl. Microbiol. Biotechnol. 102, 2997–3006. https://doi.org/10.1007/s00253-018-8818-7 (2018).
Google Scholar
Doran, P. M. Bioprocess engineering principles (Elsevier, 1995).
O’Toole, D. K. Methods for the direct and indirect assessment of the bacterial content of milk. J. Appl. Bacteriol. 55, 187–201. https://doi.org/10.1111/j.1365-2672.1983.tb01315.x (1983).
Google Scholar
Manan, M. A. & Webb, C. Estimating fungal growth in submerged fermentation in the presence of solid particles based on colour development. Biotechnol. Biotechnol. Equip. 32(3), 618–627. https://doi.org/10.1080/13102818.2018.1440974 (2018).
Google Scholar
Paul, G. C. & Thomas, C. R. Characterisation of mycelial morphology using image analysis. In: Schügerl K. (eds) Relation Between Morphology and Process Performances. Advances in Biochemical Engineering/Biotechnology, vol 60. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0102278 (1998).
Lee, S. K. et al. Improved cordycepin production by Cordyceps militaris KYL05 using casein hydrolysate in submerged conditions. Biomolecules 9, 461. https://doi.org/10.3390/biom9090461 (2019).
Google Scholar
Ou, F., McGoverin, C., Swift, S. & Vanholsbeeck, F. Absolute bacterial cell enumeration using flow cytometry. J. Appl. Microbiol. 123(2), 464–477. https://doi.org/10.1111/jam.13508 (2017).
Google Scholar
Zalewski, K. & Buchholz, R. Morphological analysis of yeast cells using an automated image processing system. J. Biotechnol. 48, 43–49. https://doi.org/10.1016/0168-1656(96)01503-9 (1996).
Google Scholar
Wang, R. et al. Analysis of methods for quantifying yeast cell concentration in complex lignocellulosic fermentation processes. Sci. Rep. 11, 11293. https://doi.org/10.1038/s41598-021-90703-8 (2021).
Google Scholar
Posch, A. E., Herwig, C. & Spadiut, O. Science-based bioprocess design for filamentous fungi. Trends Biotechnol. 31(1), 37–44. https://doi.org/10.1016/j.tibtech.2012.10.008 (2013).
Google Scholar
Harms, P., Kostov, Y. & Rao, G. Bioprocess monitoring. Curr. Opin. Biotechnol. 13(2), 124–127. https://doi.org/10.1016/S0958-1669(02)00295-1 (2002).
Google Scholar
Abdul Manan, M. & Webb, C. Estimating fungal growth in submerged fermentation in the presence of solid particles based on colour development. Biotechnol. Biotechnol. Equip. 32(3), 618–627. https://doi.org/10.1080/13102818.2018.1440974 (2018).
Google Scholar
Borzani, W. A weighing method to identify the microbial growth phases in solid-state fermentation tests. World J. Microbiol. Biotechnol. 16(7), 601–605. https://doi.org/10.1023/A:1008970720794 (2000).
Google Scholar
Duan, Y., Wang, L. & Chen, H. Digital image analysis and fractal-based kinetic modelling for fungal biomass determination in solid-state fermentation. Biochem. Eng. J. 67, 60–67. https://doi.org/10.1016/j.bej.2012.04.020 (2012).
Google Scholar
Díaz, B. H. C. et al. Morphological characterization of the growing front of Rhizopus oligosporus in solid media. J. Food Eng. 101(3), 309–317. https://doi.org/10.1016/j.jfoodeng.2010.06.028 (2010).
Google Scholar
Rajković, K. M., Milošević, N. T., Otašević, S., Jeremić, S. & Arsenijević, V. A. Aspergillus fumigatus branching complexity in vitro: 2D images and dynamic modeling. Comput. Biol. Med. 104, 215–219. https://doi.org/10.1016/j.compbiomed.2018.11.022 (2019).
Google Scholar
Papagianni, M. Quantification of the fractal nature of mycelial aggregation in Aspergillus niger submerged cultures. Microb. Cell Fact. 5(1), 1–13. https://doi.org/10.1186/1475-2859-5-5 (2006).
Google Scholar
Wucherpfennig, T., Lakowitz, A. & Krull, R. Comprehension of viscous morphology—evaluation of fractal and conventional parameters for rheological characterization of Aspergillus niger culture broth. J. Biotechnol. 163(2), 124–132. https://doi.org/10.1016/j.jbiotec.2012.08.027 (2013).
Google Scholar
Ehgartner, D., Herwig, C. & Fricke, J. Morphological analysis of the filamentous fungus Penicillium chrysogenum using flow cytometry—the fast alternative to microscopic image analysis. Appl. Microbiol. Biotechnol. 101(20), 7675–7688. https://doi.org/10.1007/s00253-017-8475-2 (2017).
Google Scholar
Veiter, L. & Herwig, C. The filamentous fungus Penicillium chrysogenum analysed via flow cytometry—a fast and statistically sound insight into morphology and viability. Appl. Microbiol. Biotechnol. 103(16), 6725–6735. https://doi.org/10.1007/s00253-019-09943-4 (2019).
Google Scholar
Hagedorn, A., Legge, R. L. & Budman, H. Evaluation of spectrofluorometry as a tool for estimation in fed-batch fermentations. Biotechnol. Bioeng. 83(1), 104–111. https://doi.org/10.1002/bit.10649 (2003).
Google Scholar
Lantz, A. E., Jørgensen, P., Poulsen, E., Lindemann, C. & Olsson, L. Determination of cell mass and polymyxin using multi-wavelength fluorescence. J. Biotechnol. 121(4), 544–554. https://doi.org/10.1016/j.jbiotec.2005.08.007 (2006).
Google Scholar
Boehl, D., Solle, D., Hitzmann, B. & Scheper, T. Chemometric modelling with two-dimensional fluorescence data for Claviceps purpurea bioprocess characterization. J. Biotechnol. 105(1–2), 179–188. https://doi.org/10.1016/S0168-1656(03)00189-5 (2003).
Google Scholar
Haack, M. B., Eliasson, A. & Olsson, L. On-line cell mass monitoring of Saccharomyces cerevisiae cultivations by multi-wavelength fluorescence. J. Biotechnol. 114(1–2), 199–208. https://doi.org/10.1016/j.jbiotec.2004.05.009 (2004).
Google Scholar
Brook, R. J. & Arnold, G. C. Applied regression analysis and experimental design. CRC Press. https://doi.org/10.1201/9781315137674 (2018).
Google Scholar
Leatherbarrow, R. J. Using linear and non-linear regression to fit biochemical data. Trends Biochem. Sci. 15(12), 455–458. https://doi.org/10.1016/0968-0004(90)90295-M (1990).
Google Scholar
Lee, J. H. Significant impact of casein hydrolysate to overcome the low consumption of glycerol by Klebsiella aerogenes ATCC 29007 and its application to bioethanol production. Energy Conv. Manag. 221, 113181. https://doi.org/10.1016/j.enconman.2020.113181 (2020).
Google Scholar
Lee, K. H. Statistical optimization of alkali pretreatment to improve sugars recovery from spent coffee grounds and utilization in lactic acid fermentation. Processes 9(3), 494. https://doi.org/10.3390/pr9030494 (2021).
Google Scholar
Cox, P. W., Paul, G. C. & Thomas, C. R. Image analysis of the morphology of filamentous micro-organisms. Microbiology 144, 817–827. https://doi.org/10.1099/00221287-144-4-817 (1998).
Google Scholar
Bangdiwala, S. I. Regression: Simple linear. Int. J. Inj. Control Saf. 25(1), 113–115. https://doi.org/10.1080/17457300.2018.1426702 (2018).
Google Scholar
George, D. & Mallery, P. IBM SPSS statistics 26 step by step: A simple guide and reference. Routledge. https://doi.org/10.4324/9780429056765 (2019).
Google Scholar

