Preloader

Rapid and concise quantification of mycelial growth by microscopic image intensity model and application to mass cultivation of fungi

  • 1.

    An, H. E., Lee, K. H., Jang, Y. W., Kim, C. B. & Yoo, H. Y. Improved glucose recovery from Sicyos angulatus by NaOH pretreatment and application to bioethanol production. Processes 9(2), 245. https://doi.org/10.3390/pr9020245 (2021).

    CAS 
    Article 

    Google Scholar 

  • 2.

    Lee, J. H. et al. Continuous production of bioethanol using microalgal sugars extracted from Nannochloropsis gaditana. Korean J. Chem. Eng. 36(1), 71–76. https://doi.org/10.1007/s11814-018-0173-y (2019).

    CAS 
    Article 

    Google Scholar 

  • 3.

    Lee, K. H. et al. Improvement of enzymatic glucose conversion from chestnut shells through optimization of KOH pretreatment. Int. J. Environ. Res. Public Health 18(7), 3772. https://doi.org/10.3390/ijerph18073772 (2021).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 4.

    Ragauskas, A. J. et al. The path forward for biofuels and biomaterials. Science 311, 484–489. https://doi.org/10.1126/science.1114736 (2006).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 5.

    Couto, S. R. & Sanromána, M. A. Application of solid-state fermentation to food industry—A review. J. Food Eng. 76(3), 291–302. https://doi.org/10.1016/j.jfoodeng.2005.05.022 (2006).

    CAS 
    Article 

    Google Scholar 

  • 6.

    Mussagy, C. U., Winterburn, J., Santos-Ebinuma, V. C. & Pereira, J. F. B. Production and extraction of carotenoids produced by microorganisms. Appl. Microbiol. Biotechnol. 103, 1095–1114. https://doi.org/10.1007/s00253-018-9557-5 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 7.

    BCC Research. Biorefinery Products; Global Markets. BCC Research. EGY117C. https://doi.org/10.1080/17457300.2018.1426702 (2021).

  • 8.

    Machida, M. Progress of Aspergillus oryzae genomics. Adv. Appl. Microbiol. 51, 81–106. https://doi.org/10.1016/s0065-2164(02)51002-9 (2002).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 9.

    Jung, D. U. et al. Optimization of medium composition for enhanced cellulose production by mutant Penicillium brasilianum KUEB15 using statistical method. J. Ind. Eng. Chem. 25, 145–150. https://doi.org/10.1016/j.jiec.2014.10.026 (2015).

    CAS 
    Article 

    Google Scholar 

  • 10.

    Yang, X. et al. Improved production of 1,3-propanediol from biodiesel-derived crude glycerol by Klebsiella pneumoniae in fed-batch fermentation. Chem. Eng. J. 349, 25–36. https://doi.org/10.1016/j.cej.2018.05.042 (2018).

    CAS 
    Article 

    Google Scholar 

  • 11.

    Cha, S. H. et al. Morphological characteristics of Cordyceps sinensis 16 and production of mycelia and exo-biopolymer from molasses in submerged culture. J. Ind. Eng. Chem. 12, 115–120 (2006).

    ADS 
    CAS 

    Google Scholar 

  • 12.

    Kim, J. C., Lim, J. S., Kim, J. M., Kim, C. & Kim, S. W. Relationship between morphology and viscosity of the main culture broth of Cephalosporium acremonium M25. Korea-Aust. Rheol. J. 17(1), 15–20 (2005).

    Google Scholar 

  • 13.

    Lim, J. S. et al. Relationship between fractal dimension and morphological features of Cephalosporium acremonium M25 in a 30-l bioreactor culture. J. Microbiol. Biotechnol. 15(5), 971–976 (2005).

    Google Scholar 

  • 14.

    Papagianni, M. Fungal morphology and metabolite production in submerged mycelial processes. Biotechnol. Adv. 22, 189–259. https://doi.org/10.1016/j.biotechadv.2003.09.005 (2004).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 15.

    Veiter, L., Rajamanickam, V. & Herwig, C. The filamentous fungal pellet—relationship between morphology and productivity. Appl. Microbiol. Biotechnol. 102, 2997–3006. https://doi.org/10.1007/s00253-018-8818-7 (2018).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 16.

    Doran, P. M. Bioprocess engineering principles (Elsevier, 1995).

    Google Scholar 

  • 17.

    O’Toole, D. K. Methods for the direct and indirect assessment of the bacterial content of milk. J. Appl. Bacteriol. 55, 187–201. https://doi.org/10.1111/j.1365-2672.1983.tb01315.x (1983).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 18.

    Manan, M. A. & Webb, C. Estimating fungal growth in submerged fermentation in the presence of solid particles based on colour development. Biotechnol. Biotechnol. Equip. 32(3), 618–627. https://doi.org/10.1080/13102818.2018.1440974 (2018).

    CAS 
    Article 

    Google Scholar 

  • 19.

    Paul, G. C. & Thomas, C. R. Characterisation of mycelial morphology using image analysis. In: Schügerl K. (eds) Relation Between Morphology and Process Performances. Advances in Biochemical Engineering/Biotechnology, vol 60. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0102278 (1998).

  • 20.

    Lee, S. K. et al. Improved cordycepin production by Cordyceps militaris KYL05 using casein hydrolysate in submerged conditions. Biomolecules 9, 461. https://doi.org/10.3390/biom9090461 (2019).

    CAS 
    Article 
    PubMed Central 

    Google Scholar 

  • 21.

    Ou, F., McGoverin, C., Swift, S. & Vanholsbeeck, F. Absolute bacterial cell enumeration using flow cytometry. J. Appl. Microbiol. 123(2), 464–477. https://doi.org/10.1111/jam.13508 (2017).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 22.

    Zalewski, K. & Buchholz, R. Morphological analysis of yeast cells using an automated image processing system. J. Biotechnol. 48, 43–49. https://doi.org/10.1016/0168-1656(96)01503-9 (1996).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 23.

    Wang, R. et al. Analysis of methods for quantifying yeast cell concentration in complex lignocellulosic fermentation processes. Sci. Rep. 11, 11293. https://doi.org/10.1038/s41598-021-90703-8 (2021).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 24.

    Posch, A. E., Herwig, C. & Spadiut, O. Science-based bioprocess design for filamentous fungi. Trends Biotechnol. 31(1), 37–44. https://doi.org/10.1016/j.tibtech.2012.10.008 (2013).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 25.

    Harms, P., Kostov, Y. & Rao, G. Bioprocess monitoring. Curr. Opin. Biotechnol. 13(2), 124–127. https://doi.org/10.1016/S0958-1669(02)00295-1 (2002).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 26.

    Abdul Manan, M. & Webb, C. Estimating fungal growth in submerged fermentation in the presence of solid particles based on colour development. Biotechnol. Biotechnol. Equip. 32(3), 618–627. https://doi.org/10.1080/13102818.2018.1440974 (2018).

    CAS 
    Article 

    Google Scholar 

  • 27.

    Borzani, W. A weighing method to identify the microbial growth phases in solid-state fermentation tests. World J. Microbiol. Biotechnol. 16(7), 601–605. https://doi.org/10.1023/A:1008970720794 (2000).

    CAS 
    Article 

    Google Scholar 

  • 28.

    Duan, Y., Wang, L. & Chen, H. Digital image analysis and fractal-based kinetic modelling for fungal biomass determination in solid-state fermentation. Biochem. Eng. J. 67, 60–67. https://doi.org/10.1016/j.bej.2012.04.020 (2012).

    CAS 
    Article 

    Google Scholar 

  • 29.

    Díaz, B. H. C. et al. Morphological characterization of the growing front of Rhizopus oligosporus in solid media. J. Food Eng. 101(3), 309–317. https://doi.org/10.1016/j.jfoodeng.2010.06.028 (2010).

    Article 

    Google Scholar 

  • 30.

    Rajković, K. M., Milošević, N. T., Otašević, S., Jeremić, S. & Arsenijević, V. A. Aspergillus fumigatus branching complexity in vitro: 2D images and dynamic modeling. Comput. Biol. Med. 104, 215–219. https://doi.org/10.1016/j.compbiomed.2018.11.022 (2019).

    Article 
    PubMed 

    Google Scholar 

  • 31.

    Papagianni, M. Quantification of the fractal nature of mycelial aggregation in Aspergillus niger submerged cultures. Microb. Cell Fact. 5(1), 1–13. https://doi.org/10.1186/1475-2859-5-5 (2006).

    CAS 
    Article 

    Google Scholar 

  • 32.

    Wucherpfennig, T., Lakowitz, A. & Krull, R. Comprehension of viscous morphology—evaluation of fractal and conventional parameters for rheological characterization of Aspergillus niger culture broth. J. Biotechnol. 163(2), 124–132. https://doi.org/10.1016/j.jbiotec.2012.08.027 (2013).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 33.

    Ehgartner, D., Herwig, C. & Fricke, J. Morphological analysis of the filamentous fungus Penicillium chrysogenum using flow cytometry—the fast alternative to microscopic image analysis. Appl. Microbiol. Biotechnol. 101(20), 7675–7688. https://doi.org/10.1007/s00253-017-8475-2 (2017).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 34.

    Veiter, L. & Herwig, C. The filamentous fungus Penicillium chrysogenum analysed via flow cytometry—a fast and statistically sound insight into morphology and viability. Appl. Microbiol. Biotechnol. 103(16), 6725–6735. https://doi.org/10.1007/s00253-019-09943-4 (2019).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 35.

    Hagedorn, A., Legge, R. L. & Budman, H. Evaluation of spectrofluorometry as a tool for estimation in fed-batch fermentations. Biotechnol. Bioeng. 83(1), 104–111. https://doi.org/10.1002/bit.10649 (2003).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 36.

    Lantz, A. E., Jørgensen, P., Poulsen, E., Lindemann, C. & Olsson, L. Determination of cell mass and polymyxin using multi-wavelength fluorescence. J. Biotechnol. 121(4), 544–554. https://doi.org/10.1016/j.jbiotec.2005.08.007 (2006).

    CAS 
    Article 

    Google Scholar 

  • 37.

    Boehl, D., Solle, D., Hitzmann, B. & Scheper, T. Chemometric modelling with two-dimensional fluorescence data for Claviceps purpurea bioprocess characterization. J. Biotechnol. 105(1–2), 179–188. https://doi.org/10.1016/S0168-1656(03)00189-5 (2003).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 38.

    Haack, M. B., Eliasson, A. & Olsson, L. On-line cell mass monitoring of Saccharomyces cerevisiae cultivations by multi-wavelength fluorescence. J. Biotechnol. 114(1–2), 199–208. https://doi.org/10.1016/j.jbiotec.2004.05.009 (2004).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 39.

    Brook, R. J. & Arnold, G. C. Applied regression analysis and experimental design. CRC Press. https://doi.org/10.1201/9781315137674 (2018).

    Article 
    MATH 

    Google Scholar 

  • 40.

    Leatherbarrow, R. J. Using linear and non-linear regression to fit biochemical data. Trends Biochem. Sci. 15(12), 455–458. https://doi.org/10.1016/0968-0004(90)90295-M (1990).

    Article 
    PubMed 

    Google Scholar 

  • 41.

    Lee, J. H. Significant impact of casein hydrolysate to overcome the low consumption of glycerol by Klebsiella aerogenes ATCC 29007 and its application to bioethanol production. Energy Conv. Manag. 221, 113181. https://doi.org/10.1016/j.enconman.2020.113181 (2020).

    CAS 
    Article 

    Google Scholar 

  • 42.

    Lee, K. H. Statistical optimization of alkali pretreatment to improve sugars recovery from spent coffee grounds and utilization in lactic acid fermentation. Processes 9(3), 494. https://doi.org/10.3390/pr9030494 (2021).

    CAS 
    Article 

    Google Scholar 

  • 43.

    Cox, P. W., Paul, G. C. & Thomas, C. R. Image analysis of the morphology of filamentous micro-organisms. Microbiology 144, 817–827. https://doi.org/10.1099/00221287-144-4-817 (1998).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 44.

    Bangdiwala, S. I. Regression: Simple linear. Int. J. Inj. Control Saf. 25(1), 113–115. https://doi.org/10.1080/17457300.2018.1426702 (2018).

    Article 

    Google Scholar 

  • 45.

    George, D. & Mallery, P. IBM SPSS statistics 26 step by step: A simple guide and reference. Routledge. https://doi.org/10.4324/9780429056765 (2019).

    Article 

    Google Scholar 

  • Source link