van Dalum, G., Holland, L. & Terstappen, L. W. Metastasis and circulating tumor cells. Ejifcc 23, 87 (2012).
Google Scholar
Brattain, M. G., Fine, W. D., Khaled, F. M., Thompson, J. & Brattain, D. E. Heterogeneity of malignant cells from a human colonic carcinoma. Can. Res. 41, 1751–1756 (1981).
Google Scholar
Meacham, C. E. & Morrison, S. J. Tumour heterogeneity and cancer cell plasticity. Nature 501, 328–337 (2013).
Google Scholar
Dagogo-Jack, I. & Shaw, A. T. Tumour heterogeneity and resistance to cancer therapies. Nat. Rev. Clin. Oncol. 15, 81 (2018).
Google Scholar
Kanzaki, R. & Pietras, K. Heterogeneity of cancer-associated fibroblasts: Opportunities for precision medicine. Cancer Sci. 111, 2708 (2020).
Google Scholar
Guo, M., Peng, Y., Gao, A., Du, C. & Herman, J. G. Epigenetic heterogeneity in cancer. Biomarker Res. 7, 1–19 (2019).
Arrigoni, C., Bersini, S., Gilardi, M. & Moretti, M. In vitro co-culture models of breast cancer metastatic progression towards bone. Int. J. Mol. Sci. 17, 1405 (2016).
Google Scholar
Vis, M. A. M., Ito, K. & Hofmann, S. Impact of Culture Medium on Cellular Interactions in in vitro Co-culture Systems. Front. Bioeng. Biotechnol. 8,(2020).
Furukawa, M., Wheeler, S., Clark, A. M. & Wells, A. Lung epithelial cells induce both phenotype alteration and senescence in breast cancer cells. PLoS ONE 10, e0118060 (2015).
Google Scholar
Kim, M. et al. Patient-derived lung cancer organoids as in vitro cancer models for therapeutic screening. Nat. Commun. 10, 1–15 (2019).
Google Scholar
Rebelo, S. P. et al. 3D-3-culture: A tool to unveil macrophage plasticity in the tumour microenvironment. Biomaterials 163, 185–197 (2018).
Google Scholar
Zeinali, M. et al. High-throughput label-free isolation of heterogeneous circulating tumor cells and CTC clusters from non-small-cell lung cancer patients. Cancers 12, 127 (2020).
Google Scholar
Liu, J., Dang, H. & Wang, X. W. The significance of intertumor and intratumor heterogeneity in liver cancer. Exp. Mol. Med. 50, e416–e416 (2018).
Google Scholar
Zayed, D. G., AbdElhamid, A. S., Freag, M. S. & Elzoghby, A. O. Hybrid quantum dot-based theranostic nanomedicines for tumortargeted drug delivery and cancer imaging. Nanomedicine 14, 225–228, (2019).
Google Scholar
Koren, S. & Bentires-Alj, M. Breast tumor heterogeneity: source of fitness, hurdle for therapy. Mol. Cell 60, 537–546 (2015).
Google Scholar
Aiello, N. M. & Kang, Y. Context-dependent EMT programs in cancer metastasis. J. Exp. Med. 216, 1016–1026 (2019).
Google Scholar
Follain, G. et al. Fluids and their mechanics in tumour transit: shaping metastasis. Nat. Rev. Cancer 20, 107–124 (2020).
Google Scholar
Bakir, B., Chiarella, A. M., Pitarresi, J. R. & Rustgi, A. K. EMT, MET, plasticity, and tumor metastasis. Trends Cell Biol. 30, 764–776 (2020).
Google Scholar
Thakral, D. et al. Real-time molecular monitoring in acute myeloid leukemia with circulating tumor DNA. Front. Cell Dev Biol. 8, 1328 (2020).
Hughes, C. F., Gallipoli, P. & Agarwal, R. Design, implementation and clinical utility of next generation sequencing in myeloid malignancies: acute myeloid leukaemia and myelodysplastic syndrome. Pathology 53, 328–338 (2021).
Google Scholar
Almshayakhchi, R. N. HAGE and WT1 proteins as promising immunotherapeutic targets in chronic myeloid leukaemia, Nottingham Trent University, (2020).
Habib, E. M. et al. Circulating miR-146a expression predicts early treatment response to imatinib in adult chronic myeloid leukemia. J. Investig. Med. 69, 333–337 (2021).
Google Scholar
Norouzi-Barough, L. et al. Early diagnosis of breast and ovarian cancers by body fluids circulating tumor-derived exosomes. Cancer Cell Int. 20, 1–10 (2020).
Yu, T. et al. Heterogeneity of CTC contributes to the organotropism of breast cancer. Biomed Pharmacother. 137, 111314 (2021).
Google Scholar
Krol, I. et al. Detection of circulating tumour cell clusters in human glioblastoma. Br. J. Cancer 119, 487–491 (2018).
Google Scholar
Bark, J. M., Kulasinghe, A., Chua, B., Day, B. W. & Punyadeera, C. Circulating biomarkers in patients with glioblastoma. Br. J. Cancer 122, 295–305 (2020).
Dasari, A. et al. ctDNA applications and integration in colorectal cancer: An NCI Colon and Rectal-Anal Task Forces whitepaper. Nat. Rev. Clin. Oncol. 17, 757–770 (2020).
Google Scholar
Pramil, E., Dillard, C. & Escargueil, A. E. Colorectal Cancer and Immunity: From the Wet Lab to Individuals. Cancers 13, 1713 (2021).
Google Scholar
Navarro-Marchal, S. L. A. et al. Anti-CD44-conjugated olive oil liquid nanocapsules for targeting pancreatic cancer stem cells. Biomacromol 22, 1374–1388 (2021).
Google Scholar
Sellahewa, R., Lundy, J., Croagh, D. & Jenkins, B. High circulating tumour DNA is a strong negative prognostic factor in operable pancreatic cancer. HPB 23, S263 (2021).
Tong, J. G. et al. Spatial and temporal epithelial ovarian cancer cell heterogeneity impacts Maraba virus oncolytic potential. BMC Cancer 17, 1–13 (2017).
Brabletz, T., Kalluri, R., Nieto, M. A. & Weinberg, R. A. EMT in cancer. Nat. Rev. Cancer 18, 128–134 (2018).
Google Scholar
Wilson, M. M., Weinberg, R. A., Lees, J. A. & Guen, V. J. Emerging mechanisms by which EMT programs control stemness. Trends Cancer 6, 775–780 (2020).
Google Scholar
Ribatti, D., Tamma, R. & Annese, T. Epithelial-mesenchymal transition in cancer: a historical overview. Transl. Oncol. 13, 100773 (2020).
Google Scholar
De Wit, S. et al. Classification of cells in CTC-enriched samples by advanced image analysis. Cancers 10, 377 (2018).
Google Scholar
Damen, M. P., van Rheenen, J. & Scheele, C. L. Targeting dormant tumor cells to prevent cancer recurrence. FEBS J. 288, 6286–6303 (2021).
Google Scholar
Risson, E., Nobre, A. R., Maguer-Satta, V. & Aguirre-Ghiso, J. A. The current paradigm and challenges ahead for the dormancy of disseminated tumor cells. Nat. Cancer 1, 672–680 (2020).
Google Scholar
Tayoun, T. et al. CTC-derived models: a window into the seeding capacity of circulating tumor cells (CTCs). Cells 8, 1145 (2019).
Google Scholar
Zavridou, M. et al. Direct comparison of size-dependent versus EpCAM-dependent CTC enrichment at the gene expression and DNA methylation level in head and neck squamous cell carcinoma. Sci. Rep. 10, 1–9 (2020).
Batth, I. S. et al. CTC analysis: an update on technological progress. Transl. Res. 212, 14–25 (2019).
Google Scholar
Rushton, A. J., Nteliopoulos, G., Shaw, J. A. & Coombes, R. C. A review of circulating tumour cell enrichment technologies. Cancers 13, 970 (2021).
Google Scholar
De Wit, S. et al. The detection of EpCAM+ and EpCAM–circulating tumor cells. Sci. Rep. 5, 1–10 (2015).
Tripathi, S., Chakraborty, P., Levine, H. & Jolly, M. K. A mechanism for epithelial-mesenchymal heterogeneity in a population of cancer cells. PLoS Comput. Biol. 16, e1007619 (2020).
Google Scholar
Kondo, H. et al. Single-cell resolved imaging reveals intra-tumor heterogeneity in glycolysis, transitions between metabolic states, and their regulatory mechanisms. Cell Rep. 34, 108750 (2021).
Google Scholar
Costa, E. C., Gaspar, V. M., Coutinho, P. & Correia, I. J. Optimization of liquid overlay technique to formulate heterogenic 3D co-cultures models. Biotechnol. Bioeng. 111, 1672–1685 (2014).
Google Scholar
Vyshnava, S. S. et al. Gram scale synthesis of QD 450 core–shell quantum dots for cellular imaging and sorting. Appl. Nanosci. 10, 1257–1268 (2020).
Google Scholar
Hanmandlu, C. et al. Suppression of surface defects to achieve hysteresis-free inverted perovskite solar cells via quantum dot passivation. J. Mater. Chem. A 8, 5263–5274 (2020).
Google Scholar
Hsia, C.-H., Wuttig, A. & Yang, H. An accessible approach to preparing water-soluble Mn2+-doped (CdSSe) ZnS (core) shell nanocrystals for ratiometric temperature sensing. ACS Nano 5, 9511–9522 (2011).
Google Scholar
Fournier-Bidoz, S. et al. Facile and rapid one-step mass preparation of quantum-dot barcodes. Angew. Chem. Int. Ed. 47, 5577–5581 (2008).
Google Scholar
Howarth, M. et al. Monovalent, reduced-size quantum dots for imaging receptors on living cells. Nat. Methods 5, 397–399 (2008).
Google Scholar
Lim, S. J., Chon, B., Joo, T. & Shin, S. K. Synthesis and characterization of zinc-blende CdSe-based core/shell nanocrystals and their luminescence in water. J. Phys. Chem. C 112, 1744–1747 (2008).
Google Scholar
Vo, N. T. et al. Stability investigation of ligand-exchanged CdSe/ZnS-Y (Y= 3-mercaptopropionic acid or mercaptosuccinic acid) through zeta potential measurements. J. Nanomater. 2016, 1–8 (2016).
Chang, C. M., Orchard, K. L., Martindale, B. C. & Reisner, E. Ligand removal from CdS quantum dots for enhanced photocatalytic H2 generation in pH neutral water. J. Mater. Chem. A 4, 2856–2862 (2016).
Google Scholar
Taniguchi, S. & Green, M. The synthesis of CdTe/ZnS core/shell quantum dots using molecular single-source precursors. J. Mater. Chem. C 3, 8425–8433 (2015).
Google Scholar
Clapp, A. R., Goldman, E. R. & Mattoussi, H. Capping of CdSe–ZnS quantum dots with DHLA and subsequent conjugation with proteins. Nat. Protoc. 1, 1258–1266 (2006).
Google Scholar
Han, H.-S. et al. Quantum dot/antibody conjugates for in vivo cytometric imaging in mice. Proc. Natl. Acad. Sci. 112, 1350–1355 (2015).
Google Scholar
Marhaba, R. et al. CD44 and EpCAM: cancer-initiating cell markers. Curr. Mol. Med. 8, 784–804 (2008).
Google Scholar
Horikawa, M., Iinuma, H., Inoue, T., Ogawa, E. & Fukushima, R. Clinical significance of intraperitoneal CD44 mRNA levels of magnetically separated CD45-negative EpCAM-positive cells for peritoneal recurrence and prognosis in stage II and III gastric cancer patients. Oncol. Rep. 25, 1413–1420 (2011).
Google Scholar
Antony, J., Thiery, J. P. & Huang, R.Y.-J. Epithelial-to-mesenchymal transition: lessons from development, insights into cancer and the potential of EMT-subtype based therapeutic intervention. Phys. Biol. 16, 041004 (2019).
Google Scholar
Pastushenko, I. & Blanpain, C. EMT transition states during tumor progression and metastasis. Trends Cell Biol. 29, 212–226 (2019).
Google Scholar
Masciale, V. et al. CD44+/EPCAM+ cells detect a subpopulation of ALDHhigh cells in human non-small cell lung cancer: a chance for targeting cancer stem cells?. Oncotarget 11, 1545 (2020).
Google Scholar
Hermiston, M. L., Xu, Z. & Weiss, A. CD45: a critical regulator of signaling thresholds in immune cells. Annu. Rev. Immunol. 21, 107–137 (2003).
Google Scholar
Gires, O., Klein, C. A. & Baeuerle, P. A. On the abundance of EpCAM on cancer stem cells. Nat. Rev. Cancer 9, 143–143 (2009).
Google Scholar

