Preloader

Quantum dots based in-vitro co-culture cancer model for identification of rare cancer cell heterogeneity

  • van Dalum, G., Holland, L. & Terstappen, L. W. Metastasis and circulating tumor cells. Ejifcc 23, 87 (2012).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Brattain, M. G., Fine, W. D., Khaled, F. M., Thompson, J. & Brattain, D. E. Heterogeneity of malignant cells from a human colonic carcinoma. Can. Res. 41, 1751–1756 (1981).

    CAS 

    Google Scholar 

  • Meacham, C. E. & Morrison, S. J. Tumour heterogeneity and cancer cell plasticity. Nature 501, 328–337 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dagogo-Jack, I. & Shaw, A. T. Tumour heterogeneity and resistance to cancer therapies. Nat. Rev. Clin. Oncol. 15, 81 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Kanzaki, R. & Pietras, K. Heterogeneity of cancer-associated fibroblasts: Opportunities for precision medicine. Cancer Sci. 111, 2708 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Guo, M., Peng, Y., Gao, A., Du, C. & Herman, J. G. Epigenetic heterogeneity in cancer. Biomarker Res. 7, 1–19 (2019).

    Google Scholar 

  • Arrigoni, C., Bersini, S., Gilardi, M. & Moretti, M. In vitro co-culture models of breast cancer metastatic progression towards bone. Int. J. Mol. Sci. 17, 1405 (2016).

    PubMed Central 

    Google Scholar 

  • Vis, M. A. M., Ito, K. & Hofmann, S. Impact of Culture Medium on Cellular Interactions in in vitro Co-culture Systems. Front. Bioeng. Biotechnol. 8,(2020).

  • Furukawa, M., Wheeler, S., Clark, A. M. & Wells, A. Lung epithelial cells induce both phenotype alteration and senescence in breast cancer cells. PLoS ONE 10, e0118060 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Kim, M. et al. Patient-derived lung cancer organoids as in vitro cancer models for therapeutic screening. Nat. Commun. 10, 1–15 (2019).

    ADS 

    Google Scholar 

  • Rebelo, S. P. et al. 3D-3-culture: A tool to unveil macrophage plasticity in the tumour microenvironment. Biomaterials 163, 185–197 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Zeinali, M. et al. High-throughput label-free isolation of heterogeneous circulating tumor cells and CTC clusters from non-small-cell lung cancer patients. Cancers 12, 127 (2020).

    CAS 
    PubMed Central 

    Google Scholar 

  • Liu, J., Dang, H. & Wang, X. W. The significance of intertumor and intratumor heterogeneity in liver cancer. Exp. Mol. Med. 50, e416–e416 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Zayed, D. G., AbdElhamid, A. S., Freag, M. S. & Elzoghby, A. O. Hybrid quantum dot-based theranostic nanomedicines for tumortargeted drug delivery and cancer imaging. Nanomedicine 14, 225–228, (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Koren, S. & Bentires-Alj, M. Breast tumor heterogeneity: source of fitness, hurdle for therapy. Mol. Cell 60, 537–546 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Aiello, N. M. & Kang, Y. Context-dependent EMT programs in cancer metastasis. J. Exp. Med. 216, 1016–1026 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Follain, G. et al. Fluids and their mechanics in tumour transit: shaping metastasis. Nat. Rev. Cancer 20, 107–124 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Bakir, B., Chiarella, A. M., Pitarresi, J. R. & Rustgi, A. K. EMT, MET, plasticity, and tumor metastasis. Trends Cell Biol. 30, 764–776 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Thakral, D. et al. Real-time molecular monitoring in acute myeloid leukemia with circulating tumor DNA. Front. Cell Dev Biol. 8, 1328 (2020).

    Google Scholar 

  • Hughes, C. F., Gallipoli, P. & Agarwal, R. Design, implementation and clinical utility of next generation sequencing in myeloid malignancies: acute myeloid leukaemia and myelodysplastic syndrome. Pathology 53, 328–338 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Almshayakhchi, R. N. HAGE and WT1 proteins as promising immunotherapeutic targets in chronic myeloid leukaemia, Nottingham Trent University, (2020).

  • Habib, E. M. et al. Circulating miR-146a expression predicts early treatment response to imatinib in adult chronic myeloid leukemia. J. Investig. Med. 69, 333–337 (2021).

    PubMed 

    Google Scholar 

  • Norouzi-Barough, L. et al. Early diagnosis of breast and ovarian cancers by body fluids circulating tumor-derived exosomes. Cancer Cell Int. 20, 1–10 (2020).

    Google Scholar 

  • Yu, T. et al. Heterogeneity of CTC contributes to the organotropism of breast cancer. Biomed Pharmacother. 137, 111314 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Krol, I. et al. Detection of circulating tumour cell clusters in human glioblastoma. Br. J. Cancer 119, 487–491 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bark, J. M., Kulasinghe, A., Chua, B., Day, B. W. & Punyadeera, C. Circulating biomarkers in patients with glioblastoma. Br. J. Cancer 122, 295–305 (2020).

    Google Scholar 

  • Dasari, A. et al. ctDNA applications and integration in colorectal cancer: An NCI Colon and Rectal-Anal Task Forces whitepaper. Nat. Rev. Clin. Oncol. 17, 757–770 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Pramil, E., Dillard, C. & Escargueil, A. E. Colorectal Cancer and Immunity: From the Wet Lab to Individuals. Cancers 13, 1713 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Navarro-Marchal, S. L. A. et al. Anti-CD44-conjugated olive oil liquid nanocapsules for targeting pancreatic cancer stem cells. Biomacromol 22, 1374–1388 (2021).

    CAS 

    Google Scholar 

  • Sellahewa, R., Lundy, J., Croagh, D. & Jenkins, B. High circulating tumour DNA is a strong negative prognostic factor in operable pancreatic cancer. HPB 23, S263 (2021).

    Google Scholar 

  • Tong, J. G. et al. Spatial and temporal epithelial ovarian cancer cell heterogeneity impacts Maraba virus oncolytic potential. BMC Cancer 17, 1–13 (2017).

    Google Scholar 

  • Brabletz, T., Kalluri, R., Nieto, M. A. & Weinberg, R. A. EMT in cancer. Nat. Rev. Cancer 18, 128–134 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Wilson, M. M., Weinberg, R. A., Lees, J. A. & Guen, V. J. Emerging mechanisms by which EMT programs control stemness. Trends Cancer 6, 775–780 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Ribatti, D., Tamma, R. & Annese, T. Epithelial-mesenchymal transition in cancer: a historical overview. Transl. Oncol. 13, 100773 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • De Wit, S. et al. Classification of cells in CTC-enriched samples by advanced image analysis. Cancers 10, 377 (2018).

    PubMed Central 

    Google Scholar 

  • Damen, M. P., van Rheenen, J. & Scheele, C. L. Targeting dormant tumor cells to prevent cancer recurrence. FEBS J. 288, 6286–6303 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Risson, E., Nobre, A. R., Maguer-Satta, V. & Aguirre-Ghiso, J. A. The current paradigm and challenges ahead for the dormancy of disseminated tumor cells. Nat. Cancer 1, 672–680 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tayoun, T. et al. CTC-derived models: a window into the seeding capacity of circulating tumor cells (CTCs). Cells 8, 1145 (2019).

    CAS 
    PubMed Central 

    Google Scholar 

  • Zavridou, M. et al. Direct comparison of size-dependent versus EpCAM-dependent CTC enrichment at the gene expression and DNA methylation level in head and neck squamous cell carcinoma. Sci. Rep. 10, 1–9 (2020).

    Google Scholar 

  • Batth, I. S. et al. CTC analysis: an update on technological progress. Transl. Res. 212, 14–25 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Rushton, A. J., Nteliopoulos, G., Shaw, J. A. & Coombes, R. C. A review of circulating tumour cell enrichment technologies. Cancers 13, 970 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • De Wit, S. et al. The detection of EpCAM+ and EpCAM–circulating tumor cells. Sci. Rep. 5, 1–10 (2015).

    Google Scholar 

  • Tripathi, S., Chakraborty, P., Levine, H. & Jolly, M. K. A mechanism for epithelial-mesenchymal heterogeneity in a population of cancer cells. PLoS Comput. Biol. 16, e1007619 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kondo, H. et al. Single-cell resolved imaging reveals intra-tumor heterogeneity in glycolysis, transitions between metabolic states, and their regulatory mechanisms. Cell Rep. 34, 108750 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Costa, E. C., Gaspar, V. M., Coutinho, P. & Correia, I. J. Optimization of liquid overlay technique to formulate heterogenic 3D co-cultures models. Biotechnol. Bioeng. 111, 1672–1685 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Vyshnava, S. S. et al. Gram scale synthesis of QD 450 core–shell quantum dots for cellular imaging and sorting. Appl. Nanosci. 10, 1257–1268 (2020).

    ADS 
    CAS 

    Google Scholar 

  • Hanmandlu, C. et al. Suppression of surface defects to achieve hysteresis-free inverted perovskite solar cells via quantum dot passivation. J. Mater. Chem. A 8, 5263–5274 (2020).

    CAS 

    Google Scholar 

  • Hsia, C.-H., Wuttig, A. & Yang, H. An accessible approach to preparing water-soluble Mn2+-doped (CdSSe) ZnS (core) shell nanocrystals for ratiometric temperature sensing. ACS Nano 5, 9511–9522 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • Fournier-Bidoz, S. et al. Facile and rapid one-step mass preparation of quantum-dot barcodes. Angew. Chem. Int. Ed. 47, 5577–5581 (2008).

    CAS 

    Google Scholar 

  • Howarth, M. et al. Monovalent, reduced-size quantum dots for imaging receptors on living cells. Nat. Methods 5, 397–399 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lim, S. J., Chon, B., Joo, T. & Shin, S. K. Synthesis and characterization of zinc-blende CdSe-based core/shell nanocrystals and their luminescence in water. J. Phys. Chem. C 112, 1744–1747 (2008).

    CAS 

    Google Scholar 

  • Vo, N. T. et al. Stability investigation of ligand-exchanged CdSe/ZnS-Y (Y= 3-mercaptopropionic acid or mercaptosuccinic acid) through zeta potential measurements. J. Nanomater. 2016, 1–8 (2016).

  • Chang, C. M., Orchard, K. L., Martindale, B. C. & Reisner, E. Ligand removal from CdS quantum dots for enhanced photocatalytic H2 generation in pH neutral water. J. Mater. Chem. A 4, 2856–2862 (2016).

    CAS 

    Google Scholar 

  • Taniguchi, S. & Green, M. The synthesis of CdTe/ZnS core/shell quantum dots using molecular single-source precursors. J. Mater. Chem. C 3, 8425–8433 (2015).

    CAS 

    Google Scholar 

  • Clapp, A. R., Goldman, E. R. & Mattoussi, H. Capping of CdSe–ZnS quantum dots with DHLA and subsequent conjugation with proteins. Nat. Protoc. 1, 1258–1266 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • Han, H.-S. et al. Quantum dot/antibody conjugates for in vivo cytometric imaging in mice. Proc. Natl. Acad. Sci. 112, 1350–1355 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Marhaba, R. et al. CD44 and EpCAM: cancer-initiating cell markers. Curr. Mol. Med. 8, 784–804 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • Horikawa, M., Iinuma, H., Inoue, T., Ogawa, E. & Fukushima, R. Clinical significance of intraperitoneal CD44 mRNA levels of magnetically separated CD45-negative EpCAM-positive cells for peritoneal recurrence and prognosis in stage II and III gastric cancer patients. Oncol. Rep. 25, 1413–1420 (2011).

    PubMed 

    Google Scholar 

  • Antony, J., Thiery, J. P. & Huang, R.Y.-J. Epithelial-to-mesenchymal transition: lessons from development, insights into cancer and the potential of EMT-subtype based therapeutic intervention. Phys. Biol. 16, 041004 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Pastushenko, I. & Blanpain, C. EMT transition states during tumor progression and metastasis. Trends Cell Biol. 29, 212–226 (2019).

    CAS 

    Google Scholar 

  • Masciale, V. et al. CD44+/EPCAM+ cells detect a subpopulation of ALDHhigh cells in human non-small cell lung cancer: a chance for targeting cancer stem cells?. Oncotarget 11, 1545 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Hermiston, M. L., Xu, Z. & Weiss, A. CD45: a critical regulator of signaling thresholds in immune cells. Annu. Rev. Immunol. 21, 107–137 (2003).

    CAS 
    PubMed 

    Google Scholar 

  • Gires, O., Klein, C. A. & Baeuerle, P. A. On the abundance of EpCAM on cancer stem cells. Nat. Rev. Cancer 9, 143–143 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • Source link