Pyšek, P. et al. Scientists’ warning on invasive alien species. Biol. Rev. 95, 1511–1534 (2020).
Google Scholar
Dara, S. K. The new integrated pest management paradigm for the modern age. J. Integr. Pest Manage. 10, 25 (2019).
Google Scholar
Burt, A. Site-specific selfish genes as tools for the control and genetic engineering of natural populations. Proc. R. Soc. B Biol. Sci. 270, 921–928 (2003).
Google Scholar
Burt, A. Heritable strategies for controlling insect vectors of disease. Philos. Trans. R. Soc. B Biol. Sci. 369, 25 (2014).
Google Scholar
Champer, J., Buchman, A. & Akbari, O. S. Cheating evolution: Engineering gene drives to manipulate the fate of wild populations. Nat. Rev. Genet. 17, 146–159 (2016).
Google Scholar
Esvelt, K. M., Smidler, A. L., Catteruccia, F. & Church, G. M. Concerning RNA-guided gene drives for the alteration of wild populations. Elife 3, 1–21 (2014).
Google Scholar
Gantz, V. M. & Bier, E. The mutagenic chain reaction: A method for converting heterozygous to homozygous mutations. Science 348, 442–444 (2015).
Google Scholar
Godfray, H. C. J., North, A. & Burt, A. How driving endonuclease genes can be used to combat pests and disease vectors. BMC Biol. 15, 1–12 (2017).
Google Scholar
Rode, N. O., Estoup, A., Bourguet, D., Courtier-Orgogozo, V. & Débarre, F. Population management using gene drive: Molecular design, models of spread dynamics and assessment of ecological risks. Conserv. Genet. 20, 671–690 (2019).
Google Scholar
Gantz, V. M. et al. Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito Anopheles stephensi. Proc. Natl. Acad. Sci. USA 112, E6736–E6743 (2015).
Google Scholar
Beaghton, A. K., Hammond, A., Nolan, T., Crisanti, A. & Burt, A. Gene drive for population genetic control: Non-functional resistance and parental effects. Proc. R. Soc. B Biol. Sci. 286, 20191586 (2019).
Google Scholar
Champer, J., Kim, I. K., Champer, S. E., Clark, A. G. & Messer, P. W. Suppression gene drive in continuous space can result in unstable persistence of both drive and wild-type alleles. Mol. Ecol. 30, 1086–1101 (2021).
Google Scholar
Champer, S. E. et al. Computational and experimental performance of CRISPR homing gene drive strategies with multiplexed gRNAs. Sci. Adv. 6, eaaz0525 (2020).
Google Scholar
Deredec, A., Burt, A. & Godfray, H. C. J. The population genetics of using homing endonuclease genes in vector and pest management. Genetics 179, 2013–2026 (2008).
Google Scholar
Deredec, A., Godfray, H. C. J. & Burt, A. Requirements for effective malaria control with homing endonuclease genes. Proc. Natl. Acad. Sci. USA 108, E874–E880 (2011).
Google Scholar
North, A. R., Burt, A. & Godfray, H. C. J. Modelling the suppression of a malaria vector using a CRISPR-Cas9 gene drive to reduce female fertility. BMC Biol. 18, 1–14 (2020).
Google Scholar
Prowse, T. A. A. et al. Dodging silver bullets: Good CRISPR gene-drive design is critical for eradicating exotic vertebrates. Proc. R. Soc. B Biol. Sci. 284, 20170799 (2017).
Google Scholar
Kyrou, K. et al. A CRISPR–Cas9 gene drive targeting doublesex causes complete population suppression in caged Anopheles gambiae mosquitoes. Nat. Biotechnol. 36, 1062–1071 (2018).
Google Scholar
Grunwald, H. A. et al. Super-Mendelian inheritance mediated by CRISPR–Cas9 in the female mouse germline. Nature 566, 105–109 (2019).
Google Scholar
Hammond, A. et al. A CRISPR-Cas9 gene drive system targeting female reproduction in the malaria mosquito vector Anopheles gambiae. Nat. Biotechnol. 34, 78–83 (2016).
Google Scholar
Adelman, Z. et al. Rules of the road for insect gene drive research and testing. Nat. Biotechnol. 35, 716–718 (2017).
Google Scholar
Akbari, O. S. et al. Safeguarding gene drive experiments in the laboratory. Science 349, 927–929 (2015).
Google Scholar
Brossard, D., Belluck, P., Gould, F. & Wirz, C. D. Promises and perils of gene drives: Navigating the communication of complex, post-normal science. Proc. Natl. Acad. Sci. USA 116, 7692–7697 (2019).
Google Scholar
Champer, J. et al. Novel CRISPR/Cas9 gene drive constructs reveal insights into mechanisms of resistance allele formation and drive efficiency in genetically diverse populations. PLoS Genet. 13, 1–18 (2017).
Google Scholar
Hammond, A. et al. The creation and selection of mutations resistant to a gene drive over multiple generations in the malaria mosquito. PLoS Genet. 13, 1–16 (2017).
Google Scholar
Hammond, A. et al. Regulating the expression of gene drives is key to increasing their invasive potential and the mitigation of resistance. PLoS Genet. 17, 1–21 (2021).
Google Scholar
KaramiNejadRanjbar, M. et al. Consequences of resistance evolution in a Cas9-based sex conversion-suppression gene drive for insect pest management. Proc. Natl. Acad. Sci. USA 115, 6189–6194 (2018).
Google Scholar
Price, T. A. R. et al. Resistance to natural and synthetic gene drive systems. J. Evol. Biol. 33, 1345–1360 (2021).
Google Scholar
Taylor, M. L., Price, T. A. R. & Wedell, N. Polyandry in nature: A global analysis. Trends Ecol. Evol. 29, 376–383 (2014).
Google Scholar
Arnqvist, G. & Nilsson, T. The evolution of polyandry: Multiple mating and female fitness in insects. Anim. Behav. 60, 145–164 (2000).
Google Scholar
Hurtado, J., Iglesias, P. P., Lipko, P. & Hasson, E. Multiple paternity and sperm competition in the sibling species Drosophila buzzatii and Drosophila koepferae. Mol. Ecol. 22, 5016–5026 (2013).
Google Scholar
Champer, J. et al. Reducing resistance allele formation in CRISPR gene drive. Proc. Natl. Acad. Sci. USA 115, 5522–5527 (2018).
Google Scholar
Terradas, G. et al. Inherently confinable split-drive systems in Drosophila. Nat. Commun. 12, 1480 (2021).
Google Scholar
Burt, A. & Deredec, A. Self-limiting population genetic control with sex-linked genome editors. Proc. R. Soc. B Biol. Sci. 285, 25 (2018).
Willis, K. & Burt, A. Double drives and private alleles for localised population genetic control. PLoS Genet. 17, 1–20 (2021).
Google Scholar
Beaghton, A., Beaghton, P. J. & Burt, A. Gene drive through a landscape: Reaction–diffusion models of population suppression and elimination by a sex ratio distorter. Theor. Popul. Biol. 108, 51–69 (2016).
Google Scholar
Rendon, D., Buser, J., Tait, G., Lee, J. C. & Walton, V. M. Survival and fecundity parameters of two Drosophila suzukii (Diptera: Drosophilidae) morphs on variable diet under suboptimal temperatures. J. Insect Sci. 18, 25 (2018).
Google Scholar
Buchman, A. et al. Engineered resistance to Zika virus in transgenic Aedes aegypti expressing a polycistronic cluster of synthetic small RNAs. Proc. Natl. Acad. Sci. USA 116, 3656–3661 (2019).
Google Scholar
Halfhill, M. D., Millwood, R. J., Weissinger, A. K., Warwick, S. I. & Stewart, C. N. Additive transgene expression and genetic introgression in multiple green-fluorescent protein transgenic crop x weed hybrid generations. Theor. Appl. Genet. 107, 1533–1540 (2003).
Google Scholar
Myers, J. L. et al. Mutants of the white ABCG transporter in Drosophila melanogaster have deficient olfactory learning and cholesterol homeostasis. Int. J. Mol. Sci. 22, 25 (2021).
Hosseini-Tabesh, B., Sahragard, A. & Karimi-Malati, A. A laboratory and field condition comparison of life table parameters of Aphis gossypii Glover (Hemiptera: Aphididae). J. Plant Prot. Res. 55, 1–7 (2015).
Google Scholar
Ranjha, L., Howard, S. M. & Cejka, P. Main steps in DNA double-strand break repair: An introduction to homologous recombination and related processes. Chromosoma 127, 187–214 (2018).
Google Scholar
Unckless, R. L., Clark, A. G. & Messer, P. W. Evolution of resistance against CRISPR/Cas9 gene drive. Genetics 205, 827–841 (2017).
Google Scholar
Palma, L. et al. Bacillus thuringiensis toxins: An overview of their biocidal activity. Toxins (Basel) 6, 3296–3325 (2014).
Google Scholar
Al-Wathiqui, N., Lewis, S. M. & Dopman, E. B. Using RNA sequencing to characterize female reproductive genes between Z and E Strains of European Corn Borer moth (Ostrinia nubilalis). BMC Genom. 15, 1–13 (2014).
Google Scholar
Kelleher, E. S., Swanson, W. J. & Markow, T. A. Gene duplication and adaptive evolution of digestive proteases in Drosophila arizonae female reproductive tracts. PLoS Genet. 3, 1541–1549 (2007).
Google Scholar
Lawniczak, M. K. N. et al. Mating and immunity in invertebrates. Trends Ecol. Evol. 22, 48–55 (2007).
Google Scholar
Lawniczak, M. K. N. & Begun, D. J. Molecular population genetics of female-expressed mating-induced serine proteases in Drosophila melanogaster. Mol. Biol. Evol. 24, 1944–1951 (2007).
Google Scholar
McGraw, L. A., Gibson, G., Clark, A. G. & Wolfner, M. F. Genes regulated by mating, sperm, or seminal proteins in mated female Drosophila melanogaster. Curr. Biol. 14, 1509–1514 (2004).
Google Scholar
Meslin, C. et al. Digestive organ in the female reproductive tract borrows genes from multiple organ systems to adopt critical functions. Mol. Biol. Evol. 32, 1567–1580 (2015).
Google Scholar
Plakke, M. S., Deutsch, A. B., Meslin, C., Clark, N. L. & Morehouse, N. I. Dynamic digestive physiology of a female reproductive organ in a polyandrous butterfly. J. Exp. Biol. 218, 1548–1555 (2015).
Google Scholar
Plakke, M. S. et al. Characterization of female reproductive proteases in a butterfly from functional and evolutionary perspectives. Physiol. Biochem. Zool. 92, 579–590 (2019).
Google Scholar
Paul, S. & Das, S. Natural insecticidal proteins, the promising bio-control compounds for future crop protection. Nucleous 64, 7–20 (2021).
Google Scholar
Liu, L. et al. Identification and evaluations of novel insecticidal proteins from plants of the class polypodiopsida for crop protection against key lepidopteran pests. Toxins (Basel) 11, 1–25 (2019).
King, G. F. Tying pest insects in knots: The deployment of spider-venom-derived knottins as bioinsecticides. Pest Manage. Sci. 75, 2437–2445 (2019).
Google Scholar
Kumar, J., Ramlal, A., Mallick, D. & Mishra, V. An overview of some biopesticides and their importance in plant protection for commercial acceptance. Plants 10, 1–15 (2021).
Agrawal, P., Kumar, S., Singh, A., Raghava, G. P. S. & Singh, I. K. NeuroPIpred: A tool to predict, design and scan insect neuropeptides. Sci. Rep. 9, 1–12 (2019).
Simonson, T. et al. Physics-based computational protein design: An update. J. Phys. Chem. A 124, 10637–10648 (2020).
Google Scholar
Zhou, J., Panaitiu, A. E. & Grigoryan, G. A general-purpose protein design framework based on mining sequence-structure relationships in known protein structures. Proc. Natl. Acad. Sci. USA 117, 1059–1068 (2020).
Google Scholar
Leman, J. K. et al. Macromolecular modeling and design in Rosetta: Recent methods and frameworks. Nat. Methods 17, 665–680 (2020).
Google Scholar
Lee, A. C. L., Harris, J. L., Khanna, K. K. & Hong, J. H. A comprehensive review on current advances in peptide drug development and design. Int. J. Mol. Sci. 20, 1–21 (2019).
Google Scholar
Siegwart, M. et al. Resistance to bio-insecticides or how to enhance their sustainability: A review. Front. Plant Sci. 6, 1–19 (2015).
Google Scholar
Richardson, J. B., Jameson, S. B., Gloria-Soria, A., Wesson, D. M. & Powell, J. Evidence of limited polyandry in a natural population of Aedes aegypti. Am. J. Trop. Med. Hyg. 93, 189–193 (2015).
Google Scholar
Bull, J. J., Remien, C. H. & Krone, S. M. Gene-drive-mediated extinction is thwarted by population structure and evolution of sib mating. Evol. Med. Public Health 2019, 66–81 (2019).
Google Scholar
Champer, J., Zhao, J., Champer, S. E., Liu, J. & Messer, P. W. Population dynamics of underdominance gene drive systems in continuous space. ACS Synth. Biol. 9, 779–792 (2020).
Google Scholar
Adli, M. The CRISPR tool kit for genome editing and beyond. Nat. Commun. 9, 1911 (2018).
Google Scholar
Brand, A. H. & Perrimon, N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401–415 (1993).
Google Scholar
Saez, N. J. & Herzig, V. Versatile spider venom peptides and their medical and agricultural applications. Toxicon 158, 109–126 (2019).
Google Scholar
McGraw, E. A. & O’Neill, S. L. Beyond insecticides: New thinking on an ancient problem. Nat. Rev. Microbiol. 11, 181–193 (2013).
Google Scholar
Beverton, R. J. H. & Holt, S. J. On the dynamics of exploited fish populations. Fish. Investig. 19, 1–533 (1957).
Allee, W. C. Animal Aggregations (University of Chicago Press, 1931).

