Preloader

Propagation of seminal toxins through binary expression gene drives could suppress populations

  • Pyšek, P. et al. Scientists’ warning on invasive alien species. Biol. Rev. 95, 1511–1534 (2020).

    Article 

    Google Scholar 

  • Dara, S. K. The new integrated pest management paradigm for the modern age. J. Integr. Pest Manage. 10, 25 (2019).

    Article 

    Google Scholar 

  • Burt, A. Site-specific selfish genes as tools for the control and genetic engineering of natural populations. Proc. R. Soc. B Biol. Sci. 270, 921–928 (2003).

    CAS 
    Article 

    Google Scholar 

  • Burt, A. Heritable strategies for controlling insect vectors of disease. Philos. Trans. R. Soc. B Biol. Sci. 369, 25 (2014).

    Article 

    Google Scholar 

  • Champer, J., Buchman, A. & Akbari, O. S. Cheating evolution: Engineering gene drives to manipulate the fate of wild populations. Nat. Rev. Genet. 17, 146–159 (2016).

    CAS 
    Article 

    Google Scholar 

  • Esvelt, K. M., Smidler, A. L., Catteruccia, F. & Church, G. M. Concerning RNA-guided gene drives for the alteration of wild populations. Elife 3, 1–21 (2014).

    Article 

    Google Scholar 

  • Gantz, V. M. & Bier, E. The mutagenic chain reaction: A method for converting heterozygous to homozygous mutations. Science 348, 442–444 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Godfray, H. C. J., North, A. & Burt, A. How driving endonuclease genes can be used to combat pests and disease vectors. BMC Biol. 15, 1–12 (2017).

    Article 

    Google Scholar 

  • Rode, N. O., Estoup, A., Bourguet, D., Courtier-Orgogozo, V. & Débarre, F. Population management using gene drive: Molecular design, models of spread dynamics and assessment of ecological risks. Conserv. Genet. 20, 671–690 (2019).

    CAS 
    Article 

    Google Scholar 

  • Gantz, V. M. et al. Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito Anopheles stephensi. Proc. Natl. Acad. Sci. USA 112, E6736–E6743 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Beaghton, A. K., Hammond, A., Nolan, T., Crisanti, A. & Burt, A. Gene drive for population genetic control: Non-functional resistance and parental effects. Proc. R. Soc. B Biol. Sci. 286, 20191586 (2019).

    CAS 
    Article 

    Google Scholar 

  • Champer, J., Kim, I. K., Champer, S. E., Clark, A. G. & Messer, P. W. Suppression gene drive in continuous space can result in unstable persistence of both drive and wild-type alleles. Mol. Ecol. 30, 1086–1101 (2021).

    CAS 
    Article 

    Google Scholar 

  • Champer, S. E. et al. Computational and experimental performance of CRISPR homing gene drive strategies with multiplexed gRNAs. Sci. Adv. 6, eaaz0525 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Deredec, A., Burt, A. & Godfray, H. C. J. The population genetics of using homing endonuclease genes in vector and pest management. Genetics 179, 2013–2026 (2008).

    Article 

    Google Scholar 

  • Deredec, A., Godfray, H. C. J. & Burt, A. Requirements for effective malaria control with homing endonuclease genes. Proc. Natl. Acad. Sci. USA 108, E874–E880 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • North, A. R., Burt, A. & Godfray, H. C. J. Modelling the suppression of a malaria vector using a CRISPR-Cas9 gene drive to reduce female fertility. BMC Biol. 18, 1–14 (2020).

    Article 

    Google Scholar 

  • Prowse, T. A. A. et al. Dodging silver bullets: Good CRISPR gene-drive design is critical for eradicating exotic vertebrates. Proc. R. Soc. B Biol. Sci. 284, 20170799 (2017).

    Article 

    Google Scholar 

  • Kyrou, K. et al. A CRISPR–Cas9 gene drive targeting doublesex causes complete population suppression in caged Anopheles gambiae mosquitoes. Nat. Biotechnol. 36, 1062–1071 (2018).

    CAS 
    Article 

    Google Scholar 

  • Grunwald, H. A. et al. Super-Mendelian inheritance mediated by CRISPR–Cas9 in the female mouse germline. Nature 566, 105–109 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Hammond, A. et al. A CRISPR-Cas9 gene drive system targeting female reproduction in the malaria mosquito vector Anopheles gambiae. Nat. Biotechnol. 34, 78–83 (2016).

    CAS 
    Article 

    Google Scholar 

  • Adelman, Z. et al. Rules of the road for insect gene drive research and testing. Nat. Biotechnol. 35, 716–718 (2017).

    CAS 
    Article 

    Google Scholar 

  • Akbari, O. S. et al. Safeguarding gene drive experiments in the laboratory. Science 349, 927–929 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Brossard, D., Belluck, P., Gould, F. & Wirz, C. D. Promises and perils of gene drives: Navigating the communication of complex, post-normal science. Proc. Natl. Acad. Sci. USA 116, 7692–7697 (2019).

    CAS 
    Article 

    Google Scholar 

  • Champer, J. et al. Novel CRISPR/Cas9 gene drive constructs reveal insights into mechanisms of resistance allele formation and drive efficiency in genetically diverse populations. PLoS Genet. 13, 1–18 (2017).

    Article 

    Google Scholar 

  • Hammond, A. et al. The creation and selection of mutations resistant to a gene drive over multiple generations in the malaria mosquito. PLoS Genet. 13, 1–16 (2017).

    Article 

    Google Scholar 

  • Hammond, A. et al. Regulating the expression of gene drives is key to increasing their invasive potential and the mitigation of resistance. PLoS Genet. 17, 1–21 (2021).

    Article 

    Google Scholar 

  • KaramiNejadRanjbar, M. et al. Consequences of resistance evolution in a Cas9-based sex conversion-suppression gene drive for insect pest management. Proc. Natl. Acad. Sci. USA 115, 6189–6194 (2018).

    Article 

    Google Scholar 

  • Price, T. A. R. et al. Resistance to natural and synthetic gene drive systems. J. Evol. Biol. 33, 1345–1360 (2021).

    Article 

    Google Scholar 

  • Taylor, M. L., Price, T. A. R. & Wedell, N. Polyandry in nature: A global analysis. Trends Ecol. Evol. 29, 376–383 (2014).

    Article 

    Google Scholar 

  • Arnqvist, G. & Nilsson, T. The evolution of polyandry: Multiple mating and female fitness in insects. Anim. Behav. 60, 145–164 (2000).

    CAS 
    Article 

    Google Scholar 

  • Hurtado, J., Iglesias, P. P., Lipko, P. & Hasson, E. Multiple paternity and sperm competition in the sibling species Drosophila buzzatii and Drosophila koepferae. Mol. Ecol. 22, 5016–5026 (2013).

    CAS 
    Article 

    Google Scholar 

  • Champer, J. et al. Reducing resistance allele formation in CRISPR gene drive. Proc. Natl. Acad. Sci. USA 115, 5522–5527 (2018).

    CAS 
    Article 

    Google Scholar 

  • Terradas, G. et al. Inherently confinable split-drive systems in Drosophila. Nat. Commun. 12, 1480 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Burt, A. & Deredec, A. Self-limiting population genetic control with sex-linked genome editors. Proc. R. Soc. B Biol. Sci. 285, 25 (2018).

    Google Scholar 

  • Willis, K. & Burt, A. Double drives and private alleles for localised population genetic control. PLoS Genet. 17, 1–20 (2021).

    Article 

    Google Scholar 

  • Beaghton, A., Beaghton, P. J. & Burt, A. Gene drive through a landscape: Reaction–diffusion models of population suppression and elimination by a sex ratio distorter. Theor. Popul. Biol. 108, 51–69 (2016).

    MATH 
    Article 

    Google Scholar 

  • Rendon, D., Buser, J., Tait, G., Lee, J. C. & Walton, V. M. Survival and fecundity parameters of two Drosophila suzukii (Diptera: Drosophilidae) morphs on variable diet under suboptimal temperatures. J. Insect Sci. 18, 25 (2018).

    Article 

    Google Scholar 

  • Buchman, A. et al. Engineered resistance to Zika virus in transgenic Aedes aegypti expressing a polycistronic cluster of synthetic small RNAs. Proc. Natl. Acad. Sci. USA 116, 3656–3661 (2019).

    CAS 
    Article 

    Google Scholar 

  • Halfhill, M. D., Millwood, R. J., Weissinger, A. K., Warwick, S. I. & Stewart, C. N. Additive transgene expression and genetic introgression in multiple green-fluorescent protein transgenic crop x weed hybrid generations. Theor. Appl. Genet. 107, 1533–1540 (2003).

    CAS 
    Article 

    Google Scholar 

  • Myers, J. L. et al. Mutants of the white ABCG transporter in Drosophila melanogaster have deficient olfactory learning and cholesterol homeostasis. Int. J. Mol. Sci. 22, 25 (2021).

    Google Scholar 

  • Hosseini-Tabesh, B., Sahragard, A. & Karimi-Malati, A. A laboratory and field condition comparison of life table parameters of Aphis gossypii Glover (Hemiptera: Aphididae). J. Plant Prot. Res. 55, 1–7 (2015).

    Article 

    Google Scholar 

  • Ranjha, L., Howard, S. M. & Cejka, P. Main steps in DNA double-strand break repair: An introduction to homologous recombination and related processes. Chromosoma 127, 187–214 (2018).

    CAS 
    Article 

    Google Scholar 

  • Unckless, R. L., Clark, A. G. & Messer, P. W. Evolution of resistance against CRISPR/Cas9 gene drive. Genetics 205, 827–841 (2017).

    Article 

    Google Scholar 

  • Palma, L. et al. Bacillus thuringiensis toxins: An overview of their biocidal activity. Toxins (Basel) 6, 3296–3325 (2014).

    CAS 
    Article 

    Google Scholar 

  • Al-Wathiqui, N., Lewis, S. M. & Dopman, E. B. Using RNA sequencing to characterize female reproductive genes between Z and E Strains of European Corn Borer moth (Ostrinia nubilalis). BMC Genom. 15, 1–13 (2014).

    Article 

    Google Scholar 

  • Kelleher, E. S., Swanson, W. J. & Markow, T. A. Gene duplication and adaptive evolution of digestive proteases in Drosophila arizonae female reproductive tracts. PLoS Genet. 3, 1541–1549 (2007).

    CAS 
    Article 

    Google Scholar 

  • Lawniczak, M. K. N. et al. Mating and immunity in invertebrates. Trends Ecol. Evol. 22, 48–55 (2007).

    Article 

    Google Scholar 

  • Lawniczak, M. K. N. & Begun, D. J. Molecular population genetics of female-expressed mating-induced serine proteases in Drosophila melanogaster. Mol. Biol. Evol. 24, 1944–1951 (2007).

    CAS 
    Article 

    Google Scholar 

  • McGraw, L. A., Gibson, G., Clark, A. G. & Wolfner, M. F. Genes regulated by mating, sperm, or seminal proteins in mated female Drosophila melanogaster. Curr. Biol. 14, 1509–1514 (2004).

    CAS 
    Article 

    Google Scholar 

  • Meslin, C. et al. Digestive organ in the female reproductive tract borrows genes from multiple organ systems to adopt critical functions. Mol. Biol. Evol. 32, 1567–1580 (2015).

    CAS 
    Article 

    Google Scholar 

  • Plakke, M. S., Deutsch, A. B., Meslin, C., Clark, N. L. & Morehouse, N. I. Dynamic digestive physiology of a female reproductive organ in a polyandrous butterfly. J. Exp. Biol. 218, 1548–1555 (2015).

    Article 

    Google Scholar 

  • Plakke, M. S. et al. Characterization of female reproductive proteases in a butterfly from functional and evolutionary perspectives. Physiol. Biochem. Zool. 92, 579–590 (2019).

    Article 

    Google Scholar 

  • Paul, S. & Das, S. Natural insecticidal proteins, the promising bio-control compounds for future crop protection. Nucleous 64, 7–20 (2021).

    Article 

    Google Scholar 

  • Liu, L. et al. Identification and evaluations of novel insecticidal proteins from plants of the class polypodiopsida for crop protection against key lepidopteran pests. Toxins (Basel) 11, 1–25 (2019).

    Google Scholar 

  • King, G. F. Tying pest insects in knots: The deployment of spider-venom-derived knottins as bioinsecticides. Pest Manage. Sci. 75, 2437–2445 (2019).

    CAS 
    Article 

    Google Scholar 

  • Kumar, J., Ramlal, A., Mallick, D. & Mishra, V. An overview of some biopesticides and their importance in plant protection for commercial acceptance. Plants 10, 1–15 (2021).

    Google Scholar 

  • Agrawal, P., Kumar, S., Singh, A., Raghava, G. P. S. & Singh, I. K. NeuroPIpred: A tool to predict, design and scan insect neuropeptides. Sci. Rep. 9, 1–12 (2019).

    Google Scholar 

  • Simonson, T. et al. Physics-based computational protein design: An update. J. Phys. Chem. A 124, 10637–10648 (2020).

    Article 

    Google Scholar 

  • Zhou, J., Panaitiu, A. E. & Grigoryan, G. A general-purpose protein design framework based on mining sequence-structure relationships in known protein structures. Proc. Natl. Acad. Sci. USA 117, 1059–1068 (2020).

    CAS 
    Article 

    Google Scholar 

  • Leman, J. K. et al. Macromolecular modeling and design in Rosetta: Recent methods and frameworks. Nat. Methods 17, 665–680 (2020).

    MathSciNet 
    CAS 
    Article 

    Google Scholar 

  • Lee, A. C. L., Harris, J. L., Khanna, K. K. & Hong, J. H. A comprehensive review on current advances in peptide drug development and design. Int. J. Mol. Sci. 20, 1–21 (2019).

    ADS 

    Google Scholar 

  • Siegwart, M. et al. Resistance to bio-insecticides or how to enhance their sustainability: A review. Front. Plant Sci. 6, 1–19 (2015).

    Article 

    Google Scholar 

  • Richardson, J. B., Jameson, S. B., Gloria-Soria, A., Wesson, D. M. & Powell, J. Evidence of limited polyandry in a natural population of Aedes aegypti. Am. J. Trop. Med. Hyg. 93, 189–193 (2015).

    Article 

    Google Scholar 

  • Bull, J. J., Remien, C. H. & Krone, S. M. Gene-drive-mediated extinction is thwarted by population structure and evolution of sib mating. Evol. Med. Public Health 2019, 66–81 (2019).

    Article 

    Google Scholar 

  • Champer, J., Zhao, J., Champer, S. E., Liu, J. & Messer, P. W. Population dynamics of underdominance gene drive systems in continuous space. ACS Synth. Biol. 9, 779–792 (2020).

    CAS 
    Article 

    Google Scholar 

  • Adli, M. The CRISPR tool kit for genome editing and beyond. Nat. Commun. 9, 1911 (2018).

    ADS 
    Article 

    Google Scholar 

  • Brand, A. H. & Perrimon, N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401–415 (1993).

    CAS 
    Article 

    Google Scholar 

  • Saez, N. J. & Herzig, V. Versatile spider venom peptides and their medical and agricultural applications. Toxicon 158, 109–126 (2019).

    CAS 
    Article 

    Google Scholar 

  • McGraw, E. A. & O’Neill, S. L. Beyond insecticides: New thinking on an ancient problem. Nat. Rev. Microbiol. 11, 181–193 (2013).

    CAS 
    Article 

    Google Scholar 

  • Beverton, R. J. H. & Holt, S. J. On the dynamics of exploited fish populations. Fish. Investig. 19, 1–533 (1957).

    Google Scholar 

  • Allee, W. C. Animal Aggregations (University of Chicago Press, 1931).

    Google Scholar 

  • Source link