Lee, S., Huang, H. & Zelen, M. Early detection of disease and scheduling of screening examinations. Stat. Methods Med. Res. 13, 443–456 (2004).
Google Scholar
Glasziou, P., Irwig, L. & Mant, D. Monitoring in chronic disease: a rational approach. BMJ 330, 644–648 (2005).
Google Scholar
Rohr, U.-P. et al. The value of in vitro diagnostic testing in medical practice: a status report. PLoS ONE 11, e0149856 (2016).
Google Scholar
Dunn, J., Runge, R. & Snyder, M. Wearables and the medical revolution. Per. Med. 15, 429–448 (2018).
Google Scholar
Yang, Y. & Gao, W. Wearable and flexible electronics for continuous molecular monitoring. Chem. Soc. Rev. 48, 1465–1491 (2019).
Google Scholar
Nayak, S., Blumenfeld, N. R., Laksanasopin, T. & Sia, S. K. Point-of-care diagnostics: recent developments in a connected age. Anal. Chem. 89, 102–123 (2017).
Google Scholar
Gui, Q., Lawson, T., Shan, S., Yan, L. & Liu, Y. The application of whole cell-based biosensors for use in environmental analysis and in medical diagnostics. Sensors 17, 1623 (2017).
Quillardet, P., Huisman, O., D’Ari, R. & Hofnung, M. SOS chromotest, a direct assay of induction of an SOS function in Escherichia coli K-12 to measure genotoxicity. Proc. Natl Acad. Sci. USA 79, 5971–5975 (1982).
Google Scholar
Hicks, M., Bachmann, T. T. & Wang, B. Synthetic biology enables programmable cell‐based biosensors. Chemphyschem 21, 132–144 (2020).
Google Scholar
Courbet, A., Endy, D., Renard, E., Molina, F. & Bonnet, J. Detection of pathological biomarkers in human clinical samples via amplifying genetic switches and logic gates. Sci. Transl. Med. 7, 289ra83 (2015).
Google Scholar
Chang, H.-J., Voyvodic, P. L., Zúñiga, A. & Bonnet, J. Microbially derived biosensors for diagnosis, monitoring and epidemiology. Microb. Biotechnol. 10, 1031–1035 (2017).
Google Scholar
Menezes, A. A., Montague, M. G., Cumbers, J., Hogan, J. A. & Arkin, A. P. Grand challenges in space synthetic biology. J. R. Soc. Interface 12, 20150803 (2015).
Google Scholar
Chang, H.-J. & Bonnet, J. Synthetic receptors to understand and control cellular functions. Methods Enzymol. 633, 143–167 (2020).
Google Scholar
Chang, H.-J. et al. A modular receptor platform to expand the sensing repertoire of bacteria. ACS Synth. Biol. 7, 166–175 (2018).
Google Scholar
Ulrich, L. E., Koonin, E. V. & Zhulin, I. B. One-component systems dominate signal transduction in prokaryotes. Trends Microbiol. 13, 52–56 (2005).
Google Scholar
Jung, K., Fabiani, F., Hoyer, E. & Lassak, J. Bacterial transmembrane signalling systems and their engineering for biosensing. Open Biol. 8, 180023 (2018).
Lindner, E. & White, S. H. Topology, dimerization, and stability of the single-span membrane protein CadC. J. Mol. Biol. 426, 2942–2957 (2014).
Google Scholar
Schlundt, A. et al. Structure-function analysis of the DNA-binding domain of a transmembrane transcriptional activator. Sci. Rep. 7, 1051 (2017).
Google Scholar
Bruix, J., Han, K.-H., Gores, G., Llovet, J. M. & Mazzaferro, V. Liver cancer: approaching a personalized care. J. Hepatol. 62, S144–S156 (2015).
Google Scholar
Kullak-Ublick, G. A. et al. Drug-induced liver injury: recent advances in diagnosis and risk assessment. Gut 66, 1154–1164 (2017).
Google Scholar
Marcellin, P. & Kutala, B. K. Liver diseases: a major, neglected global public health problem requiring urgent actions and large-scale screening. Liver Int. 38(Suppl 1), 2–6 (2018).
Google Scholar
Ahmed, M. Acute cholangitis—an update. World J. Gastrointest. Pathophysiol. 9, 1–7 (2018).
Google Scholar
Schuppan, D. & Afdhal, N. H. Liver cirrhosis. Lancet 371, 838–851 (2008).
Google Scholar
Asrani, S. K., Devarbhavi, H., Eaton, J. & Kamath, P. S. Burden of liver diseases in the world. J. Hepatol. 70, 151–171 (2019).
Google Scholar
Giannini, E. G., Testa, R. & Savarino, V. Liver enzyme alteration: a guide for clinicians. CMAJ 172, 367–379 (2005).
Google Scholar
McGill, M. R. The past and present of serum aminotransferases and the future of liver injury biomarkers. EXCLI J. 15, 817–828 (2016).
Google Scholar
Maldonado-Valderrama, J., Wilde, P., Macierzanka, A. & Mackie, A. The role of bile salts in digestion. Adv. Colloid Interface Sci. 165, 36–46 (2011).
Google Scholar
Pataia, V., Dixon, P. H. & Williamson, C. Pregnancy and bile acid disorders. Am. J. Physiol. Gastrointest. Liver Physiol. 313, G1–G6 (2017).
Google Scholar
Gulamhusein, A. F. & Hirschfield, G. M. Primary biliary cholangitis: pathogenesis and therapeutic opportunities. Nat. Rev. Gastroenterol. Hepatol. 17, 93–110 (2020).
Google Scholar
Trottier, J. et al. Profiling circulating and urinary bile acids in patients with biliary obstruction before and after biliary stenting. PLoS ONE 6, e22094 (2011).
Google Scholar
Sugita, T. et al. Analysis of the serum bile acid composition for differential diagnosis in patients with liver disease. Gastroenterol. Res. Pract. 2015, 717431 (2015).
Google Scholar
Luo, L. et al. Assessment of serum bile acid profiles as biomarkers of liver injury and liver disease in humans. PLoS ONE 13, e0193824 (2018).
Google Scholar
Elsheashaey, A., Obada, M., Abdelsameea, E., Bayomy, M. F. F. & El-Said, H. The role of serum bile acid profile in differentiation between nonalcoholic fatty liver disease and chronic viral hepatitis. Egypt Liver J. 10, 50 (2020).
Google Scholar
Kato, T., Yoneda, M., Nakamura, K. & Makino, I. Enzymatic determination of serum 3 alpha-sulfated bile acids concentration with bile acid 3 alpha-sulfate sulfohydrolase. Dig. Dis. Sci. 41, 1564–1570 (1996).
Google Scholar
Xue, Y. et al. Redox pathway sensing bile salts activates virulence gene expression in Vibrio cholerae. Mol. Microbiol. 102, 909–924 (2016).
Google Scholar
Li, P. et al. Bile salt receptor complex activates a pathogenic type III secretion system. Elife 5, e15718 (2016).
Nelson, E. J., Harris, J. B., Morris, J. G. Jr, Calderwood, S. B. & Camilli, A. Cholera transmission: the host, pathogen and bacteriophage dynamic. Nat. Rev. Microbiol. 7, 693–702 (2009).
Google Scholar
Rivera-Cancel, G. & Orth, K. Biochemical basis for activation of virulence genes by bile salts in Vibrio parahaemolyticus. Gut Microbes 8, 366–373 (2017).
Google Scholar
Childers, B. M. & Klose, K. E. Regulation of virulence in Vibrio cholerae: the ToxR regulon. Future Microbiol. 2, 335–344 (2007).
Google Scholar
Pédelacq, J.-D., Cabantous, S., Tran, T., Terwilliger, T. C. & Waldo, G. S. Engineering and characterization of a superfolder green fluorescent protein. Nat. Biotechnol. 24, 79–88 (2005).
Google Scholar
Yang, M. et al. Bile salt–induced intermolecular disulfide bond formation activates Vibrio cholerae virulence. Proc. Natl Acad. Sci. USA 110, 2348–2353 (2013).
Google Scholar
Mutalik, V. K. et al. Precise and reliable gene expression via standard transcription and translation initiation elements. Nat. Methods 10, 354–360 (2013).
Google Scholar
Fowler, D. M. et al. High-resolution mapping of protein sequence-function relationships. Nat. Methods 7, 741–746 (2010).
Google Scholar
Chang, H.-J. et al. Loop-sequence features and stability determinants in antibody variable domains by high-throughput experiments. Structure 22, 9–21 (2014).
Google Scholar
Cambray, G., Guimaraes, J. C. & Arkin, A. P. Evaluation of 244,000 synthetic sequences reveals design principles to optimize translation in Escherichia coli. Nat. Biotechnol. 36, 1005–1015 (2018).
Google Scholar
McClune, C. J., Alvarez-Buylla, A., Voigt, C. A. & Laub, M. T. Engineering orthogonal signalling pathways reveals the sparse occupancy of sequence space. Nature https://doi.org/10.1038/s41586-019-1639-8 (2019).
Roda, A. et al. Smartphone-based biosensors: a critical review and perspectives. Trends Anal. Chem. 79, 317–325 (2016).
Google Scholar
Sicard, C. et al. A rapid and sensitive fluorimetric β-galactosidase assay for coliform detection using chlorophenol red-β-D-galactopyranoside. Anal. Bioanal. Chem. 406, 5395–5403 (2014).
Google Scholar
Kumar, S. et al. Non invasive diagnosis of acute cellular rejection after liver transplantation—current opinion. Transpl. Immunol. 47, 1–9 (2018).
Google Scholar
Janßen, H. et al. Serum bile acids in liver transplantation—early indicator for acute rejection and monitor for antirejection therapy. Transpl. Int. 14, 429–437 (2001).
Google Scholar
Wan, X. et al. Cascaded amplifying circuits enable ultrasensitive cellular sensors for toxic metals. Nat. Chem. Biol. 15, 540–548 (2019).
Google Scholar
Rollins, N. J. et al. Inferring protein 3D structure from deep mutation scans. Nat. Genet. 51, 1170–1176 (2019).
Google Scholar
Stiffler, M. A., Hekstra, D. R. & Ranganathan, R. Evolvability as a function of purifying selection in TEM-1 β-lactamase. Cell 160, 882–892 (2015).
Google Scholar
Starr, T. N., Picton, L. K. & Thornton, J. W. Alternative evolutionary histories in the sequence space of an ancient protein. Nature 549, 409–413 (2017).
Google Scholar
Russ, W. P. et al. An evolution-based model for designing chorismate mutase enzymes. Science 369, 440–445 (2020).
Google Scholar
Taketani, M. et al. Genetic circuit design automation for the gut resident species Bacteroides thetaiotaomicron. Nat. Biotechnol. https://doi.org/10.1038/s41587-020-0468-5 (2020).
Tsuei, J., Chau, T., Mills, D. & Wan, Y.-J. Y. Bile acid dysregulation, gut dysbiosis, and gastrointestinal cancer. Exp. Biol. Med. 239, 1489–1504 (2014).
Google Scholar
Ridlon, J. M., Kang, D. J., Hylemon, P. B. & Bajaj, J. S. Bile acids and the gut microbiome. Curr. Opin. Gastroenterol. 30, 332–338 (2014).
Google Scholar
Liu, H.-X., Keane, R., Sheng, L. & Wan, Y.-J. Y. Implications of microbiota and bile acid in liver injury and regeneration. J. Hepatol. 63, 1502–1510 (2015).
Google Scholar
Cao, H. et al. Secondary bile acid-induced dysbiosis promotes intestinal carcinogenesis. Int. J. Cancer 140, 2545–2556 (2017).
Google Scholar
Nguyen, T. T., Ung, T. T., Kim, N. H. & Jung, Y. D. Role of bile acids in colon carcinogenesis. World J. Clin. Cases 6, 577–588 (2018).
Google Scholar
Chen, J., Thomsen, M. & Vitetta, L. Interaction of gut microbiota with dysregulation of bile acids in the pathogenesis of nonalcoholic fatty liver disease and potential therapeutic implications of probiotics. J. Cell. Biochem. 120, 2713–2720 (2019).
Google Scholar
Liu, Y., Rong, Z., Xiang, D., Zhang, C. & Liu, D. Detection technologies and metabolic profiling of bile acids: a comprehensive review. Lipids Health Dis. 17, 121 (2018).
Google Scholar
Stocker, J. et al. Development of a set of simple bacterial biosensors for quantitative and rapid measurements of arsenite and arsenate in potable water. Environ. Sci. Technol. 37, 4743–4750 (2003).
Google Scholar
Volpetti, F., Petrova, E. & Maerkl, S. J. A microfluidic biodisplay. ACS Synth. Biol. 6, 1979–1987 (2017).
Google Scholar
Din, M. O. et al. Synchronized cycles of bacterial lysis for in vivo delivery. Nature 536, 81–85 (2016).
Google Scholar
McNerney, M. P., Michel, C. L., Kishore, K., Standeven, J. & Styczynski, M. P. Dynamic and tunable metabolite control for robust minimal-equipment assessment of serum zinc. Nat. Commun. 10, 5514 (2019).
Google Scholar
Hui, C.-Y. et al. Genetic control of violacein biosynthesis to enable a pigment-based whole-cell lead biosensor. RSC Adv. 10, 28106–28113 (2020).
Google Scholar
Alnouti, Y. Bile Acid sulfation: a pathway of bile acid elimination and detoxification. Toxicol. Sci. 108, 225–246 (2009).
Google Scholar
Tazuke, Y. et al. A new enzymatic assay method of sulfated bile acids in urine. 臨床化学 21, 249–258 (1992).
Google Scholar
Gallagher, R. R., Patel, J. R., Interiano, A. L., Rovner, A. J. & Isaacs, F. J. Multilayered genetic safeguards limit growth of microorganisms to defined environments. Nucleic Acids Res. 43, 1945–1954 (2015).
Google Scholar
Lee, J. W., Chan, C. T. Y., Slomovic, S. & Collins, J. J. Next-generation biocontainment systems for engineered organisms. Nat. Chem. Biol. 14, 530–537 (2018).
Google Scholar
Bhatia, P. & Chugh, A. Synthetic biology based biosensors and the emerging governance issues. Curr. Synth. Syst. Biol. 1, 2332–0737 (2013).
Simons, K. T., Bonneau, R., Ruczinski, I. & Baker, D. Ab initio protein structure prediction of CASP III targets using ROSETTA. Proteins 3, 171–176 (1999).
Google Scholar
Dey, K. K., Xie, D. & Stephens, M. A new sequence logo plot to highlight enrichment and depletion. BMC Bioinformatics 19, 473 (2018).
Google Scholar

